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Supplementary Material

This Supplementary Material contains algorithmic descriptions for SISR (referenced in Section

1 of the main text) and lookahead SISR (referenced in Section 4 of the main text), the proofs of

Propositions 1 and 2 in Section 2.2 of the main text, the details of the protein energy function

in Section 3 of the main text, the experiment that assesses the Monte Carlo variance of different

values of M with overall computational budget fixed (referenced in Section 4 of the main text),

and a graphical example of decay in the diversity of the paths of the particles (referenced in

Section 4 of the main text).
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S1 Pseudocode for SISR algorithm

Require: particle size N ;

Initialization: Sample {x(n)
0 }Nn=1 from η(x0), and the weight

w(x
(n)
0 ) = p0(x

(n)
0 )/η(x

(n)
0 );

for t = 1, . . . , T do

Step 1: Sample x̃t from η(xt | x(n)
0:t−1) and set x̃

(n)
0:t = (x

(n)
0:t−1, x̃t) for

each n;

Step 2: Evaluate the weight

w(x̃
(n)
0:t ) = w(x

(n)
0:t−1)pt(x̃

(n)
0:t )/{pt−1(x(n)

0:t−1)η(x̃t | x(n)
0:t−1)} for each n;

Step 3: Resample N particles {x(n)
0:t }Nn=1 from {x̃(n)

0:t }Nn=1 based on

{w(x̃
(n)
0:t )}Nn=1 and update the weights {w(x

(n)
0:t )}Nn=1;

end

Sequential Importance Sampling with Resampling (SISR) is a common frame-

work to implement propagation with the help of importance distributions η(x0), η(x1 |

x0), . . . , η(xT | x0:T−1) and resampling (Liu and Chen (1995, 1998)). To briefly

note some key features of SISR in the algorithm above:

1. Step 1: In this step, one descendant is sampled for each particle.

2. Step 2: In this step, propagation occurs with the help of importance dis-

tributions. The importance weights are usually uneven in practice.
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3. Step 3: This step involves resampling from the propagated particles. If

Step 3 is omitted, the SISR framework reduces to sequential importance

sampling (SIS).

The necessity of Step 3 depends on the importance weights: if the importance

weights are all constant, resampling only reduces the distinction of the particles

and thus increases Monte Carlo variance. However, the importance weights are

usually uneven in practice; then without Step 3, some of the importance weights

evolving in Step 2 may eventually decay to zero during propagation, which is

known as weight degeneracy.

S2 Proper weighting of the proposed sampling scheme

Recall pt(x0:t) denotes the auxiliary distribution for step t in Section 3.2 in this

context. Let S0 = {x(n0)
0 ;n0 = 1, . . . , NM} and St = St−1∪{(x(n0)

0 , . . . ,x
(nt)
t );n0 =

1, . . . , NM ;n1 = 1, . . . ,M ; . . . ;nt = 1, . . . ,M}, i.e., St is the collection of up-

sampled particles up to time t. Any x∗0:t = (x
(n∗0)
0 , . . . ,x

(n∗t )
t ) ∈ St satisfies x∗0:s =

(x
(n∗0)
0 , . . . ,x

(n∗s)
s ) ∈ St for s ≤ t. Let η(x0:t) denote η(x0)

∏t
s=1 η(xs | x0:s−1) and

Q0:t denote the σ-algebra generated by Q(x0:t) conditional on St.

When t = 0, it is obvious that EQ0
{Q(x∗0) | S0} = p0(x∗0)

η(x∗0)
and

Eη [EQ0
{Q(x∗0) | S0}] = Eη

{
p0(x

∗
0)

η(x∗0)

}
=

∫
p0(x

∗
0)

η(x∗0)
η(x∗0)dx

∗
0:t = 1
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and for any square integrable function f0(x0),

Eη [EQ0
{f0(x∗0)Q(x∗0) | S0}] = Eη [f0(x

∗
0)EQ0

{Q(x∗0) | S0}]

= Eη

{
f0(x

∗
0)
p0(x

∗
0)

η(x∗0)

}
=

∫
f0(x

∗
0)
p0(x

∗
0)

η(x∗0)
η(x∗0)dx

∗
0

= Ep0 {h(x∗0)} ,

which justifies the proper weighting condition.

