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This file serves as a supplement to the main paper. Section S1 provides

the detailed derivation of the EM algorithm. Section S2 describes the valid-

ity of SSC initialization. Section S3 includes the proof of theoretical results.

Section S4 illustrates extensive simulation studies to assess the validity of

the theoretical results.

S1 Derivation of the EM algorithm

As is discussed in Section 3.2, we propose to perform an EM algorithm to

obtain the MLE of this model. The detailed procedure of the EM algorithm

is presented in algorithm 1. Based on the complete likelihood (3.3), we

provide detailed derivation of the EM algorithm in this section.

First of all, some conditional probabilities are denoted below to help
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take expectation,

p
s,s;[k]
ij =

λ
[k]
icj
λ

[k]
jci

λ
[k]
icj
λ

[k]
jci

+
∑s−1

u=1 α
[k]
cicje

−β[k]
cicj

(t
(s)
ij −t

(u)
ij )

,

p
s,u;[k]
ij =

α
[k]
cicje

−β[k]
cicj

(t
(s)
ij −t

(u)
ij )

λ
[k]
icj
λ

[k]
jci

+
∑s−1

v=1 α
[k]
cicje

−β[k]
cicj

(t
(s)
ij −t

(v)
ij )
.

(S1.1)

Here, the superscript [k] indicates the kth iteration. Then with E[k](dii) =
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where we let the summation term in the third bracket be 0 when nij = 0

for convenience of notation.

αcicj and βcicj can be solved directly by differentiating (S1.2) and setting
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it to zero. For λib, since
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Finally if we denote for simplicity (
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we can obtain the updates for the (i+ 1)th iteration: (a ≥ b)
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S2 Validity of SSC initialization

As the complete likelihood function given in (3.1) is non-convex, it is im-

portant to find a good initializer for the community membership vector

ccc0. In Arastuie et al. (2020), the number of interactions nij on each node

pair (i, j) is counted to form the accumulated matrix W. Then, a simple

spectral clustering is applied to this accumulated matrix. In our case, this

approach is not suitable because of the degree variation within communi-

ties. However, we find that the limit of the accumulated network in our
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Algorithm 1: An EM algorithm for the CHHIP model

Input: Dynamic network data X, community number K

Output: community membership ccc, parameter estimates (λ̂λλ, α̂αα, β̂ββ)
1 Initialize ααα[0], βββ[0], λλλ[0], ccc[0] and set k = 0.
2 while Not convergence do
3 for nodes i > j do
4 for each timestamp tsij in node pair (i, j) do

5 Calculate p
s,s;[k]
ij (see (S1.1) in Section S1 of the Supplement)

6 for each timestamp tuij < tsij in node pair (i, j) do

7 Calculate p
s,u;[k]
ij (see (S1.1) in Section S1 of the Supplement)

8 end

9 end

10 end
11 for node i do
12 for block b do

13 Use (S1.3) to calculate λ̂
[k+1]
ib

14 end

15 end
16 for blocks (a, b) do

17 Use (S1.3) to calculate α̂
[k+1]
ab and β̂

[k+1]
ab

18 end
19 for node i do
20 for block b do

21 Set ddd(b) ← ccc[k] with the expection of ddd
(b)
i = b

22 Calculate log-likelihood `c(λλλ,ααα,βββ;ddd(b))

23 end

24 ccc← argmaxddd(b)`c(λλλ,ααα,βββ;ddd(b))

25 end
26 k ← k + 1

27 end
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case is also a weighted version of the PABM model. This motivates us to

take advantage of the structure and initialize our algorithm with subspace

sparse clustering as outlined in algorithm 2.

Algorithm 2: A SSC community initialization algorithm

Input: Dynamic network data X, community number K
Output: block membership vector ĉcc

1 for each node pair (i, j) do
2 Calculate nij , the number of interactions between i and j, to form W
3 end
4 for each node i do
5 Use Orthogonal Matching Pursuit (OMP) to solve SSSi from

SSSi ← argmin
SSS

{
‖WWW i −WSSS‖22 s.t. ‖Wi‖0 ≤ K, Wii = 0} ,

where WWW i is the ith column of W (refer to Noroozi et al. (2021) for more
details)

6 end

7 S← S + ST

8 ĉcc← (normalized) spectral clustering for the weighted similarity matrix S (refer
to Noroozi et al. (2021) for more details)

Lemma 2. Define nij(T ) as the number of events occurring on node pair

(i, j) up to T . Then with Assumption 1 in the section 4.1, we have

1

T
nij(T ) | (ci = a, cj = b) ∼ N

 λicjλjci

1− αcicj

βcicj

,
λicjλjci(

1− αcicj

βcicj

)3

T


as T →∞.

The proof is given in Section S3.2 of the supplement. With Lemma 2, the ex-

pectation of the accumulated network used in algorithm 2 can be considered
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as a realization of the modified PABM when T is large. Recall that E(Aij) =

λicjλjci under the PABM. Given that λ̃ib = (T/(1−αcib/βcib))1/2λib, we have

E (nij(T )) ≈ λ̃icj λ̃jci . Moreover, the identifiability condition is naturally

satisfied with Λ̃ab = (T/(1 − αab/βab))1/2Λab = (T/(1 − αba/βba))1/2Λba =

Λ̃ba.

