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S1. Tests of uniformity: a brief review

Given independent and identically distributed unit vectors xi, i = 1, 2, .., n, we denote

our sample by x= (x1,x2, ...,xn), where xT
i = (xi1, xi2, ..., xid), ||xi|| = 1. Then x̄ =

1
n

∑n
i=1 xi is called the mean direction of the sample. Further, the mean resultant length

(Mardia and Jupp (2000)) is defined as

R̄ = ||x̄|| = 1

n

√√√√( n∑
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xi1

)2
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Rayleigh’s test (Rayleigh (1919)) is proposed for testing the uniformity on circular

data, i.e, data on sphere S1, but it is easily generalized to the higher dimensional

sphere Sd−1 (Garćıa-Portugués and Verdebout (2018); Figueiredo (2007)). When the



d-dimensional x is uniformly distributed on Sd−1, E[x] = 0. Rayleigh’s test rejects the

null hypothesis of uniformity when the value of R̄ is large. A commonly used Rayleigh’s

test statistic is Rn, which has an asymptotic χ2
d distribution under the null hypothesis

of uniformity, and where

Rn = dnR̄2 =
d

n

( n∑
i=1

xi1

)2

+

(
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)2

+ ...+

(
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i=1

xid

)2
 .

Further discussion of the properties of Rayleigh’s test can be found in Mardia and

Jupp (2000) and Garćıa-Portugués and Verdebout (2018).

Ajne (1968) proposed a test for uniformity of a circular distribution, and Prentice

(1978) extended it to the Sd−1 sphere. The computational form of Ajne’s test statistic

is:

An =
4

n
− 1

nπ
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The asymptotic distribution of An, under the null hypothesis of uniformity, is an infinite

linear combination of independent χ2
1 variables.

Giné’s test statistic (Giné (1975); Prentice (1978)) for uniformity on the sphere

Sd−1 has the form:

Gn =
2
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Asymptotically, the distribution of Gn is an infinite linear combination of independent

χ2
1 variables under the null hypothesis of uniformity.

Bingham’s test is proposed based on the fact that when x is uniformly distributed,

E[xxT] =1
d
Id, where Id is an identity matrix of size d (Bingham (1974)). Then Bing-

ham’s test statistic is:

Bn =
1
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Bingham’s test statistic has an asymptotic distribution χ2
(d−1)(d+2)/2 under the null

hypothesis of uniformity.

Various papers compare the power of the different tests of uniformity. To mention

only a few works Figueiredo and Gomes (2003) compared the power of Bingham and

Giné’s tests of uniformity versus a Bingham or a mixture of Bingham populations for a

variety of dimensions and sample sizes and concluded that the two tests have identical

power for the cases studied. Figueiredo (2007) also used the von Mises distribution as

an alternative to the uniform distribution, while recently Cutting et al. (2020) consid-

ered the non-null behavior of axial tests of uniformity. Finally, Jammalamadaka et al.

(2020) proposed tests of uniformity that detect well multimodal mixtures of von Mises

distributions.



S2. The Poisson kernel or exit on the sphere density

Golzy and Markatou (2020) used the Poisson kernel-based density (PKBD) and con-

structed clustering algorithms appropriate for clustering directional data and data vec-

tors that are standardized. Golzy and Markatou (2020) presented connections of the

PKBD with other distributions on the sphere and defined the PKBD as:

f(x; ρ,µ) =
1− ρ2

wd∥x− ρµ∥d
, (S2.1)

where 1 < ρ < 1, µ ∈ Sd−1 a vector orienting the center of the distribution. The

parameter ρ controls the concentration of the distribution around the vector µ, and it

is related to the variance of the distribution. Furthermore, wd = 2πd/2. {Γ(d/2)}−1 is

the surface area of the unit sphere in Rd, so that it is ensured that f(x; ρ,µ) integrates

to 1.

The PKBDs are unimodal and symmetric around µ. Figure S3 shows the shape of

these densities as a function of the concentration parameter ρ in two dimensions. Note

that, for smaller values of ρ the distribution is approximately uniform, while as ρ → 1

there are pronounced peaks of mass.

Golzy and Markatou (2020) showed that the two-dimensional PKBD is related to

the projected normal distribution with mean 0. It also equals the Kato and McCullagh

family of densities for d = 2 (Kato and McCullagh (2018)), as both Kato and McCullagh

and PKBDs for d = 2 reduce to the wrapped Cauchy family of densities.