We now proceed by induction: assume EQ0:t−1
{Q(x∗0:t−1) | St−1} =

pt−1(x∗0:t−1)

η(x∗0:t−1)

holds. Conditional on St and Q(x0:t−1) for all x0:t−1 ∈ St−1, and our SMC pro-

duces Q(x∗0:t) as

Q(x∗0:t) =



Q(x∗0:t−1)pt(x
∗
0:t)

pt−1(x∗0:t−1)η(x
∗
t |x∗0:t−1)

1
q(x∗0:t)

with probability q(x∗0:t)

0 otherwise

where q(x∗0:t) = min
{

ctQ(x∗0:t−1)pt(x
∗
0:t)

pt−1(x∗0:t−1)η(x
∗
t |x∗0:t−1)

, 1
}

with ct being the root of

∑
x0:t∈St

min

{
ctQ(x0:t−1)pt(x0:t)

pt−1(x0:t−1)η(xt | x0:t−1)
, 1

}
= N.

We can rewrite Q(x∗0:t) as

Q(x∗0:t) =
Q(x∗0:t−1)pt(x

∗
0:t)

pt−1(x∗0:t−1)η(x∗t | x∗0:t−1)
1

q(x∗0:t)
I(x∗0:t),

where I(x∗0:t) denotes an indicator function defined conditional on St andQ(x∗0:t−1)

with EI{I(x∗0:t) | Q(x∗0:t−1),St} = q(x∗0:t). Note that I(x∗0:t) is independent of fu-
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ture descendants, so for 0 < r < s ≤ t,

EI

{
I(x∗0:r) | Q(x∗0:r−1),Ss

}
= EI

{
I(x∗0:r) | Q(x∗0:r−1),Sr

}
.

Now we can see that Q(x∗0:t) is proportional to the product of the two random

variables Q(x∗0:t−1) and I(x∗0:t), with I(x∗0:t) conditional on Q(x∗0:t−1). By the

tower rule, we have

EQ0:t
{Q(x∗0:t) | St} = EQ0:t−1

[
Q(x∗0:t−1)pt(x

∗
0:t)

pt−1(x∗0:t−1)η(x∗t | x∗0:t−1)
1

q(x∗0:t)
EI

{
I(x∗0:t) | Q(x∗0:t−1),St

} ∣∣∣∣St]
= EQ0:t−1

{
Q(x∗0:t−1)pt(x

∗
0:t)

pt−1(x∗0:t−1)η(x∗t | x∗0:t−1)

∣∣∣∣St}
= EQ0:t−1

{
Q(x∗0:t−1) | St

} pt(x
∗
0:t)

pt−1(x∗0:t−1)η(x∗t | x∗0:t−1)
.

Note that Q(x∗0:t−1) is only conditional on St−1 and thus independent of future

descendants, so

EQ0:t−1

{
Q(x∗0:t−1) | St

}
= EQ0:t−1

{
Q(x∗0:t−1) | St−1

}

and thus

EQ0:t
{Q(x∗0:t) | St} = EQ0:t−1

{
Q(x∗0:t−1) | St−1

} pt(x
∗
0:t)

pt−1(x∗0:t−1)η(x∗t | x∗0:t−1)
=
pt(x

∗
0:t)

η(x∗0:t)
.

Therefore,

Eη [EQ0:t
{Q(x∗0:t) | St}] = Eη

{
pt(x

∗
0:t)

η(x∗0:t)

}
=

∫
pt(x

∗
0:t)

η(x∗0:t)
η(x∗0:t)dx

∗
0:t = 1
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and for any square integrable function ft(x0:t),

Eη [EQ0:t
{ft(x∗0:t)Q(x∗0:t) | St}] = Eη [ft(x

∗
0:t)EQ0:t

{Q(x∗0:t) | St}]

= Eη

{
ft(x

∗
0:t)

pt(x
∗
0:t)

η(x∗0:t)

}
=

∫
ft(x

∗
0:t)

pt(x
∗
0:t)

η(x∗0:t)
η(x∗0:t)dx

∗
0:t

= Ept {ft(x0:t)} ,

which justifies the proper weighting condition.

