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S1 Preliminaries

We begin by defining the matrix absolute value and discussing some of its properties.

Definition S1. For a matrix A ∈ Rm×n, we define the matrix absolute value |A| =√
ATA. In particular, when D = diag(d1, . . . , dn), we have |D| = diag(|d1|, . . . , |dn|).

For symmetric matrices A = AT with eigendecomposition A = UΛUT , we have

|A| = U |Λ|UT .

Fact S2. |A| is the unique positive semi-definite square root of ATA.

Proof. See Horn and Johnson (2012, Theorem 7.3.1).

Fact S3. If A = AT and A = UΣV T is a singular value decomposition of A, then

|A| = UΣUT .

Proof. We may write ATA = AAT = UΣV TV ΣUT = UΣ2UT . Note that

UΣUT ⪰ 0 and (UΣUT )(UΣUT ) = A2 = ATA.

So by Fact S2, |A| = UΣUT is the unique positive semi-definite square root of ATA.

Fact S4. Suppose A = XDXT , where XTX is diagonal and D is a diagonal matrix

with diagonal entries in {±1}. Then |A| = XXT .
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Proof. Write ATA as follows:

ATA = XDXTXDXT

= XD2(XTX)XT (diagonals commute)

= XXTXXT (D2 = I)

= (XXT )2.

Since XXT ⪰ 0, |A| = XXT is the unique positive semi-definite square root of

ATA.

Fact S5. If U is orthogonal, then |UAUT | = U |A|UT .

Proof.

(U |A|UT )2 = U |A||A|UT

= UATAUT (|A|2 = ATA)

= UATUTUAUT

= (UAUT )T (UAUT ).

Since U |A|UT ⪰ 0, U |A|UT is the unique positive semi-definite square root of (UAUT )T (UAUT ).

Fact S6. Suppose A = c1n1
T
n + dIn. Then |A| = c′1n1

T
n + d′In, where:

c′ =
|cn+ d| − |d|

n
, d′ = |d|.

Proof. Let UΛUT be an eigendecomposition of 1n1
T
n . Then Λ = diag(n, 0, . . . , 0).

Now we write an eigendecomposition for A:

A = c1n1
T
n + dIn

= cUΛUT + dUUT

= U(cΛ + dIn)U
T .

(S1.1)

By definition, then:

|A| = U |cΛ + dIn|UT ,

which is of the same form as eq. (S1.1), albeit with different constants. The result

follows by solving the following for c′ and d′:

diag(|cn+ d|, |d|, . . . , |d|) = |cΛ + dIn| = c′Λ + d′In = diag(c′n+ d′, d′, . . . , d′).
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Fact S7. Suppose A = c1n1
T
n + dIn, and Aij > 0 for all i, j ∈ [n]. Then |A|ij > 0 for

all i, j ∈ [n].

Proof. We begin with the trivial cases: If d ≥ 0, then A ⪰ 0 and A = |A|. Also if

n = 1, then A is scalar, and |A| is the usual scalar absolute value.

Assume then that d < 0 and n ≥ 2. Let |A| = c′1n1
T
n + d′In as defined in Fact S6.

Since all entries in A are positive, then c > −d = |d|. Consequently:

cn+ d = cn− |d| > |d|n− |d| = |d|(n− 1) ≥ |d|

As a result, c′ must be positive, since |cn+d| = cn+d > |d|. Since d′ is also positive,

every entry in |A| is positive.

Fact S8. For any two square matrices of equal dimension, ∥ |A| − |B| ∥F ≤
√
2∥A−

B∥F .

Proof. See Bhatia (2013), Theorem VII.5.7 and eq. (VII.39).

We recall our definition of the binary matrix operator ⊞.

Definition S9. Let A ∈ Rm×m, B ∈ Rn×n. Then:

A⊞B = (A⊗ 1n1
T
n ) + (1m1

T
m ⊗B).

The operation ⊞ is similar to the more standard Kronecker sum A⊕B = (A⊗In)+

(Im ⊗B), but with identity matrices replaced by 11T . Fact S10 below also resembles

a property that the Kronecker sum satisfies, but replacing the matrix exponential

with an element-wise exponential.

Fact S10. For two square matrices A and B, exp(A⊞B) = exp(A)⊗ exp(B), where

exp is evaluated element-wise.