Noroozi et al. (2021) provides a sparse subspace clustering algorithm for

community detection under the PABM model. The algorithm stems from

the observation that this model leads to a low-rank adjacency matrix, with

all of its columns lying in the union of K subspaces, each of the dimension

K. Therefore, with every fixed K they formulate the problem as

ĉcc ∈ argmin
ccc∈CN,K

{
K∑

k,l=1

∥∥W (k,l)(ccc)− Π
(
W (k,l)(ccc)

)∥∥2

F

}
(S2.4)

where CN,K = {1, 2, · · · , K0}N , W (k,l)(ccc) is a submatrix of the permuted

W such that its rows correspond to the kth community and its columns

correspond to the lth community in ccc; Π(·) is a rank-one projection of the

matrix. We extend their clustering error results to our weighted case.

Theorem 2. Define ĉcc as the solution of Equation S2.4, P0 ∈ RN×N as

P 0
ij = E[nij]/T , and the membership class with the error rate being at least
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ρn:
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Section 4 hold, and for some αN ∈ (0, 1/2) and ρN ∈ (0, 1), we have

∥∥P0
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F
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ccc∈Υ(ccc0,ρN )
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∥∥P0(k,l)(ccc)
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αNT
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NK +K2 lnN
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where H1 and H2 are fixed constants determined by M , αN and c0.

Then with a known K = K0, the misclassification rate (2N)−1 minσ(·) ‖ĉcc− σ(ccc0)‖1

is at most ρN with probability at least 1− 2e−c0NT .

The proof is provided in Section S3.3 of the Supplement. In this theorem, we

require that the maximal number of events per unit time does not increase

with the number of nodes, and this condition is used for the concentration

inequality. As explained by Noroozi et al. (2021), the assumption of the

error rate bound can be regarded as a condition for the difference between

intragroup and intergroup connective probabilities. In spite of the perfect

theoretical results, the solution is hard to obtain because this optimization

problem is NP-hard, and they use SSC as a relaxation. Following Noroozi

et al. (2021), we present our result of correctness at population level using
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SSC in Theorem 3. The corresponding proof is given in S3.4.

Theorem 3. Assume the number of communities K = K0 is known. Then

with Assumptions 1 and 4, the SSC algorithm recovers communities cor-

rectly up to a permutation on the noiseless accumulated matrix P0.

S3 Proof of Theoretical Results

S3.1 Proof of Theorem 1

Proof. Denote θθθ0 = (ααα0,βββ0,λλλ0) as the true value of parameters and ccc0 as

the true labels.

First, the log-likelihood function in (3.2) can be rewritten as

`(θθθ, ccc) =
N∑
i=1

∑
j<i

log

(
−
∫ T

0

λ∗i,j(θθθ, ccc, t, w)dt+

∫ T

0

log λ∗i,j(θθθ, ccc, t, w)dNij(t)

)

Our proof approximates λ∗i,j(θθθ, ccc, t, w) with λ∗∗i,j(θθθ, ccc, t, w) in this likelihood

function, and prove the result with regard to the approximated log-likelihood.

This approximation was first used in Ogata et al. (1978), and is sufficiently

close to the original log-likelihood when assumption 3 is satisfied.

From assumption 1, Xi,j(θθθ, ccc) is stationary, ergodicity with second–
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order moment, and by lemma 2 of Ogata et al. (1978) we have

lim
T→∞

1

T

∫ T

0

min
ccc′∈C

inf
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}
(S3.5)
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(S3.6)

It is easy to verify that |
∑

i

∑
j λ
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i,j(θθθ, ccc, 0, w)| and |

∑
i

∑
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can be dominated byN(N+1)/2M0(w) andN(N+1)/2 max{| logM0(w)|, | logm2|}.

Use the dominated convergence theorem:
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If we define the likelihood ratio on [0, 1] as

Rij

(
θθθ0, ccc0;θθθ, ccc

)
=

∫ 1

0

{
λ∗∗i,j(θθθ, ccc, t, ω)− λ∗∗i,j(θθθ0, ccc0, t, ω)

}
dt+

∫ 1

0

log
λ∗∗i,j(θθθ

0, ccc0, t, ω)

λ∗∗i,j(θθθ, ccc, t, ω)
dN(t),

By lemma 3 of Ogata et al. (1978), for any ccc, i and j we have

E
[
Rij

(
θθθ0, ccc0;θθθ, ccc

)]
= E

λ∗∗i,j(θθθ, ccc, 0, ω)− λ∗∗i,j(θθθ0, ccc0, 0, ω) + log
λ∗∗i,j(θθθ

0, ccc0, 0, ω)

λ∗∗i,j(θθθ, ccc, 0, ω)

 ≥ 0

(S3.9)

Besides, it is easy to see that λ∗∗i,j(θθθ, ccc, 0, w)
a.s.
= λ∗∗i,j(θθθ

0, ccc0, 0, w) holds for

any nodes i and j if and only if θθθ = θθθ0 and ccc = σ(ccc0) up to a permutation

σ(·). For example, for the “only if” part, we first know that λ∗∗i,j(θθθ, ccc, 0, w)
a.s.
=

λ∗∗i,j(θθθ
0, ccc0, 0, w) if and only if λicjλjci = λ0

ic0j
λ0
jc0i

, αcicj = αij = α0
ij = α0

c0i c
0
j

and βcicj = βij = β0
ij = β0

c0i c
0
j
. Therefore we have µ(ccc) = µ0(ccc0) if we denote

µ(ccc) as µij(ccc) = λicjλjci . Note that µ(ccc) also takes the form of PABM, so

the proof of lemma 1 in Estimation and clustering in popularity adjusted

block model tells us that assumption 4 guarantees the recovery of ccc up to

permutation. From that point we can obtain θθθ = θθθ0 up to permutation.