S3 Minimization of the conditional expected squared

error loss

Fearnhead and Clifford (2003) have shown that in the downsampling step, only

N of the Q(x
(n,m)
0:t )’s are non-zero so that for some random variable C

(n,m)
t with

σ-algebra C, we have

Q(x
(n,m)
0:t ) =



C
(n,m)
t with probability q(x

(n,m)
0:t )

0 otherwise

Assume the set of particles {x(n,m)
0:t , n = 1, . . . , N and m = 1, . . . ,M} are ob-

tained after upsampling and let γ
(n,m)
t = {pt(x(n,m)

0:t )/η(x
(n,m)
0:t )}/

∑N
n=1

∑M
m=1{pt(x

(n,m)
0:t )/η(x

(n,m)
0:t )},
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then the expected squared error loss for Q(x
(n,m)
0:t ) can be written as

EQ0:t

{(
Q(x

(n,m)
0:t )− γ(n,m)

t

)2
| St
}

= EC

[
EQ0:t

{(
Q(x

(n,m)
0:t )− γ(n,m)

t

)2
| St, C(n,m)

}∣∣∣∣ St]
= q(x

(n,m)
0:t )

{
EC

(
C(n,m) − γ(n,m)

t | St
)}2

+ q(x
(n,m)
0:t )Var(C(n,m) | St) +

{
1− q(x(n,m)

0:t )
}
γ
(n,m)
t

2
,

which is minimized when C(n,m) is a constant for each n and m. To ensure

proper weighting as shown in Section S2 of the supplement, we set C(n,m) =

w(x
(n,m)
0:t )/q(x

(n,m)
0:t ) where w(x

(n,m)
0:t ) denotes the upsampling weight of x

(n,m)
0:t ,

and then the conditional expected squared error loss is minimized subject to∑N
n=1

∑M
m=1 q(x

(n,m)
0:t ) ≤ N , since

min

[
EQ0:t

{
N∑
n=1

M∑
m=1

(
Q(x

(n,m)
0:t )− γ(n,m)

t

)2∣∣∣∣∣ St
}]

=

N∑
n=1

M∑
m=1

{
w(x

(n,m)
0:t )/q(x

(n,m)
0:t )− γ(n,m)

t

}2
.

S4 Details of the energy function

Given a target segment represented by the dihedral angles x0:T and for t ∈

{1, . . . , T}, the details of the two components of the energy function H are as

follows:

• Atomic interactions − the energy of atomic interactions (denoted by Ha)

is derived from the pairwise distances between atoms. Notably, we exclude

atom pairs that either share bonds or belong to the same amino acid. To cal-

culate this energy, we employ the distance-scaled, finite ideal-gas reference
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(DFIRE) state potential, as proposed by Zhou and Zhou (2002). DFIRE

assigns a score to the pairwise distance for each atom type. Additionally,

we calculate the pairwise distance between the current amino acid xt and

the Cα atom after the end of the segment (i.e., CT+2
α ) to determine whether

the segment will satisfy the constraint of forming a continuous backbone

with the rest of the protein (Wong, Liu, and Kou (2017)). In cases where

there are steric clashes (i.e., overlapping atoms in close proximity defined

by a value of 8 in the DFIRE table), or when the conformation cannot form

a continuous backbone with the rest of the protein, we assign Ha = +∞.

Let A0 denote the collection of all the atoms in the protein, excluding those

in the segment x0:T . For a given partially sampled conformation x0:t−1, the

subsequent propagation step requires evaluating the incremental energy of

xt, denoted as H(xt | x0:t−1). To calculate this, we compute and accumulate

the energy scores of the four backbone atoms Ct, Ot, Nt+1, and Cα
t+1.

For instance, the energy of Nt+1, denoted by En(Nt+1 | x0:t−1), is the

cumulative energy score between Nt+1 and (a) all atoms in A0, (b) all atoms

in x0:t−1. The DFIRE potential provides a lookup table for energy scores

based on (i) the types of two atoms and (ii) the Euclidean distance between

the two atoms, i.e., DFIRE(atom1, atom2) can be defined as a function of

the atom type of atom1, the atom type of atom2, and the Euclidean distance
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between atom1 and atom2. Therefore,

En(Nt+1 | x0:t−1) =

t−1∑
s=0

{
DFIRE(Nt+1,Cs) + DFIRE(Nt+1,Os)+

DFIRE(Nt+1,Ns+1) + DFIRE(Nt+1,Cs+1
α )

}
+
∑
A∈A0

DFIRE(Nt+1,A).