For dimension d > 2, the PKBD is the exit distribution on the sphere, proposed



by Kato and Jones (2013). This distribution is called an exit distribution because it

represents the distribution of the position where a d-dimensional Brownian particle first

hits the unit circle, given the future point at which the particle exits a circle with a

larger radius (see Kato and Jones (2013), eq.(13), p. 169).

S3. Technical Details

S3.1 Notation

We present the notation we will use, and relevant definitions.

A twice continuously differentiable, complex-valued function f defined on an open,

non-empty subset of Rd is harmonic if △f = 0, where △ = D2
1 + · · · + D2

d and D2
j is

the second partial derivative with respect to the jth coordinate variable. The Poisson

kernel Pη(x,y) as a function of x for fixed y ∈ Sd−1 is harmonic on Rd \ {y} (see p.13

of Axler et al. (2001)).

Let Pm(Rd) denote the complex vector space of all homogeneous polynomials on Rd

of degreem, andHm(Rd) denotes the subspace of Pm(Rd) consisting of all homogeneous

harmonic polynomials on Rd of degree m. The restriction of the subspace Hm(Rd) to

the d-dimensional sphere Sd−1 has its own name and notation. A spherical harmonic

of degree m is the restriction to Sd−1 of an element of Hm(Rd). The collection of all

spherical harmonics of degree m is denoted by Hm(Sd−1) and is defined as Hm(Sd−1) =

{p|Sd−1 : p ∈ Hm(Rd)}.



S3.1 Notation

Figure S1: The DOF of the d-dimensional centered Poisson kernel versus the tuning

parameter ρ, when the dimension of the data is 2, 3, 4 and 6.

Figure S2: The DOF of the d-dimensional centered Poisson kernel versus the dimension

of the data when the tuning parameter ρ = 0.1 and 0.2 respectively.



S3.1 Notation

Figure S3: Scaled 2-dimensional PKBD with ρ=0.1, 0.3, 0.9.

Denote by L2(Sd−1) the usual Hilbert space of Borel-measurable, square-integrable

functions on Sd−1 with inner product defined by ⟨f, g⟩ =
∫
Sd−1 f · gdσ, where σ is the

normalized surface measure on Sd−1. View now Hm(Sd−1) as an inner product space

with the L2(Sd−1) inner product defined above. Fix a point b ∈ Sd−1 and consider the

linear map Λ : Hm(Sd−1) → R defined by Λ(p) = p(b). The finite dimensionality of

Hm(Sd−1) guarantees the existence of a unique function Zm(·, b) ∈ Hm(Sd−1) such that

p(b) = ⟨p, Zm(·, b)⟩ =
∫
Sd−1

p(ζ)Zm(ζ, b)dσ(ζ),∀p ∈ Hm(Sd−1).

The spherical harmonic Zm(·, b) is called the zonal harmonic of degree m with pole b.

Zonal harmonics are the eigenfunctions of the Poisson kernel decomposition and are

harmonic polynomials defined on Sd−1. Some basic properties of zonal harmonics are

discussed on p.95 of Axler et al. (2001).



S3.2 Proofs

S3.2 Proofs

Proof of Lemma 1. By definition of the Poisson integral, the left hand side of the above

relationship equals P [P (z, ·)]. Therefore, we only need to prove that, for any fixed z,

the right side of the above integral is a harmonic function of x and matches P (z, ·) on

the sphere S. First, the right hand side of the integral equals P (∥z∥x, z/∥z∥) and this

is a harmonic function.

By definition, the Poisson kernel is given as

Pρ(u,v) = P (ρu,v) =
1− ρ2

(1 + ρ2 − 2ρuv)d/2
, u,v ∈ Sd−1.

Notice that in the above expression ρ2 = ||ρu||2 = ρ2||u||2 = ρ2, since u ∈ Sd−1 so

||u||2 = 1.

In our case, ρu = ||z||x, so || ||z|| x ||2 = ||z||2||x||2 = ρ2 and ρu · v = ||z||x · z
||z|| =

x · z. Hence we have,

1− ||x||2||z||2

(1 + ||x||2||z||2 − 2x · z)d/2
= P (||z||x, z/||z||).

Also, when x ∈ Sd−1, ∥x∥ = 1 and hence

1− ∥x∥2 · ∥z∥2

(1− 2x · z+ ∥x∥2 · ∥z∥2)d/2
=

1− ∥z∥2

(1− 2x · z+ ∥z∥2)d/2
= P (x, z).

This completes the proof.

Proof of Lemma 2. Recall that the Poisson kernel is a density and so∫
S
P (u, ζ)dσ(ζ) = 1.



