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Supplementary Material

S1. Estimation of the Covariance matrix and its Inverse

In this section, we will discuss how to apply the estimation of the band-

width to the estimation of the covariance matrix and the precision matrix

and give the properties of the corresponding estimators.
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S1.1 Regularized Covariance Matrix

S1.1 Regularized Covariance Matrix

One prevalent class of methodology to estimate the covariance matrix is

the truncated regularization which needs to learn the banding and tapering

structure of the sample covariance matrix.

S1.1.1 Banding the Sample Covariance Matrix

For a p×pmatrixM = (ml1l2)p×p, letBk(M) = (ml1l2I {l1 − l2 |≤ k})p×p

denote the banded version with bandwidth k ∈ {0, · · · , p− 1}. Bickel and

Levina [2008] suggested BK̂ (Sn) to estimate Σ, where Sn is the sample co-

variance and K̂ is an estimate of the bandwidth. When an estimate of the

bandwidth is obtained, it is natural to use the banding sample covariance

matrix to estimate it as well.

Consider the covariance matrix Σ belonging to the following parameter

space:

UB (ε0, K) = {Σ : σij = 0 for all |i− j| > K

and 0 < ε0 ≤ λmin(Σ) ≤ λmax(Σ) ≤ 1/ε0} ,
(S1.1)

where λmax(Σ) and λmax(Σ) denote the maximum and minimum eigenvalues

of the matrix Σ, respectively. Combining the banding estimate obtained in
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S1.1 Regularized Covariance Matrix

Section 2.1, we give the estimate of the covariance matrix as:

Σ̂B,K̂ = BK̂(Sn) with Sn = (σ∗ij)1≤i,j≤p =
1

n

n∑
i=1

(Xi− X̄)(Xi− X̄)>. (S1.2)

The following theorem states the convergence rate of the banding covariance

estimate in (S1.2).

Theorem S1.1. Suppose that Xi are Gaussian and UB (ε0, K) is the class

of covariance matrices defined above. If Assumption S2.1 holds, then we

have that for any γ > 0,

‖Σ̂B,K̂ − Σ‖ = Op

(
K

log(p ∨ n)5γ/4−1/2n1/2−γ/4

)

uniformly on Σ ∈ UB.

Remark S1.1. This theorem shows that ifK = o
(
log(p ∨ n)5/4γ−1/2n1/2−γ/4),

then ‖Σ̂B,K̂ −Σ‖ = op(1) holds uniformly for Σ ∈ UB. This result gives the

condition of the true bandwidth for the convergence of the banding estima-

tor. Also, it shows that our proposed method can deal with the case where

the band size K goes to infinity as the sample size goes to infinity.
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S1.1 Regularized Covariance Matrix

S1.1.2 Tapering the Sample Covariance Matrix

To obtain an optimal estimation of the covariance matrix, Bickel and

Levina [2008] and Cai et al. [2010] discussed general tapering of the covari-

ance matrix. Cai et al. [2010] defined a tapering estimator as

Σ̂T,K =
(
ωijσ

∗
ij

)
p×p , (S1.3)

where σ∗ij are the elements of the estimator Sn defined in (S1.2) and the

weights are

ωij =


1, when |i− j| ≤ Kh,

2− |i−j|
Kh

, when Kh < |i− j| < K,

0, otherwise,

and Kh = K/2 with K being even.

If the tapering order is given, the proposed method can be extend-

ed to handle the determination in this tapering structure. Recall that

X1,X2, . . . ,Xn are independent and identically distributed random vectors

with mean 0 and covariance matrix Σ = (σij)p×p, h(k) = 1
p−k
∑p−k

l=1 σ
2
ll+k,

0 ≤ k ≤ p − 1. We assume that Σ has the structure that σij = 0 when

|i− j| > K, and h(k) decreases as k varying from K/2 to K.
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S1.1 Regularized Covariance Matrix

In this case, we still have h(k) = 0 as k > K, and there is a skip when

k = K. Then the same as the previous analysis of the banding estimation,

we could apply a similar method to the tapering estimation. The tapering

estimator-based ratios can be similarly defined as:

ŝ(k) =
ĥ(k + 1) + cn

ĥ(k) + cn
, for 0 ≤ k ≤ p, (S1.4)

where cn is recommended as cn = δ log(p · n) max
M1≤k≤M2

|ĥ(k)|. Then the

bandwidth of the tapering estimator can be estimated as:

K̂ = arg max
0≤k≤p−1

{k : ŝ(k) ≤ τ}.