Proof. Observe that the Kronecker product of two square matrices A ∈ Rm×m and

B ∈ Rn×n may be written A⊗B = (A⊗ 1n1
T
n )⊙ (1m1

T
m ⊗B), where ⊙ denotes the

Hadamard product (i.e., element-wise multiplication). From here it follows that:

exp(A⊞B) = exp(A⊗ 1n1
T
n + 1m1

T
m ⊗B)

= exp(A⊗ 1n1
T
n )⊙ exp(1m1

T
m ⊗B)

=
(
exp(A)⊗ 1n1

T
n

)
⊙
(
1m1

T
m ⊗ exp(B)

)
= exp(A)⊗ exp(B).
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In light of the Kronecker representation of exp(A⊞B), we review some facts about

Kronecker products and inspect their matrix absolute values.

Fact S11. If A = AT and B = BT , then A⊗B = (A⊗B)T .

Proof. By Horn and Johnson (1991, eq. 4.2.5), (A⊗B)T = AT ⊗BT = A⊗B.

Fact S12. Let A = AT , B = BT with eigendecompositions A = UΛUT , B = VΨV T .

If C = A⊗B, then:

|C| = (U ⊗ V )|Λ⊗Ψ|(U ⊗ V )T = |A| ⊗ |B|.

Proof. We begin by writing SVDs for A and B, namely:

A = U |Λ|(sign(Λ)UT )

B = V |Ψ|(sign(Ψ)V T ),

where sign(·) is taken element-wise. It is easy to verify that sign(Λ)UT and sign(Ψ)V T

are indeed orthogonal.

Armed with these decompositions, we may apply Horn and Johnson (1991, Theo-

rem 4.2.15) to find an SVD for C:

C = (U ⊗ V )(|Λ| ⊗ |Ψ|)(sign(Λ)UT ⊗ sign(Ψ)V T )

= (U ⊗ V )|Λ⊗Ψ|(sign(Λ)UT ⊗ sign(Ψ)V T )

Since A = AT and B = BT , we have that C = CT (Fact S11). Therefore:

|C| = (U ⊗ V )|Λ⊗Ψ|(U ⊗ V )T (Fact S3)

= (U ⊗ V )(|Λ| ⊗ |Ψ|)(U ⊗ V )T

= (U |Λ| ⊗ V |Ψ|)⊗ (UT ⊗ V T )

= (U |Λ|UT )⊗ (V |Ψ|V T )

= |A| ⊗ |B|.

Finally, we give two useful facts about sums and permutations.

Fact S13. Let x1, . . . , xn ∈ R. Then for any σ ∈ S[n]:

n∑
i=1

xixσ(i) ≤
n∑

i=1

x2
i .
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Proof. This is an application of Cauchy–Schwarz in disguise:(
n∑

i=1

xixσ(i)

)2

≤

(
n∑

i=1

x2
i

)(
n∑

i=1

x2
σ(i)

)

=

(
n∑

i=1

x2
i

)2

.

The final statement comes by taking the square root of both sides.

Fact S14. Let A ∈ Rn×n such that A ⪰ 0. Then for any σ ∈ S[n]:

n∑
i=1

Aiσ(i) ≤
n∑

i=1

Aii.

Moreover, if rank(A) = n and σ ̸= id, the inequality is strict.

Proof. Since A ⪰ 0, let A = XXT . Fix σ ∈ S[n]. Then:

n∑
i=1

Aiσ(i) =
n∑

i=1

eTi Aeσ(i)

=
n∑

i=1

⟨XT ei, X
T eσ(i)⟩

a○ ≤
n∑

i=1

∥XT ei∥∥XT eσ(i)∥ (Cauchy–Schwarz)

≤
n∑

i=1

∥XT ei∥2 (Fact S13)

=
n∑

i=1

⟨XT ei, X
T ei⟩

=
n∑

i=1

eTi Aei =
n∑

i=1

Aii.

If σ ̸= id, the inequality a○ is made strict when X has linearly independent rows, i.e.,

when A is full-rank.

S2 Proofs of Results

Representation Results. We prove that ACSBM can be represented as an SBM

by explicitly constructing such a representation.
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Proof of Proposition 1. Consider first the case whenM = 1, i.e., Z = Z∗1. Every edge

is an independent Bernoulli random variable whose probability depends on (θi, Zi1)

and (θj, Zj1). It will be convenient to map these tuples to scalars. Let τ(k, ℓ) =

L1(k−1)+ℓ, a bijection from [K]× [L1] to [KL1]. Let θ̃
(1) ∈ [KL1]

n = (τ(θi, Z1i))
n
i=1.