Now suppose U0 to be any open neighbourhood of θθθ0. For notational

convenience, we use σ(θθθ0) and σ(U0) to represent the image of θθθ0 and

U0 under any fixed permutation mapping σ(·). Then (S3.9) tells us that
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∑
j E [Rij(θθθ0, ccc

0;θθθ, ccc)] = 0 if and only if θθθ = σ(θθθ0) and ccc = σ(ccc0). In

other words, there exists ε > 0, for any θθθ ∈ Θ\σ(U0), we have

min
ccc∈C

N∑
i=1

∑
j<i

E
[
Rij

(
θθθ0, ccc0;σ(θθθ), σ(ccc)

)]
≥ 3ε (S3.10)

and for θθθ ∈ σ(U0) and ccc 6= σσσ(c0),

N∑
i=1

∑
j<i

E
[
Rij

(
θθθ0, ccc0;σ(θθθ), σ(ccc)

)]
≥ 3ε (S3.11)

Without loss of generality we suppose σ(ccc) = ccc first. From the com-

pactness of parameter space, we can select a finite number of θθθs to construct

a covering of Θ\U0: {Us := Uθθθs,ε}, where Uθθθs,ε is a sufficiently small neigh-

bourhood of θθθs. Using (S3.5) – (S3.8) and (S3.10) ,
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∑
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+
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log
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≥E

{
min
ccc∈C

inf
θθθ∈Us

N∑
i=1

∑
j<i

(
λ∗∗i,j(θθθ, ccc, 0)− λ∗∗i,j(θθθ0, ccc0, 0)

)}

+ E

{
λ∗∗i,j(θθθ

0, ccc0, 0) min
ccc∈C

inf
θθθ∈Us

N∑
i=1

∑
j<i

log
λ∗∗i,j(θθθ

0, ccc0, 0)

λ∗∗i,j(θθθ, ccc, 0)

}
− ε
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ccc∈C

N∑
i=1

∑
j<i

E[Rij(θθθ
0, ccc0;θθθ, ccc)]− 2ε ≥ ε

Therefore for any U0 containing θθθ0, there exists T1 = T1 (ε, U0) > T0 for

any T > T1,

sup
θθθ∈U0

`(θθθ, ccc0) ≥ max
ccc∈C

sup
θθθ∈Θ\U0

`(θθθ, ccc) + εT. (S3.12)

Likewise for any ccc 6= ccc0

sup
θθθ∈U0

`(θθθ, ccc0) ≥ sup
θθθ∈U0

`(θθθ, ccc) + εT. (S3.13)

To generalize the results to the permuted case, we can substitute U0

with the union of σ(U0) for all of permutation σ(·). Combining (S3.12) and

(S3.13), we prove the theorem.

S3.2 Proof of Lemma 2

Lemma 2. Lemma 2 is a direct application of Theorem 4 in Hawkes and

Oakes (1974).
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Specifically, for each i and j, parameters there are set as γ(u) = αcicje
−βcicju

and ν = λicjλjci .

Then with
∫∞

0
uγ(u)du = α/β + α/β2 <∞, it follows that

νT

1−m
=
λicjλjciT

1− αcicj

βcicj

and
νT

(1−m)3
=

λicjλjciT(
1− αcicj

βcicj

)3 ,

and this accomplishes the proof of this lemma.

S3.3 Proof of Theorem 2

Proof. First, note that ĉcc is the solution of the optimization objective, we

have

K∑
k,l=1

∥∥W(k,l)(ĉcc)− Π(1)

(
W(k,l)(ĉcc)

)∥∥2

F
≤

K∑
k,l=1

∥∥W(k,l)
(
ccc0
)
− Π(1)

(
W(k,l)

(
ccc0
))∥∥2

F

(S3.14)

Using the property of the one-rank projection, for any fixed ccc, we have

K∑
k,l=1

∥∥W(k,l)(ccc)− Π(1)

(
W(k,l)(ccc)

)∥∥2

F
=

K∑
k,l=1

{∥∥W(k,l)(ccc)
∥∥2

F
−
∥∥Π(1)

(
W(k,l)(ccc)

)∥∥2

F

}
(S3.15)

By (S3.14), (S3.15) and
∑K

k,l=1

∥∥W(k,l)(ccc)
∥∥2

F
= ‖W‖2

F , we have

K∑
k,l=1

∥∥Π(1)

(
W(k,l)(ĉcc)

)∥∥2

F
≥

K∑
k,l=1

∥∥Π(1)

(
W(k,l)

(
ccc0
))∥∥2

F
(S3.16)
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Now we denote Ξ(k,l)(ccc) = W(k,l)(ccc)−P0(k,l)
(ccc). Note that Π(1)

(
W(k,l) (ccc0)

)
is of rank one. Besides, define V 0V 0V 0(k,l) ∈ RNk as V 0

r
(k,l)

= λ0
irk,l

where irk is the

rth node in community k, and we find that P0(k,l)
(ccc) = VVV 0(k,l)

(ccc)VVV 0(l,k)T
(ccc)

is also of rank one. Therefore

∥∥Π(1)

(
W(k,l)

(
ccc0
))∥∥

F
=
∥∥Π(1)

(
W(k,l)

(
ccc0
))∥∥

op

≥
∥∥∥P0(k,l) (

ccc0
)∥∥∥

op
−
∥∥Π(1)

(
Ξ(k,l)

(
ccc0
))∥∥

op

≥
∥∥∥P0(k,l) (

ccc0
)∥∥∥

F
−
∥∥Ξ(k,l)

(
ccc0
)∥∥

op

.