Under similar conditions as those in Theorem 2.2 of the main body, we

can also obtain the consistency of the estimator K̂, i.e. P (K̂ = K)→ 1, as

n, p→∞. It seems to have the same estimators and theoretical results for

the banding and tapering structures. However, the bandwidth estimation

yields different covariance matrix estimates in the banding and tapering

cases. That is, the covariance matrix is estimated respectively as Σ̂B,K̂ in

(S1.2) and Σ̂T,K̂ in (S1.3). In the following we will discuss the properties of

the tapering estimator.
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S1.1 Regularized Covariance Matrix

First, define a covariance class

UT (M0, K) = {Σ : σij = 0 for all |i− j| > K and λmax(Σ) ≤M0} , (S1.5)

with M0 > 0. Note that the minimum eigenvalue of any covariance matrix

in the parameter space UT (M0, K) is allowed to be 0, which is more general

than the class (S1.1). Next we give the risk upper bound of the defined

tapering estimator at the operator norm.

Theorem S1.2. Under Assumption S2.2, suppose the covariance matrix

Σ satisfies (S1.5). Then, the tapering estimator Σ̂T,K̂ defined in (S1.3)

satisfies that for α > 0,

‖Σ̂T,K̂ − Σ‖ = Op

(
(K + log p)1/2

log(p ∨ n)5α/4n1/2−α/4

)

uniformly on Σ ∈ UT . In particular, if K = o
(
log(p ∨ n)5α/2n1−α/2), the

estimator Σ̂T,K̂ satisfies ‖Σ̂T,K̂ − Σ‖ = op(1).

Remark S1.2. This tapering structure is a special case of the general

tapering proposed in Bickel and Levina [2008] that replaces Σ̂ = (σ̂ij) with

Σ̂ ∗ R, where ∗ denotes Schur matrix multiplication and R is a positive

definite matrix defined by R = [g(ρ(i,j)
σ

)], σ > 0. Here, ρ(i, j), satisfying
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S1.1 Regularized Covariance Matrix

ρ(i, j) ≥ 0 and ρ(i, i) = 0 for all i, is a function used to characterize the

distance of the (i, j) item of a matrix from the diagonal. A simple example

is ρ(i, j) = |i − j|. g is a mapping of nonnegative real number to positive

real number contenting that g(0) = 1 and g(t) is decreasing to 0 as t→∞.

Thus a major change compared to the banding hypothesis is that under

the tapering hypothesis, h(k) goes to zero as k tends to infinity. At the

population level, it has much slower order than that under the banding

hypothesis. However, since we know little about the order of the pending

data, we still assume h(k) = 1
p−k
∑p−k

l=1 σ
2
ll+k has the same order as that

under banding hypothesis. For the above tapering hypothesis, we can also

achieve the similar bandwidth estimate. Thus, the algorithm to estimate K

will be adapted the same way with the banding case. But for the estimation

of the covariance matrix Σ, we also substitute Σ̂ by Σ̂ ∗ R with R being

related to our simplification of the tapering hypothesis. While, under this

assumption, the performance for the tapering estimator relies heavily on

the data. A more precise discussion of the tapering estimator may be set

up in more general theory, the study is ongoing.
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S1.1 Regularized Covariance Matrix

S1.1.3 Partial Numerical Studies

In this subsection, we assess the performance of the truncated sample

covariance matrix. We estimate the bandwidth for the banding structure

via the proposed methods in the main body of this paper. The tapering

structure of the covariance matrix estimation often addresses the situation

where the bandwidth of the covariance matrix is large, especially for the

case that the true value of the covariance matrix is rather small at the

truncation, i.e. h(K) � 1. To obtain a larger bandwidth for tapering

structure of the sample covariance matrix, we set the smaller ridge term cn

to be cn = log(p · n) max
M1≤k≤M2

|ĥ(k)|/20. Then the covariance matrices with

banding and tapering structure can be estimated by (S1.2) and (S1.3),

respectively. Calculate the errors between these estimates and the true

covariance matrix. Each experiment is repeated 100 times.