We will now write the edge probabilities in terms of these new scalar quantities. It

can be shown (if a bit tediously) that:

P(Yij = 1 | θ̃(1)i = t1, θ̃
(1)
j = t2) = g−1

(
[B ⊗ 1L11

T
L1

+ 1K1
T
K ⊗ β1IL1 ]t1t2

)
=
[
g−1(B ⊞ β1IL1)

]
t1t2

,

where g−1 is taken element-wise in the final line. This is precisely the form of the SBM

given in Definition 1. Thus when M = 1, we can say Y is equal to an SBM with L̃ =

KL1 communities, θ̃ = L1(θ− 1n) +Z∗1, and edge probabilities B̃ = g−1(B ⊞ β1IL1).

The case when M ≥ 2 follows inductively. Let Y1 ∼ ACSBM(θ, B, Z1, β1, g)
D
=

SBM(θ̃(1), B̃(1)). Define Y2 = ACSBM(θ, B, [Z1 | Z2], (β1, β2)
T , g). This network is

equal in distribution to Y ′
2 ∼ ACSBM(θ̃(1), g(B̃(1)), Z2, β2, g). By the M = 1 case

above, these networks are equal in distribution to an SBM with KL1L2 communities:

θ̃(2) = L2(θ̃
(1) − 1n) + Z∗2 = L2(L1(θ − 1n) + Z∗1 − 1n) + Z∗2

and edge probabilities:

g−1
(
g(B̃(1))⊞ β2IL2

)
= g−1(B ⊞ β1IL1 ⊞ β2IL2),

where once again, g and g−1 are element-wise.

Proceed inductively to find the forms of Y3, . . . , YM , defined analogously to Y2, so

that Y
D
= YM .

The gRDPG representation now follows immediately as a corollary.

Proof of Proposition 2. By Proposition 1, we may represent Y as an SBM, i.e., Y
D
=

SBM(θ̃, B̃). The ability to represent an SBM as a gRDPG using latent positions

derived from spectral decomposition is a well established practice in the gRDPG

literature, e.g., Rubin-Delanchy et al. (2017, Section 2.1). Thus Proposition 2 follows

as a corollary to Proposition 1.

Consistency of Part 1. Consistency of Part 1 of the algorithm was stated in

Theorem 1, proven here.
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Proof of Theorem 1. By Lemma 1, we know that:

max
i∈[n]

∥QX̂i −XB̃(θi, Zi)∥2 = OP

(
logc n√

n

)
for some sequence of matrices Q ∈ O(p, q). We might prefer a statement in terms of

X̂i, rather than QX̂i, which we can make as follows:

max
i∈[n]

∥X̂i −QXB̃(θi, Zi)∥2 ≤ ∥Q−1∥2
(
max
i∈[n]

∥QX̂i −XB̃(θi, Zi)∥2
)
.

We have seemingly done little here but move the troublesome Q and impose an

additional nuisance term. However, Rubin-Delanchy et al. (2017, Lemma 5) states a

key result: ∥Q∥2 and ∥Q−1∥2 are bounded almost surely. This allows us to eliminate

the nuisance term:

max
i∈[n]

∥X̂i −QXB̃(θi, Zi)∥2 = OP

(
logc n√

n

)
.

We still have to grapple with QXB̃. Observe that for z fixed, the canonical latent

positions XB̃(1, z), . . . , XB̃(K, z) are distinct by construction. Since Q is full-rank,

this also applies to QXB̃(1, z), . . . , QXB̃(K, z). Moreover, in light of the bounded

spectral norms of Q and Q−1, which bound the singular values of Q in an interval

away from zero, the asymptotic distortion of distances is limited. In particular,

∥Q(XB̃(k1, z) −XB̃(k2, z))∥2 = Θ(
√
αn) almost surely. Combining these facts yields

the result, as follows.

Let B(x, r) denote a ball centered at x with radius r. From our argument above,

there exists a sequence of radii r = OP (log
c n/

√
n) such that X̂i ∈ B(QXB̃(θi, z), r)

for all i ∈ Iz. Since ∥Q(XB̃(k1, z) −XB̃(k2, z))∥2 scales with
√
αn = ω(log2c n/

√
n),

these balls shrink in size faster than they converge to the origin. More concretely, let

Bk,z = B(QXB̃(k, z), r) for k ∈ [K]. Then for any k1, k2 ∈ [K]:

P(Bk1,z ∩ Bk2,z = ∅) = P

(
r <

1

2
∥QXB̃(k1, z)−QXB̃(k2, z)∥2

)
→ 1,

since ∥QXB̃(k1, z)−QXB̃(k2, z)∥2 = Θ(
√
αn) almost surely, and r = oP (

√
αn).