With the inequality a ≥ b − c ⇒ a2 ≥ b2/(τ + 1) − c2/τ for any positive

a, b, c, τ , the right hand side has a lower bound:

K∑
k,l=1

∥∥Π(1)

(
W(k,l)

(
ccc0
))∥∥2

F
≥ 1

τ + 1

∥∥P0
∥∥2

F
− 1

τ

K∑
k,l=1

∥∥Ξ(k,l)
(
ccc0
)∥∥2

op
;

(S3.17)

And with the fact that

∥∥Π(1)

(
W(k,l)(ĉcc)

)∥∥
F

=
∥∥Π(1)

(
W(k,l)(ĉcc)

)∥∥
op
≤
∥∥∥P0(k,l)

(ĉcc)
∥∥∥
op

+
∥∥Ξ(k,l)(ĉcc)

∥∥
op
,

the left hand side has an upper bound with regards to any positive τ0:

K∑
k,l=1

∥∥Π(1)

(
W(k,l)(ĉcc)

)∥∥2

F
≤ (1 + τ0)

K∑
k,l=1

∥∥∥P0(k,l)
(ĉcc)
∥∥∥2

op
+

(
1 +

1

τ0

) K∑
k,l=1

∥∥Ξ(k,l) (ĉcc)
∥∥2

op
.

(S3.18)
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Now we follow the proof of Lemma 2 and Theorem B.3 in Arastuie et al.

(2020) where the (i, j)th entry of Ξ (ccc0) can be approximated by the normal

distributionN
(
λ0
icj
λ0
jci
/((1− α0

cicj
/β0

cicj
)T ), λ0

icj
λ0
jci
/((1− α0

cicj
/β0

cicj
)3T )

)
when

T is large enough. Thus we take the value of σ1, σ2, σ∗ in the Theorem 3.1

of Bandeira and Van Handel (2016) with

σ1 =
1√
T

max
ci=k

√
λ0
ilΛ

0
lk

(1− α0
kl/β

0
kl)

3 ,

σ2 =
1√
T

max
cj=l

√
λ0
jkΛ

0
kl

(1− α0
kl/β

0
kl)

3 ,

σ∗ =
1√
T

max
ci=k,cj=l

√
λ0
ilλ

0
jk

(1− α0
kl/β

0
kl)

3 .

With the assumption of maxi,j=1,··· ,N
s,r=1,··· ,K

λ0
irλ

0
sj/(1− α0

sr/β
0
sr)

3 ≤M , we have

σ1 ≤
1√
T

√
N̂kM, σ2 ≤

1√
T

√
N̂lM, σ∗ ≤

1√
T

√
M.

So use the Theorem 3.1 of Bandeira and Van Handel (2016), we obtain

E

[
K∑

k,l=1

∥∥Ξ(k,l)(ccc0)
∥∥2

op

]
. 4c2

1

K∑
k,l=1

(
σ

(k,l)2

1 + σ
(k,l)2

2

)
+ 2c2

2

K∑
k,l=1

σ2
∗ log(Nk ∧Nl)

≤ C1NK/T + C2K
2/T lnN

(S3.19)
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Likewise,

E

[
K∑

k,l=1

∥∥Ξ(k,l)(̂ccc)
∥∥2

op

]
. C1NK/T + C2K

2/T lnN (S3.20)

Besides, let gk,l(Ξ
′
) =

∥∥∥diag(
√
λ0
i1l
, · · · ,

√
λ0
iNk

l)[Ξ
′
i,j]ĉi=k,ĉj=l diag(

√
λ0
kj1
, · · · ,

√
λ0
kjNl

)
∥∥∥

op

for each block pair (k, l), we can prove it is sub-Gaussian when Ξ
′

contains

independent Gaussian variables. To see this, we denote fk,l(vec(Ξ
′
)) =

gk,l(Ξ
′
) and prove fk,l(·) is Lipschitz. This is because for any Ξ1′, Ξ2′ ∈

RNk×Nl ,

|f 0
k,l(vec(Ξ1

′

))− f 0
k,l(vec(Ξ2

′

))|2

≤
∥∥∥diag(

√
λ0
i1l
, · · · ,

√
λ0
iNk

l)[Ξ
1
′

i − Ξ2
′

i ]idiag(
√
λ0
kj1
, · · · ,

√
λ0
kjNl

)
∥∥∥2

op

≤
∥∥∥diag(

√
λ0
i1l
, · · · ,

√
λ0
iNk

l)
∥∥∥2

op

∥∥∥[Ξ1
′

i − Ξ2
′

i ]i

∥∥∥2

op

∥∥∥diag(
√
λ0
kj1
, · · · ,

√
λ0
kjNl

)
∥∥∥2

op

≤ max
ci=k,cj=l

{λ0
ilλ

0
kj}
∥∥∥[Ξ1

′

i − Ξ2
′

i ]i

∥∥∥2

F

= max
ci=k,cj=l

{λ0
ilλ

0
kj}‖vec(Ξ1

′

)− vec(Ξ2
′

)‖2

(S3.21)

Define Ξ(k,l)′(ccc) ∈ RNk×Nl where Ξ
(k,l)′

ij (ccc) =
√

(1− α0
kl/β

0
kl)

3T/(λ0
ilλ

0
jk)Ξ

(k,l)
ij (ccc).