S3.2 Proofs

Moreover, for every d ≥ 2 the Poisson kernel can be written as

P (u, ζ) =
∞∑

m=0

Zm(u, ζ),

∀u ∈ Bd, ζ ∈ S (see theorem 5.33 on p. 99 of Axler et al. (2001)). Therefore, we can

write:

∫
S

∞∑
m=0

Zm(u, ζ)dσ(ζ) =

∫
S
Z0(u, ζ)dσ(ζ) +

∞∑
m=1

∫
S
Zm(u, ζ)dσ(ζ).

Because Z0(u, ζ) = 1, the above relationship is equivalent to writing

1 = 1 +
∞∑

m=1

∫
S
Zm(u, ζ)dσ(ζ),

from which we obtain
∞∑

m=1

∫
S
Zm(u, ζ)dσ(ζ) = 0.

Therefore, ∀m ≥ 1 we obtain

∫
S
Zm(u, ζ)dσ(ζ) = 0.

Proof of Lemma 3. Consider a real orthonormal nasis e1, e2, · · · , edd,m of the spaceHm(S)

where dd,m = dimHm(S) = dimHm(Rd). This basis exists and can be constructed by

applying the techniques described on p. 92 of Axler et al. (2001). Then we can write:

Zm(u, ζ) =

dd,m∑
j=1

ej(u)ej(ζ),



S3.2 Proofs

and

Z2
m(u, ζ) =

dd,m∑
j=1

e2j(u)e
2
j(ζ).

Therefore, we obtain:

dd,m∑
j=1

∫
S
e2j(u)e

2
j(ζ)dσ(u)dσ(ζ) =

dd,m∑
j=1

(∫
S
e2j(u)dσ(u)

)(∫
S
e2j(ζ)dσ(ζ)

)
= dd,m.

Proof of Lemma 4. Write

Zp(u, ζ) =

dd,p∑
j=1

ej(u)ej(ζ),

where e1, e2, · · · , edd,p is a real orthogonal basis of the space Hp(S), S ∈ Rd. Now,

assume that p ̸= q and that e∗1, e
∗
2, · · · , e∗dd,p is a real, orthonormal basis for the space

Hq(S). Then

Zq(u, ζ) =

dd,p∑
j=1

e∗j(u)e
∗
j(ζ),

with dd,p = dimHp(S), dd,q = dimHq(S). Therefore

Zp(u, ζ)Zq(u, ζ) =

dd,p∑
k=1

dd,q∑
l=1

ek(u)ek(ζ)e
∗
l (u)e

∗
l (ζ).

Moreover

∫
S
Zp(u, ζ)Zq(u, ζ)dσ(u)dσ(ζ) =

dd,p∑
k=1

dd,q∑
l=1

∫
S
ek(u)ek(ζ)e

∗
l (u)e

∗
l (ζ)dσ(u)dσ(ζ).

But ek ∈ Hp(S), e∗k ∈ Hq(S), p ̸= q; without loss of generality assume that p < q; then

∫
S
ek(u)e

∗
l (u)dσ(u) = 0



S3.2 Proofs

and ∫
S
ek(ζ)e

∗
l (ζ)dσ(ζ) = 0

because e∗l is harmonic and homogeneous and q > p, thus by proposition 5.9 on p.79 of

Axler et al. (2001) we obtain the result that is given in the statement of the Lemma.

Proof of Proposition 3. Recall that

DOF (Kcen) =
[tr(Kcen)]

2

tr(K2
cen)

,

and tr(Kcen) =
∫
K(u,u)dG(u), with G being the measure with respect to which we

center the kernel.

The numerator of DOF (Kcen) equals(
1 + ρ

(1− ρ)d−1
− 1

)2

=

(
1 + ρ− (1− ρ)d−1

)2
(1− ρ)2(d−1)

.

The denominator of DOF (Kcen) is

1 + ρ2

(1− ρ2)d−1
− 1 =

1 + ρ2 − (1− ρ2)d−1

(1− ρ2)d−1
.

Finally,

DOF (Kcen) =

(1+ρ−(1−ρ)d−1)2

(1−ρ)2(d−1)

1+ρ2−(1−ρ2)d−1

(1−ρ2)d−1

=

(
1 + ρ

1− ρ

)d−1{
(1 + ρ− (1− ρ)d−1)2

1 + ρ2 − (1− ρ2)d−1

}
.



Hence, the degrees of freedom are a function of the concentration parameter ρ, 0 <

ρ < 1, and the data dimension d. Note that when ρ → 0, DOF (Kcen) → d, and this

can be easily obtained by applying twice L’Hôpital’s rule. On the other hand, when

ρ → 1, DOF (Kcen) → ∞.