Consistency of Part 2. Consistency of Part 2 of the algorithm was stated in

Theorem 2.

Proof of Theorem 2. Suppose Ygen ∼ SBM(θ̃, Bgen) for some symmetric matrixBgen ∈
RKL̃×KL̃. This model is more general than Y ∼ SBM(θ̃, B̃). Suppose we have a perfect
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estimate of θ̃ (up to a permutation), and we wish to estimate Bgen. In this case, the

natural approach to estimating Bgen via the empirical density of each block is precisely

the maximum likelihood estimator, which has been well-studied (e.g., Bickel et al.,

2013).

Under the theorem hypothesis, we have indeed recovered θ̃ up to a permutation of

labels. This is true since θ̃((τzi ◦ θ̂zi)(i)), zi) = θ̃i for all i, and the function θ̃(·, ·) is a
bijection. Let τ ∈ S[KL̃] denote this permutation, and let T denote the corresponding

permutation matrix. Then T−1 ˆ̃BT is the maximum likelihood estimator for a model

Ygen ∼ SBM(θ̃, Bgen), and so we may apply the maximum likelihood results of Bickel

et al. (2013, Lemma 1) or, more conveniently, Tang et al. (2022, Theorem 1). Per

these results, we can say that for any k1, k2 ∈ [KL̃]:

nα−1/2
n

(
(T−1 ˆ̃BT )k1k2 − B̃k1k2

)
D−→ N (0, vk1k2),

where
D−→ N (·, ·) denotes convergence in distribution to the normal distribution, and

vk1k2 > 0 is a constant depending on k1 and k2. In other words:

(T−1 ˆ̃BT )k1k2 − B̃k1k2 = OP

(√
αn

n

)
.

Since B̃ scales with αn, we rewrite this to be in terms of the constant quantity α−1
n B̃:

α−1
n

(
(T−1 ˆ̃BT )k1k2 − B̃k1k2

)
= OP

(
1

n
√
αn

)
= oP

(
1√

n logc n

)
.

Since K and L̃ are kept constant in n, these entrywise bounds may be taken as a

bound for the Frobenius norm, ∥T−1 ˆ̃BT − B̃∥F . Moreover, since the Frobenius norm

is unitarily invariant, we may write:

∥ ˆ̃B − TB̃T−1∥F = oP

(
1√

n logc n

)
.

Consistency of Part 3. We first show that the matching problem selects the

appropriate permutations in the absence of estimation error, i.e., when applied to the

true latent positions XB̃. Note that the role of the permutation σ in Theorem S15

below differs slightly from its role in Algorithm 1. In the algorithm, there is an

unknown permutation that we are looking to reverse for each choice of z; in the
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theorem below, there is no such permutation, so the correct choice of σ is the identity

permutation.

Theorem S15. Assume Y from the setting of Section 4. Let XB̃ as in Proposition 1.

For any fixed z ∈ [L1]× · · · × [LM ]:

arg min
σ∈S[K]

K∑
k=1

∥XB̃(σ(k), z)−XB̃(k,1M)∥22 = id. (S2.2)

Moreover, if exp(B) is full-rank, σ = id is the unique minimizer.

Proof. To simplify notation for the proof, let xkz = XB̃(k, z). We begin by unpacking

the squared norm:

K∑
k=1

∥xσ(k)z − xk1∥22 =
K∑
k=1

⟨xσ(k)z − xk1, xσ(k)z − xk1⟩

=
K∑
k=1

(
⟨xσ(k)z, xσ(k)z⟩+ ⟨xk1, xk1⟩ − 2⟨xσ(k)z, xk1⟩

)
=

K∑
k=1

⟨xkz, xkz⟩+
K∑
k=1

⟨xk1, xk1⟩ − 2
K∑
k=1

⟨xσ(k)z, xk1⟩

Since only the final sum depends on σ, the optimization problem (S2.2) is equivalent

to finding:

arg max
σ∈S[K]

K∑
k=1

⟨xσ(k)z, xk1⟩.