Then use the fact that entries in Ξ
(k,l)′

ij (ccc0) are independent standard Gaus-

sian variables when T is large enough, we know ‖Ξ(k,l)(ccc0)‖op = gk,l(Ξ
(k,l)′(ccc0))/

√
(1− α0

kl/β
0
kl)

3T

is a sub-Gaussian variable with a parameter of
√

maxci=k,cj=l{λ0
ilλ

0
kj}/(1− α0

kl/β
0
kl)

3T .
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As maxi,j=1,··· ,N
s,r=1,···K

{λ0
irλ

0
sj/[(1 − α0

sr/β
0
sr)

3]} ≤ M , we obtain the following

bound for any v > 0 using the Hoeffding inequality:

E
[
exp

(
v
(∥∥Ξ(k,l)(ccc0)

∥∥
op
− E

[∥∥Ξ(k,l)(ccc0)
∥∥

op

]))]
≤ eMv2/(2T )

Likewise, for any ĉcc we also have

E
[
exp

(
v
(∥∥Ξ(k,l)(̂ccc)

∥∥
op
− E

[∥∥Ξ(k,l)(̂ccc)
∥∥

op

]))]
≤ eMv2/(2T )

Now we define two vectors with sub-Gaussian entries ηηη0, η̂ηη ∈ RK(K+1)/2,

where ηηη0
(k−1)k/2+l =

∥∥Ξ(k,l)(ccc0)
∥∥

op
−E

[∥∥Ξ(k,l)(ccc0)
∥∥

op

]
, η̂ηη(k−1)k/2+l =

∥∥Ξ(k,l)(̂ccc)
∥∥

op
−

E
[∥∥Ξ(k,l)(̂ccc)

∥∥
op

]
. Take A = IK(K+1)/2 in Theorem 2.1 of Hsu et al. (2012),

which is

P
{
‖Aη̃ηη‖2 ≥ σ2

(
Tr
(
ATA

)
+ 2
√

Tr
(
(ATA)2)x+ 2

∥∥ATA
∥∥
op
x

)}
≤ exp(−x)

Then for any x > 0 we have

P
{
‖ηηη0‖2 ≥ 2MK(K + 1)/T + 6Mx/T )

}
≤ exp(−x) (S3.22)

P
{
‖η̂ηη‖2 ≥ 2MK(K + 1)/T + 6Mx/T )

}
≤ exp(−x) (S3.23)
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Combining (S3.19) and (S3.22), we have

P

(
K∑

k,l=1

∥∥Ξ(k,l)(ccc0)
∥∥2

op
≤ C1NK/T + C2K

2/T lnN + 2MK(K + 1)/T + 6Mx/T

)
& 1−exp(−x)

(S3.24)

For any fixed ĉcc, combining (S3.20) and (S3.23), we have

P

(
K∑

k,l=1

∥∥Ξ(k,l)(̂ccc)
∥∥2

op
≤ C1NK/T + C2K

2/T lnN + 2MK(K + 1)/T + 6Mx/T

)
& 1−exp(−x)

(S3.25)

Since |Υ (ccc0, ρN) | ≤
∑

h≥[ρNn]

(
N
h

)
(K − 1)h ≤ KN , take the union of ĉcc ∈

Υ (ccc0, ρN) and let x← N lnK + t in (S3.25), then

P

{
max

ĉcc∈Υ(ccc0,ρN )

K∑
k,l=1

∥∥Ξ(k,l)(̂ccc)
∥∥2

op
≤ C1NK/T + C2K

2 ln(Ne)/T + 2MK(K + 1)/T

+C3/T (N lnK + t)

}
≥ 1− exp(−t)

(S3.26)

Let τ = τ0, t = c0NT , 1+αN = (1+τ)2. Then τ−1 = α−1
N

(
1 +
√

1 + αN
)

and when αN ≤ 1, we have

τ−1(1 + τ)l ≤ α−1
N 2l/2(

√
2 + 1) l = 0, 1, 2.

Combining (S3.16),(S3.17), (S3.18) ,(S3.24) and (S3.26), with probability
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at least 1− 2 exp(−c0NT ) the following inequality holds:

∥∥P0
∥∥2

F
−(1 + αN) max

ĉcc∈Υ(ccc0,ρN )

K∑
k,l=1

∥∥∥P0(k,l)
(̂ccc)
∥∥∥2

op
≤ H1

αNT

(
NK +K2 lnN

)
+
H2

αN
N,

(S3.27)

where H1 ≤
√

2(1 +
√

2)2 max [C1 + C3, 2C2] and H2 ≤ C3c0. This inequal-

ity is obtained through N lnK ≤ NK and ln(Ne) ≤ 2 lnN .

To conclude, if the solution of the optimization problem ĉcc is in Υ (ccc0, ρN),

then (S3.27) holds. However, this result contradicts with the condition.

Therefore, ĉcc does not belong to Υ (ccc0, ρN) and this accomplishes the proof.

S3.4 Proof of Theorem 3

As P0, the adjacency matrix at the population level, can be expressed as a

weighted PABM structure by Lemma 2, the proof of this theorem is exactly

the same as Theorem 4 of Noroozi et al. (2021).