S4. Empirical results

S4.1 Level computations

Algorithm S1: Level Calculation

1 Generate data from a Uniform distribution on the d-dimensional sphere;

2 Compute the different test statistics for 5000 Monte Carlo(MC) replications,

and for sample sizes N;

3 Count the number of times t the null hypothesis of H0 : F ∼ Uniform on the

sphere is rejected;

4 Divide t/(the number of MC replications) to obtain the level of the test.

Algorithm 1 describes in details how the level is computed in the simulation study.

Table S1 presents the empirical level of various tests of uniformity on the sphere, as

a function of the dimension, sample size, and in the case of proposed tests tuning

parameter ρ.
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S4.2 The data distribution is one Poisson Kernel-Based Density:

S4.2 The data distribution is one Poisson Kernel-Based Density:

We generate data from PKBD distribution on the d-dimensional sphere where d=2, 3, 6,

10 and with sample sizes 50, 100, 500, 1000 respectively. The concentration parameter

of the underlying distribution ρ0 is set to be 0.2 and 0.4 respectively. Table S2 presents

the evaluation results in terms of power for all tests. When the sample size is 50, 100

and 500 the number of Monte Carlo replications is 1000, while for a sample size of 1000

equals 200. The reduction in the number of Monte Carlo replications is due to the fact

that the PKBD sampler is slow for larger sample sizes. The proposed tests perform

slightly better than Ajne and Raleigh in terms of power and outperform the Bingham

and Giné tests in all cases studied. When the sample size becomes larger, all methods

obtain power 1 or very high power approaching 1.

S4.3 The data distribution is a multi-component mixture of Poisson kernel-

based densities:

We also study the performance of the tests in the presence of 3, 4 and 5 modes, in

dimension 10. The mean vectors are orthogonal to each other. All ρ values are set

to be 0.2 for simplicity. The sample size is set as 100 and 200, respectively. Table S3

shows the power of all tests. When the number of modes increases, while the sample

size stays at 100 observations, the power of all tests decrease. But when the sample

size increases to 200, the Rayleigh, Ajne, Sn and Tn tests can obtain about or above



S4.3 The data distribution is a multi-component mixture of Poisson kernel-based
densities:

Table S2: Evaluation of all tests in terms of power when the alternative distribution

is PKBD with ρ = 0.2 and 0.4 respectively. Dimension is 2, 3, 6 or 10. Sn, Tn are

computed using the tuning parameter that produces the maximum power.

Dimension
Number of

the modes

ρ0
Sample

size

Bingham Rayleigh Ajne Giné Sn Tn

2 1 0.2 100 0.078 0.743 0.736 0.071 0.751 0.755

2 1 0.4 100 0.529 1 1 0.503 1 1

2 1 0.2 500 0.182 1 1 0.181 1 1

2 1 0.4 500 0.998 1 1 0.998 1 1

3 1 0.2 100 0.085 0.830 0.830 0.082 0.838 0.836

3 1 0.4 100 0.749 1 1 0.737 1 1

3 1 0.2 500 0.311 1 1 0.317 1 1

3 1 0.4 500 1 1 1 1 1 1

6 1 0.2 50 0.739 0.740 0.088 0.083 0.747 0.737

6 1 0.4 50 1 1 0.824 0.821 1 1

6 1 0.2 1000 1 1 0.945 0.945 1 1

6 1 0.4 1000 1 1 1 1 1 1

10 1 0.2 50 0.887 0.899 0.121 0.117 0.890 0.879

10 1 0.4 50 1 1 0.978 0.977 1 1

10 1 0.2 1000 1 1 0.995 1 1 1

10 1 0.4 1000 1 1 1 1 1 1



S4.3 The data distribution is a multi-component mixture of Poisson kernel-based
densities:

Table S3: Performance of tests of uniformity against a mixture of three, four or five

PKBDs in terms of power. The modes of each PKBD are orthogonal to each other.

The dimension of the data is 10. Sn, Tn are computed using the tuning parameter that

produces the maximum power.

Dimension
Number of

the modes

ρ
Sample

size

Bingham Rayleigh Ajne Giné Sn Tn

10 3 0.2 100 0.076 0.688 0.692 0.086 0.704 0.698

10 4 0.2 100 0.052 0.552 0.556 0.056 0.554 0.552

10 5 0.2 100 0.050 0.428 0.440 0.048 0.442 0.432

10 3 0.2 200 0.130 0.970 0.976 0.132 0.978 0.974

10 4 0.2 200 0.074 0.886 0.890 0.070 0.910 0.904

10 5 0.2 200 0.048 0.792 0.802 0.044 0.804 0.796

0.8 power in all cases.
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