Fix z ∈ [L1]× · · · × [LM ], and let B̃ as in Proposition 1. Next, we will assemble yet

another matrix. For any k1, k2 ∈ [K], let Qk1k2 = ⟨xk1z, xk21⟩. If we can show that

Q ≻ 0, the result will follow from Fact S14. This is our plan. Observe that:

⟨xk1z, xk21⟩pq = B̃θ̃(k1,z),θ̃(k2,1)
,

where (p, q) is the signature of the gRDPG corresponding to Y . Following from

Fact S4, the inner products that form the entries of Q can be found in |B̃|, i.e.:

Qk1k2 = ⟨xk1z, xk21⟩ = |B̃|θ̃(k1,z),θ̃(k2,1).

Since g = log, by Fact S10, we can write B̃ like so:

B̃ = exp(B)⊗ exp(β1IL1)⊗ · · · ⊗ exp(βMILM
).
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Lemma S12 gives the convenient form of |B̃|:

|B̃| = | exp(B)| ⊗ | exp(β1IL1)| ⊗ · · · ⊗ | exp(βMILM
)|.

In particular, this means:

Qk1k2 = |B̃|θ̃(k1,z),θ̃(k2,1)
= | exp(B)|k1k2 [ | exp(β1IL1)| ⊗ · · · ⊗ | exp(βMILM

)| ]θ̃(1,z),1
= cz | exp(B)|k1k2 ,

where cz = [ | exp(β1IL1)| ⊗ · · · ⊗ | exp(βMILM
)| ]θ̃(1,z),1 is a strictly positive constant.

This follows from Fact S7, which says that each of the | exp(βmILm)| matrices have

positive entries. Since | exp(B)| ⪰ 0 by construction, we have then that Q ⪰ 0.

Moreover, when exp(B) is full-rank, Q ≻ 0.

Applying Fact S14, we have that σ = id is a solution to our optimization problem;

moreover, it is the unique solution when exp(B) is full-rank.

The following corollary generalizes Theorem S15 to arbitrary link functions and

differential homophily, as discussed in Section 4, “Generalizations.”

Corollary S16. Suppose M,L, θ, and Z are as defined for the ACSBM, but let βmℓ ∈
R for m ∈ [M ], ℓ ∈ [Lm] denote differential homophily coefficients for the model

Yij
ind∼ Bernoulli

(
αng

−1

(
Bθiθj +

M∑
m=1

Lm∑
ℓ=1

βmℓI(Zim = Zjm = ℓ)

))
, i < j,

where g is any link function. If B̃ ⪰ 0, g−1(B) ≻ 0 and (A1), (A3) hold, then for

any fixed z ∈ [L1]× · · · × [LM ], σ = id is the unique minimizer of the quantity:

K∑
k=1

∥XB̃(σ(k), z)−XB̃(k,1M)∥22.

Proof. The proof follows directly from the above, noting that in this case |B̃| = B̃,

while the submatrix of interest is now Q = αng
−1(B). We needed to show that Q ≻ 0,

which follows now by assumption.

Next, we show that the estimation error due to use of X̂B̃ in place of XB̃ vanishes

asymptotically. Note that relabeling permutations appear here.
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Lemma S17. Assume the conditions of Theorem 3 hold. Let XB̃ as in Proposition 1

and X̂B̃ as in Algorithm 1. For any fixed z ∈ [L1]× · · · × [LM ], let:

L̂z(σ) =
K∑
k=1

∥X̂B̃(σ(k), z)− X̂B̃(k,1M)∥22

Lz(σ) =
K∑
k=1

∥XB̃((σ ◦ τz)(k), z)− X̂B̃(τ1M
(k),1M)∥22.

Then for any σ1, σ2 ∈ S[K]:

α−1
n (L̂z(σ1)− L̂z(σ2)) = α−1

n (Lz(σ1)− Lz(σ2)) + oP

(
1√

n logc n

)
.