S4 Simulation experiments

In this section, we simulate networks under several models, and evaluate

clustering effects and parameter estimation performance. α and β are pa-

rameters related with the triggering mechanism. For simplicity, we let α1, β1
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be the value for αab, βab when a = b and α2, β2 be the value when a 6= b.

Two additional parameters z and w are introduced to control the back-

ground intensities of the temporal network. In general, a larger z leads to

a globally denser network, while a smaller w enlarges the gap of interaction

frequency between intragroup and intergroup dyads. We fix N = 150 and

K = 3 throughout the simulation unless otherwise specified, and assign a

node to each block with an equal probability. The detailed data generating

procedure, parameter settings and a related analysis are provided below in

Section S4.1–S4.3.

S4.1 The simulation procedure

Given the ground membership for each node, a two-step procedure is de-

signed to generate dynamic networks under CHHIP. First, we randomly

generate a symmetric, N × N baseline intensity matrix B. Then we inde-

pendently simulate a Hawkes process for each node pair using the corre-

sponding entry in B and excitation parameters α, β. Hawkes processes can

be simulated using the hawkes package (Zaatour (2014)) in R.

We generate B using the approach adopted in Noroozi et al. (2021) to

obtain fairly diverse intensities. This approach is based on the observa-

tion that the matrix can be partitioned into K2 rank-one blocks. Without
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loss of generality, we let the first N1 rows of B correspond to nodes from

the first community, the next N2 rows correspond to nodes from the sec-

ond community, and so on. Denote by B(a,b) the (a, b)th block pair of

B. Besides, VVV (a,b) ∈ RNa is defined by V
(a,b)
r = λira,b , where ira is the rth

node in block a. By definition, B
(a,b)
r,s = λirabλisba = V

(a,b)
r V

(b,a)
s , resulting in

B(a,b) = VVV (a,b)VVV (b,a). Therefore, all we need to do is to construct the N ×K

matrix

V =



VVV (1,1) VVV (1,2) · · · VVV (1,K)

VVV (2,1) VVV (2,2) · · · VVV (2,K)

...
... · · · ...

VVV (K,1) VVV (K,2) · · · VVV (K,K)


. (S4.28)

We first generate diagonal blocks in VVV by uniformly sampling values from

the interval (y, z), 0 < y < z < 1. Here we set a fixed lower bound, y = 0.01,

so that the intragroup intensity for each node is guaranteed to be larger than

the intergroup intensity. In general, a bigger z leads to denser networks with

higher node heterogeneity. For non-diagonal VVV (a,b) ∈ RNa(a 6= b), we start

from VVV (a,a) ∈ RNa and multiply the Na entries with Na elements sampled

from (0, 1) to adapt to the normal situation where interaction heterogeneity

with different communities exists for each node. All non-diagonal entries
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are multiplied by an additional parameter w(w > 0) which controls the

strength of community structure.

S4.2 Parameter settings

Here we list ten settings used in our paper for reference:

I. w = 0.8, z = 0.05, α1 = α2 = 0.005, β1 = β2 = 0.01;

II. w = 0.5, z = 0.05, α1 = α2 = 0.005, β1 = β2 = 0.01;

III. w = 1.5, z = 0.05, α1 = α2 = 0.005, β1 = β2 = 0.01;

IV. w = 0.8, z = 0.05, α1 = 0.009, α2 = 0.005, β1 = 0.012, β2 = 0.01;

V. w = 0.8, z = 0.05, α1 = 0.004, α2 = 0.005, β1 = 0.012, β2 = 0.01;

VI. w = 0.8, z = 0.03, α1 = α2 = 0.005, β1 = β2 = 0.01;

VII. w = 0.8, z = 0.08, α1 = α2 = 0.005, β1 = β2 = 0.01;

In these settings, I,II,III are used to study the simulation performance with

varied w, I,IV,V are used to study the simulation performance with α1/β1,

I,VI,VII are used to study the simulation performance with varied z.

S4.3 An analysis of the effect of parameters

In our simulation study, two additional parameters z and w are introduced

to control the network density and the community strength, respectively.
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In this subsection we analyse the influence of the triggering ratio α/β and

the community background strength parameter w.

Table S1: Some summary statistics for accumulated networks with 150 nodes when
T = 1000 under different parameter settings. All values are rounded up to 2 decimal
places.

Settings MDwithin SDwithin MDbetween SDbetween

I 41.63 32.10 30.23 20.01
II 41.63 32.10 10.71 9.19
III 41.63 32.10 105.99 61.86
IV 69.61 53.31 30.59 18.38
V 32.55 24.40 29.53 17.99

MDwithin represents the mean degree within communities, SDwithin represents the standard deviation
of degrees within communities, MDbetween represents the mean degree between communities, and
SDbetween represents the standard deviation of degrees between communities.

Table S1 summarizes the degree distribution of the accumulated net-

work under settings I, II, III, IV, and V when N = 150 and T = 1000. A

smaller w < 1 or a larger w > 1 enlarges the gap of background intensi-

ties between intragroup and intergroup block pairs and leads to a stronger

community structure and a varying node heterogeneity (see settings I, II

and III). A larger α/β triggers more subsequent events for dyads with high

background intensities, causing stronger node heterogeneity. This fact can

also be verified by the intensity parameter λ̃ib = (T/(1−αcib/βcib))1/2λib es-

tablished in Lemma 2. In particular, when fixing α2/β2 and varying α1/β1,

we will also change the community structure due to the baseline differences

between intergroup and intragroup intensities (see settings I, IV, and V).