(S4.1)

Likewise, we can compute En(Ct | x0:t−1), En(Ot | x0:t−1) and En(Ct+1
α |

x0:t−1) by substituting Nt+1 with the corresponding atom in (S4.1). Ha(xt |

x0:t−1) is then assigned by

Ha(xt | x0:t−1) = En(Ct | x0:t−1) + En(Ot | x0:t−1)

+ En(Nt+1 | x0:t−1) + En(Ct+1
α | x0:t−1).

• Dihedral angles − the energy of backbone dihedral angles (denoted by Hθ)

is calculated from the empirical distributions p̃(φt, ψt, ωt) derived from his-

torical protein data, independently for each amino acid with

p̃(φt, ψt, ωt) = p̃(φt, ψt)p̃(ωt),

where p̃(φt, ψt) is based on the amino acid type of at and consists of dis-

crete bins of every 5◦ for each angle (which we assume to be uniformly

distributed within each bin), i.e., each empirical distribution is stored in a

72 by 72 matrix; p̃(ωt) is a Gaussian distribution with mean 180◦ and stan-

dard deviation 3◦ independent of (φt, ψt). Following that work of Wong,

Liu, and Kou (2017), we then set Hθ(xt) = − log{p̃(φt, ψt, ωt)}.
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Then the incremental energy of xt is defined as

H(xt | x0:t−1) = Ha(xt | x0:t−1) +Hθ(xt). (S4.2)

The auxiliary distribution at t is

pt(x0:t) ∝ exp {−Ha(x0)}p̃(x0)

t∏
s=1

exp {−Ha(xs | x0:s−1)}p̃(xs).

It is convenient to set η(xt | x0:t−1) = p̃(xt) as the importance distribution:

to draw xt from p̃(xt), we sample a bin for (φ, ψ) from its empirical distribution

then draw a (φt, ψt) value uniformly from the selected bin, and ωt is drawn from

its normal distribution. The equation for upsampled weights thus simplifies to

w(x0:t) = w(x0:t−1)
pt(x0:t)

pt−1(x0:t−1)η(xt | x0:t−1)

= w(x0:t−1) exp {−Ha(xt | x0:t−1)}. (S4.3)

S5 UDSMC experiment for different values of M

The performance of UDSMC will be influenced by the choice of the upsample

size M . For a finite space X , a natural choice for M can be to take M = |X |;

however, there may not be an intuitive choice for M for a continuous space X .

Thus to choose a reasonable value of M for our application, in this section we run

a preliminary experiment using different values of M (with a fixed computational

budget, i.e., holding MN constant).
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For the experiment, we focus on sampling a length 10 segment at amino acid

positions 282–291 of the protein with PDB ID 1ds1A, and thus the dimension of

the Boltzmann distribution is 30 in this case. The protein structural quantities

of interest are the Boltzmann averages for the number of atomic contacts of Cα

at each of the positions 283–292, denoted as n(Cα
283), . . . , n(Cα

292). We vary

the values of N and M in the experiment, using NM ∈ {105, 5 × 105, 106} and

M ∈ {1, 5, 10, 20, 50, 100, 200, 500, 1000}. For each combination of N and M , we

conduct 100 independent repetitions of UDSMC. Notably, when M = 1, UDSMC

is equivalent to SISR.

Table 1 presents the Monte Carlo variance of the estimates for different values

of M . While RMSEs to the ground truth would be more informative, the ground

truth is very expensive to compute, and Monte Carlo variance can still provide

useful guidance for a reasonable choice of M . When M is too large or too small

(e.g., M ∈ {1, 200, 500, 1000}), some of the 100 repetitions end prematurely due

to all propagated particles having zero weights (i.e., Ha = ∞). A small M can

lead to many duplicate particles among the N particles after each propagation

step, resulting in insufficient exploration of the target distribution, which may

eventually lead to all dead ends after successive iterations of propagation and

resampling. On the other hand, a large M implies a small particle size N (for

the same computational cost), which may be inadequate to avoid dead ends.
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For values of M in the range of {5, 10, 20, 50, 100}, all UDSMC repetitions

completed successfully, and we report the variance of the 100 estimates for each

structural quantity. With M fixed, the Monte Carlo variances of the estimates

decreased as NM increased. Furthermore, with NM fixed, the variances tended

to decrease as M increased from 5 to 20, and then increased again as M increased

from 20 to 100. These results highlight the need for a balance between N and

M given a fixed computational budget. In this specific experiment, M = 20

produced the lowest variances and can be a reasonable choice for the protein

sampling problem, and we adopt this value in the simulation study and the real

data example.
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Table 1: Variance of the UDSMC estimates over 100 repetitions when estimating the