Proof. By an argument similar to the proof of Theorem S15, we observe that:

L̂z(σ) = ĉz − 2
K∑
k=1

⟨X̂B̃(σ(k), z), X̂B̃(k,1M)⟩

Lz(σ) = cz − 2
K∑
k=1

⟨XB̃((σ ◦ τz)(k), z), X̂B̃(τ1M
(k),1M)⟩

for some constants ĉz and cz. Moreover, continuing to extend the arguments from the

proof of Theorem S15, we have:

⟨X̂B̃(σ(k), z), X̂B̃(k,1M)⟩ = | ˆ̃B|θ̃(σ(k),z),θ̃(k,1)
⟨XB̃((σ ◦ τz)(k), z), X̂B̃(τ1M

(k),1M)⟩ = |B̃|θ̃((σ◦τz)(k),z),θ̃(τ1M (k),1)

= (T |B̃|T−1)θ̃(σ(k),z),θ̃(k,1)

= |TB̃T−1|θ̃(σ(k),z),θ̃(k,1),

where T is the permutation matrix from Theorem 2. Note that the last line follows
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from Fact S5. Therefore:

L̂z(σ1)− L̂z(σ2)− (Lz(σ1)− Lz(σ2))

= −2
K∑
k=1

| ˆ̃B|θ̃(σ1(k),z),θ̃(k,1)
+ 2

K∑
k=1

| ˆ̃B|θ̃(σ2(k),z),θ̃(k,1)

+ 2
K∑
k=1

|TB̃T−1|θ̃(σ1(k),z),θ̃(k,1)
− 2

K∑
k=1

|TB̃T−1|θ̃(σ2(k),z),θ̃(k,1)

= 2
K∑
k=1

(
| ˆ̃B|θ̃(σ2(k),z),θ̃(k,1)

− |TB̃T−1|θ̃(σ2(k),z),θ̃(k,1)

)
− 2

K∑
k=1

(
| ˆ̃B|θ̃(σ1(k),z),θ̃(k,1)

− |TB̃T−1|θ̃(σ1(k),z),θ̃(k,1)

)
.

Observe that the final expression consists of 2K terms of the form 2(| ˆ̃B|ij−|TB̃T−1|ij).
Combining Theorem 2 and Fact S8, we know that:

α−1
n ∥ | ˆ̃B| − |TB̃T−1| ∥F = oP

(
1√

n logc n

)
,

from which we claim a bound on the entrywise error for any i, j ∈ [KL̃]:

α−1
n (| ˆ̃B|ij − |TB̃T−1|ij) = oP

(
1√

n logc n

)
.

Summarizing, then, we have:

α−1
n

(
L̂z(σ1)− L̂z(σ2)− (Lz(σ1)− Lz(σ2))

)
= 4K · oP

(
1√

n logc n

)
.

Since K is constant, the final result follows by simple rearrangement.

For completeness, we end with a formal proof of Theorem 3.

Proof of Theorem 3. Let L̂z : S[K] → R and Lz : S[K] → R as in the statement of

Lemma S17. We first rewrite the result of Theorem S15 in a permuted order. For

any fixed z:

arg min
σ∈S[K]

Lz(σ)

= arg min
σ∈S[K]

K∑
k=1

∥XB̃ ((σ ◦ τz)(k), z)−XB̃ (τ1M
(k),1M) ∥22

= τ1M
◦ τ−1

z .
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This follows from the commutativity of the sum and the fact that S[K] is closed

under composition. In other words, we may think of the sum as going in order of

τ1M
(1), . . . , τ1M

(K) and minimizing over σ ◦ τz ∈ S[K] instead, if we prefer, in which

case recovering the identity permutation is equivalent to recovering σ ◦ τz = τ1M
.

For each z, let σ∗
z = τ1M

◦ τ−1
z denote the optimal permutation, and let:

az = Lz(σ
∗
z),

bz = arg min
σ ̸=σ∗

z

Lz(σ), and

∆z = bz − az,

so that ∆z denotes the gap between the optimal and second-best permutation. Let

∆0 = minz ∆z. Since XB̃ scales with
√
αn, Lz(·) scales with αn, and the quantity

α−1
n ∆0 is constant. By assumption (A2), we may further assume ∆0 > 0.

By Lemma S17, we have that for any permutation σ ∈ S[K]:

α−1
n (L̂z(σ)− L̂z(σ

∗
z)) = α−1

n (Lz(σ)− Lz(σ
∗
z)) + oP

(
1√

n logc n

)
.

We would like these error terms to be less than α−1
n ∆0/2 for all z. Since α−1

n ∆0/2 is

constant, this happens with high probability for sufficiently large n. In this case, we

have:

σ̂z = arg min
σ∈S[K]

L̂z(σ) = arg min
σ∈S[K]

Lz(σ) = σ∗
z = τ1M

◦ τ−1
z .

Consequently, for all i ∈ Iz, since θ̂z(i) = τz(θi), we have our desired result:

σ̂z(θ̂z(i)) = τ1M
(τ−1

z (τz(θi))) = τ1M
(θi).
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