S4. SIMULATION EXPERIMENTS

S4.4 Performance with a known K

Our first simulation study demonstrates the convergence of membership and

intensity parameter with T when varying w, z and α/β. First, we simulate

networks under CHHIP and perform the estimation procedure in Algorithm

2. The end time T of these networks takes values of 200, 500, 1000, 3000

and 5000. In this simulation study, we assume that the community number

K = 3 is known in advance so that we can calculate the Frobenius norms of

the estimation errors with an appropriate permutation of community labels

(i.e., the minimal MSE when community labels are permuted), ‖λ̂λλ− λλλ0‖F ,

‖α̂αα − ααα0‖F , and ‖β̂ββ − βββ0‖F . In addition, we use the adjusted rand index

(ARI, Rand (1971), Hubert and Arabie (1985)), a widely used measure, to

compare the clustering performance of our method under different settings.

Table S2: Averaged event number for different parameter settings I-VII.
setting\T 200 500 1000 3000 5000

I 2415.00 7191.88 15713.40 50500.00 86986.40
II 2059.36 6047.64 13584.96 43113.68 73060.44
III 3918.08 11614.04 25629.92 81686.20 139620.20
IV 2926.24 9871.80 23955.84 84747.60 148875.52
V 2220.76 6384.72 13376.20 41618.08 69564.00
VI 1034.12 3156.96 7062.88 22527.00 38193.20
VII 5438.16 16312.96 35386.92 115508.96 196640.64

In Figure S1 and Figure S2, cases I, II, III and I, IV, V correspond

to settings with different baseline community strength parameter w and

the intragroup triggering ratio α1/β1, respectively. The average numbers
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of events of setting I are 2415.00, 7191.88, 15713.40, 50500.00 and 86986.40

corresponding to different values of T . More information about event num-

bers in other settings are provided in Table S2 above.

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000
T

ar
i

case
I
II
III

(a) ari.

0.1
0.2
0.3

0 1000 2000 3000 4000 5000
T

er
ro

r
(b) λ error.

0.002
0.004
0.006

0 1000 2000 3000 4000 5000
T

er
ro

r

(c) α error.

0.00
0.05
0.10

0 1000 2000 3000 4000 5000
T

er
ro

r

(d) β error.

case
I
II
III

Figure S1: Average ARI (left) and Frobenius error (right) for estimation for 50 replicates
when varying w.
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Figure S2: Average ARI (left) and Frobenius error (right) for estimation for 50 replicates
when varying α1/β1.
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In the left panels, we observe relatively low ARIs when the end time T is

small because the network is too sparse to display its community structure.

The ARI rises rapidly with T and converges to 1 in all cases. Note that even

in case III where nodes in different communities may interact more than

in the same community, ARI can still converge when T is large. Indeed,

our method does not require the assumption that intragroup connection is

stronger than intergroup ones, which is often needed for spectral or mod-

ularity clustering methods, and therefore can perform well as long as the

event information is sufficiently large. Additionally, ARI for networks with

stronger communities (smaller w < 1 and larger α1/β1, or larger w > 1)

converge faster, which is consistent with our intuition.

The right panels demonstrate the parameter estimation errors. The

estimation improves in all cases when T increases, although ‖λ̂λλ − λλλ0‖F

takes a relatively larger value due to its high dimensionality. We also find

that the estimation performance of λλλ is sensitive to the clustering results,

while those of triggering parameters ααα and βββ are less sensitive. This is

reasonable because λλλ contains the baseline intensity specific to each node

and thus directly relies on the correctness of clustering, while ααα and βββ are

specific to each group. In general, the parameters are better estimated as

the clustering results become more accurate.
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Figure S3: Average ARI (left) and Frobenius error (right) for estimation for 50 replicates
when varying z.

To assess the convergence of parameters under different sparsity levels,

we vary the baseline density parameter z and consider settings I, VI, VII.

The clustering results are shown in the left panel of Figure S3, and we

find that a bigger z leads to faster convergence of the ARI. This finding is

intuitively acceptable because a denser network provides more information

about communities. Correspondingly, a denser network generally makes it

easier for intensity parameters to converge. However, the effects of sparsity

levels on parameter convergence are not that obvious compared to node

heterogeneity and community structure.

For each case in I-VII, we compare the initial clustering results via SSC

and the final clustering results after the EM updates. The corresponding

results are presented in Figure S4-Figure S6. In all cases the final clustering
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Figure S4: Average ARI for initial and final clustering results estimated for 50 replicates
when varying w.

results are better than the initial one, especially in case III where intergroup

background intensities are stronger than intragroup background intensities.

Despite that the SSC clustering has been established to be consistent with

T , it omits the timestamp of interactions and does not make full use of the

data information. Therefore, when the end time T is finite, it will always be

inferior to the final community membership. This sufficiently demonstrates

the effectiveness of updating community labels in the EM algorithm.

Finally, we vary the node number n while fixing K = 3 and T = 1000 to

assess the scalability of the proposed method. From Table S3, our method is

scalable to a moderate-sized dynamic network with millions of interactions.
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Figure S5: Average ARI for initial and final clustering results estimated for 50 replicates
when varying α1/β1.
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(b) ARI for case VI.
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Figure S6: Average ARI for initial and final clustering results estimated for 50 replicates
when varying z.

Table S3: Averaged event number and corresponding computational time for 20 repli-
cates when varying n. Computations are performed on a linux platform with a 24-core
CPU.