Boltzmann average of the atomic contacts of Cα at each position from 283 to 292, for

different combinations of NM and M . “NA” indicates that the algorithm failed to

complete for that combination of N and M .

M n(C283
α ) n(C284

α ) n(C285
α ) n(C286

α ) n(C287
α ) n(C288

α ) n(C289
α ) n(C290

α ) n(C291
α ) n(C292

α )

NM = 100000 1,2 NA NA NA NA NA NA NA NA NA NA

5 0.277 1.557 3.547 10.004 3.525 3.467 31.481 8.299 4.119 0.599

10 0.160 0.959 3.378 10.335 2.525 4.194 25.199 10.376 3.843 0.680

20 0.181 0.814 2.695 7.421 2.633 2.269 12.973 9.321 3.119 0.453

50 0.313 1.908 4.237 10.802 3.890 3.157 19.476 10.196 4.070 0.576

100 0.428 3.117 7.379 20.195 6.050 6.695 26.506 14.656 5.471 0.792

200,500,1000 NA NA NA NA NA NA NA NA NA NA

NM = 500000 1,2 NA NA NA NA NA NA NA NA NA NA

5 0.083 0.671 1.198 5.014 1.179 1.610 13.895 3.041 1.417 0.346

10 0.063 0.560 1.183 3.489 1.167 1.421 9.391 3.400 1.443 0.258

20 0.034 0.202 0.578 2.042 0.696 0.749 3.629 2.828 0.856 0.113

50 0.061 0.345 1.379 2.542 0.945 0.799 4.270 2.824 1.105 0.136

100 0.139 0.697 1.812 5.946 1.696 2.192 8.269 5.148 1.355 0.228

200,500,1000 NA NA NA NA NA NA NA NA NA NA

NM = 1000000 1,2 NA NA NA NA NA NA NA NA NA NA

5 0.051 0.374 0.637 2.504 0.523 1.058 6.682 1.914 0.590 0.096

10 0.035 0.234 0.499 1.741 0.505 0.860 5.571 1.258 0.527 0.147

20 0.024 0.132 0.556 0.762 0.315 0.226 1.222 1.327 0.388 0.070

50 0.036 0.179 0.535 1.421 0.521 0.482 2.498 1.504 0.512 0.065

100 0.058 0.369 1.070 2.529 0.744 1.088 3.364 2.319 0.857 0.129

200,500,1000 NA NA NA NA NA NA NA NA NA NA
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S6 Pseudocode for SISR with one-step lookahead

sample {X(n)
0 , n = 1, . . . , N} from the proposal distribution η(X0);

for n in 1:N do

sample L descendants of X
(n)
0 and form {X(n,l)

0:1 , l = 1, . . . , L} from the proposal distribution

η(X1 | X(n)
0 );

set w̃0:1(X
(n,l)
0:1 ) =

p0:1(X
(n,l)
0:1 )

η(X
(n,m)
0 )η(X

(l)
1 |X

(n)
0 )

and w0:1(X
(n,l)
0:1 ) = w̃0:1(X

(n,l)
0:1 )/

∑L
l=1 w̃0:1(X

(n,l)
0:1 )

end

resample particles {X̃(n)
0 , n = 1, . . . , N} proportional to {w0:1(X

(n,l)
0:1 ), n = 1, . . . , N, l = 1, . . . , L};

set {X(n)
0 , n = 1, . . . , N} = {X̃(n)

0 , n = 1, . . . , N} with weights {W (n)
0 , n = 1, . . . , N};

for t in 1:T-2 do

for n in 1:N do

sample a descendants X∗t of X
(n)
t−1 and form X

(n)
0:t = (X

(n)
t−1, X

∗
t ) from the proposal

distribution η(Xt | X(n)
t−1);

sample L descendants of X
(n)
0:t and form {X(n,l)