The data are generated from

Xi = Σ1/2Zi, with Zi = (Zi1, . . . , Zip)
>,

where Zij are i.i.d. respectively from N(0, 1). Consider the truncated co-

variance matrix Σ = (σij)1≤i,j≤p as follows.

Example 5: σij = I(i = j)+ρ|i−j|−(α+1)I(0 < |i−j| ≤ K), where ρ =

0.6, α = 0.2, and K = 4, 36, which correspond to the banding and tapering
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S1.1 Regularized Covariance Matrix

structures respectively. We design the sample size to be n = 200, 250 and

the dimension to be p = 60, 100, 200, 300. The results are reported in Table

1.

Table 1: Mean and standard deviation of the estimated bandwidth, error
of banding structure estimator and error of tapering structure estimator in
Example 5.

Covariance structure with ρ = 0.6, α = 0.2
K = 4 K = 36

n p ‖Σ̂B,K̂ − Σ‖ ‖Σ̂T,K̂ − Σ‖ ‖Σ̂B,K̂ − Σ‖ ‖Σ̂T,K̂ − Σ‖
200 60 0.716(0.116) 1.389(0.145) 1.780(0.077) 1.515(0.187)
200 100 0.784(0.103) 1.700(0.148) 2.475(0.045) 1.673(0.250)
200 200 0.808(0.118) 1.695(0.127) 1.817(0.058) 1.640(0.178)
200 300 0.823(0.098) 1.887(0.118) 2.619(0.027) 1.947(0.225)
250 60 0.6017(0.118) 1.133(0.115) 1.508(0.112) 1.223(0.125)
250 100 0.6544(0.104) 1.221(0.141) 1.663(0.082) 1.489(0.143)
250 200 0.7317(0.107) 1.621(0.131) 1.622(0.078) 1.594(0.131)
250 300 0.7703(0.127) 1.408(0.132) 2.134(0.028) 1.571(0.189)

The mean and standard deviations of the errors between the banding

(tapering) structure estimators and the true covariance matrix are also dis-

played in Table 1. The results show when the true bandwidth is small, the

estimator of covariance matrices with banding structure performs better

than that with tapering structure. But when the true bandwidth becomes

large, the covariance matric estimate with tapering structure performs bet-

ter than that with banding structure.
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S1.2 Regularized Precision Matrix

S1.2 Regularized Precision Matrix

We borrow the method of the Cholesky decomposition from Bickel and

Levina [2008] to estimate the precision matrix. Recall that Σ can be de-

composed via Cholesky decomposition as:

Σ = LDL>,

where L is a lower triangular matrix and D is a diagonal matrix. Let

T = L−1 = (tij)1≤i,j≤p, then the precision matrix Ω = Σ−1 can be written

as

Ω = T>D−1T.

Using the estimation of Section 3 in the main body,

t̂
(k)
j = −(χ

(k)
j

>
χ
(k)
j )−1χ

(k)
j

>
χj, (S1.6)

we can obtain the estimates T̂ and D̂ of the matrixes T and D respectively.

Combining again the bandwidth estimates obtained in Section 3 of the main

body, we define the following banding precision matrix estimate as:

Ω̂K̂ = BK̂(T̂ )>D̂−1BK̂(T̂ )
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with the estimated bandwidth K̂. Note that this estimate is not the same

as BK̂(Sn)−1, which is always not well-defined at p > n.

Define the following class:

U−1B (ε0, K) = {Σ : tij = 0 for all |i− j| > K

and 0 < ε0 ≤ λmin(Σ) ≤ λmax(Σ) ≤ 1/ε0} .
(S1.7)

The following result establishes the convergence rate of the banding

precision estimates.