Node number Average event number Computation time (s)
90 5647.4 35.4
150 15832.5 56.6
300 63706.7 321.3
600 255744.8 3701.3
1200 1023493.3 58822.6
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S4.5 Model superiority under different generative settings

The second simulation compares our model with two existing models to

verify its rationality. For example, the CHIP model accounts only for the

community structure but not the node heterogeneity. To introduce a model

with node heterogeneity but without community structure, we design a

simple model named additive degree corrected Hawkes process (ADCHP).

In this model, triggering parameters are identical on all node pairs and the

background intensity is of an additive form γi + γj. This additive form is

motivated by the famous β-model for static networks. By doing so, we have

λ∗ij(t) = γi + γj +
∑

t
(s)
ij <t

αe−β(t−t(s)ij ) for the node pair (i, j) under ADCHP.

In reality, the generative mechanism of networks with communities may

not accord with our proposed CHHIP model. To make a fair comparison of

the methods introduced above, we simulate data from the following three

models:

Model 1: λ∗ij(t) = µcicj +
∑

t
(s)
ij <t

αcicje
−βcicj (t−t(s)ij ),

Model 2: λ∗ij(t) = θiWcicjθj +
∑

t
(s)
ij <t

αcicje
−βcicj (t−t(s)ij ),

Model 3: λ∗ij(t) = λicjλjci +
∑

t
(s)
ij <t

αcicje
−βcicj (t−t(s)ij ).

All these models incorporate the community structure and fit a univariate

Hawkes process for each dyad. Models 1 and 3 are the the original CHIP and

the proposed CHHIP, respectively. Model 2 serves as a compromise between
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the other two models by assuming a DCBM-type background intensity.

We assume that α = 0.005 and β = 0.01 for all node pairs in these three

models so the self-exciting parts are identical. Then, we specify distinct

background intensities, which is the main difference between them. For

Model 1, we let µcicj = 0.001 when ci = cj and µcicj = 0.0001 when ci 6= cj.

For Model 2, we fix Wcicj = 1 when ci = cj and Wcicj = 0.8 when ci 6= cj.

Then, for each node we generate a background-degree-related parameter θ̃i

following the discrete power law distribution with lower bound mmin = 1

and scaling parameter α = 2. For identifiability,
∑

i θi1{ci=k} = 1 for any

k ∈ {1, · · · , K} is required in Model 2, so we further normalize θ̃θθ by θi =

θ̃i/
∑

j θ̃j1{cj=ci} to obtain θθθ. For Model 3, we set z = 0.05 and w = 0.8. We

still assume a known community number K = 3 in this simulation study.

Because the parameter numbers of these models may differ from the fitting

methods, we use Akaike information criterion (AIC) instead of parameter

error for assessment. We divide the AIC by the total event number to

calculate mean AIC, which keeps the result relatively constant with T and

presents the difference between these methods more clearly.

Figure S7 exhibits estimation results using the three methods, CHIP,

CHHIP, and ADCHP when networks are generated according to the model

settings explained above. From Figure S7, ADCHP does not perform well in
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Figure S7: Mean AICs of different fitting methods under Models 1–3.

cases of CHIP and CHHIP for the lack of community structure. When the

true model is Model 1, CHHIP is quite comparable to CHIP. In other words,

the additional parameters in CHHIP would not increase the model com-

plexity too much. However, the importance of these parameters emerges

when the true model is Model 2 or Model 3, as nodal heterogeneity appears.

The CHHIP always outperforms other models in these situations, especially

when the duration is long enough.

S4.6 Selection of the community number K

Finally, we consider the case of an unknown community number, which is

more common in reality. Let θ̂θθ
ĉcc

be the estimated parameters depending

on ĉcc, which is the membership vector given by the clustering method. In

this experiment, we vary the true value of K from 3 to 5 and repeat the

simulation-and-estimation process 50 times for each K. Specifically, we
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simulate data from Model 3 with α = 0.005, β = 0.01, z = 0.05 and

w = 0.8. We perform the estimation procedure for every candidiate K̂ and

select the K̂ that minimizes the HQ defined in Section 3.2 from {2, 3, 4, 5}.

We report the times of correct selection (i.e., K̂ = K) and provide the

Frobenius error averaged over samples where the community numbers are

correctly selected in Table S4.

It is easily seen that an increasing K leads to slower convergence rates

for both clustering membership and parameter estimators because the model

becomes more complex. As T increases, the HQ criterion can select the cor-

rect K in almost all cases, as long as the event information is sufficient.

Table S4: Times of K̂ = K and average Frobenius error without ground community
labels. Error values are rounded up to 4 decimal places.

K T ‖λ̂λλ− λλλ0‖F ‖α̂αα−ααα0‖F ‖β̂ββ − βββ0‖F No. of (K̂ = K)
3 200 0.3169 0.0064 0.0925 2

500 0.1932 0.0035 0.0224 47
1000 0.1328 0.0019 0.0100 50
3000 0.0670 0.0014 0.0049 50
5000 0.0498 0.0011 0.0037 49

4 200 - - - 0
500 - - - 0
1000 0.1813 0.0029 0.0133 49
3000 0.0912 0.0017 0.0053 50
5000 0.0675 0.0016 0.0046 50

5 200 - - - 0
500 - - - 0
1000 0.2223 0.0043 0.0177 8
3000 0.1194 0.0022 0.0061 50
5000 0.0889 0.0021 0.0061 50
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