0:t+1, l = 1, . . . , L} from the proposal

distribution η(Xt+1 | X(n)
0:t );

set w̃0:t+1(X
(n,l)
0:t+1) = W

(n)
0:t−1

p0:t+1(X
(n,l)
0:t+1

)

p0:t−1(X
(n)
0:t−1

)η(X∗t |X
(n)
0:t−1

)η(X
(l)
t+1
|X(n)

0:t )
and

w0:t+1(X
(n,l)
0:t+1) = w̃0:t+1(X

(n,l)
0:t+1)/

∑L
l=1 w̃0:t+1(X

(n,l)
0:t+1);

end

resample particles {X̃(n)
0:t , n = 1, . . . , N} proportional to

{w0:t+1(X
(n,l)
0:t+1), n = 1, . . . , N, l = 1, . . . , L};

set {X(n)
0:t , n = 1, . . . , N} = {X̃(n)

0:t , n = 1, . . . , N} with weights {W (n)
0:t , n = 1, . . . , N};

end

for n in 1:N do

sample a descendants X∗T−1 of X
(n)
0:T−2 and form X

(n)
0:T−1 = (X

(n)
T−2, X

∗
0:T−1) from the

proposal distribution η(XT−1 | X(n)
T−2);

sample L descendants of X
(n)
0:T−1 and form {X(n,l)

0:T , l = 1, . . . , L} from the proposal

distribution η(XT | X(n)
0:T−1);

set w̃0:T (X
(n,l)
0:T ) = W

(n)
0:T−2

p0:T (X
(n,l)
0:T

)

p0:T−2(X
(n)
0:T−2

)η(X∗
T−1

|X(n)
0:T−2

)η(X
(l)
T
|X(n)

0:T−1
)
and

w0:T (X
(n,l)
0:T ) = w̃0:T (X

(n,l)
0:T )/

∑L
l=1 w̃0:T (X

(n,l)
0:T );

end

resample particles {X̃(n)
0:T , n = 1, . . . , N} proportional to {w0:T (X

(n,l)
0:T ), n = 1, . . . , N, l = 1 . . . , L};

set {X(n)
0:T , n = 1, . . . , N} = {X̃(n)

0:T , n = 1, . . . , N} with weights {W (n)
0:T , n = 1, . . . , N};
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S7 Particle diversity of UDSMC and SISR

The resampling step of the t-th SMC iteration (t = 0, . . . , 7) produces N particles

for x0:t. Here, we focus on the values of (φ0, ψ0, . . . , φt, ψt) since the ω dihedral

angle is usually close to 180◦. Thus, for example, we can examine how the

values of (φ0, ψ0) among resampled particles evolve for t = 0, . . . , 7. Similarly,

for any s = 1, . . . , 7, we can examine how the values of (φs, ψs) among resampled

particles evolve for t = s, . . . , 7. Due to the possibility of weight degeneracy, the

diversity of these values (and hence the diversity of the paths of the particles)

may decay as t increases. We compare UDSMC (N = 20000,M = 20) and SISR

(N = 400000) by plotting these values in Figures 1 and 2 for one repetition of

the simulation study in Section 4 of the main text. The plots show that the

diversity of these values decays much faster for SISR. Taking φ0 as an example,

both UDSMC and SISR have values that are similarly diverse up to t = 3, and

subsequently for t = 4, . . . , 7, only UDSMC is able to maintain diversity in φ0

(while SISR decays to just a few unique values). A similar pattern can be seen

for other φs and ψs. In this sense, UDSMC is much better at mitigating decay in

the diversity of the paths of the particles compared to SISR, which provides an

intuitive explanation for the better performance of UDSMC in this application.
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Figure 1: Values of φs (left panels) and ψs (right panels) among resampled particles, for

s = 0, 1, 2, 3 after each iteration (t) of UDSMC (blue) and SISR (red), for the protein

segment in the simulation study.
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Figure 2: Values of φs (left panels) and ψs (right panels) among resampled particles, for

s = 4, 5, 6, 7 after each iteration (t) of UDSMC (blue) and SISR (red), for the protein

segment in the simulation study.
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