Theorem S1.3. Uniformly for Σ ∈ U−1 (ε0, K), if Xi are Gausssian and

n−1 log p = o(1), we have for any β > 0,

‖Ω̂K̂ − Ω‖ = Op

(
K2 (log p)2−β/4

n1−β/4

)
.

In particular, if K2 = o
(

n1−β/4

(log p)2−β/4

)
, then ‖Ω̂K̂ − Ω‖ = op(1).

S2. Proof of main results

We first recall the assumptions:

Assumption S2.1. log p = o(n1/5), as min{n, p} → ∞.

Assumption S2.2. Assume Σ is a positive definite matrix, let Zk =

Σ−1/2Xk. Variables Xil, 1 ≤ l ≤ p and Zk’s are sub-Gaussian vectors with
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sup
1≤l≤p

‖Xkl‖ψ2 < K0 and E(exp(α>Zk)) ≤ exp(K2
z‖α‖2) for some constants

0 < K0, Kz <∞.

Then several lemmas are presented and the proofs of the theorems are

given.

Lemma S2.1. Under Assumption S2.2, we have for any 1 ≤ i ≤ n

sup
1≤l≤p

P (|Xil| > t) ≤ C1 exp

(
− t2

K2
1

)
,

for some constant C1 > 0 and K1 only depends on K0.

Proof. Recall that Xil 1 ≤ i ≤ n are independent centered sub-Gaussian

random variables, and K0 > max
i
‖Xil‖ψ2. By an application of Lemma 5.5

in Vershynin [2010], for any t > 0, 0 ≤ l ≤ p− 1, we have

P (|Xil| > t) ≤ e · exp

(
− t2

K2
1

)
,

whereK1 > 0 is an absolute constant only depending onK0. By maximizing

l on both sides, one can get

sup
1≤l≤p

P (|Xil| > t) ≤ e · exp

(
− t2

K2
1

)
.
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Let C1 = e, this completes the proof.

Lemma S2.2. Let

Φp(Xi,Xj) =
1

p− q

p−q∑
l=1

(XilXil+q)(XjlXjl+q)−
1

p− q

p−q∑
l=1

σ2
ll+q,

for 0 ≤ q ≤ p− 1. Under Assumption S2.2, we have, for any 1 ≤ i 6= j ≤ n

and t > 0,

max
0≤q≤p−1

P (|Φp(Xi,Xj)| > t) ≤ Cp · exp

(
−min{t, t1/2}

K2

)
. (S2.8)

Proof. Step 1. Let Qij,q = 1
p−q

p−q∑
l=1

(XilXil+q)(XjlXjl+q). We have, for any

t > 0,

P (|Qij,q| > t) ≤ P

( ⋃
1≤l≤p−q

{|XilXil+qXjlXjl+q| ≥ t}

)

≤ (p− q) sup
1≤l≤p

P (|XilXil+qXjlXjl+q| ≥ t)

≤ 4(p− q) sup
1≤l≤p

P (|Xil| > t1/4).

(S2.9)

By applying Lemma S2.1, there exists C1 > 0 only depending on K0 such
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that for any 0 < t1/4 < 1

sup
1≤l≤p

P
(
|Xil| > t1/4

)
≤ C1 exp

(
−t

1/2

K1

)
,

which implies, together with (S2.9),

P (|Qij,q| > t) ≤ 4(p− q)C1 exp(−t
1/2

K1

),

max
0≤q≤p−1

P (|Qij,q| > t) ≤ 4p · C1 exp

(
−t

1/2

K1

)
.

(S2.10)

Step 2. Combining the conclusion (S2.10) of Step 1. and the formula

(5.14)-(5.15) in Vershynin [2010], there exists a constant M1 such that

‖Qij,q‖ψ1 ≤M1.

By Remark 5.18 ‘Centering’ of Vershynin [2010],

‖Qij,q − E(Qij,q)‖ψ1 ≤ 2‖Qij,q‖ψ1 ≤ 2M1.

Similarly, following the formula (5.14)-(5.15) in Vershynin [2010], there ex-
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ists a constant M2 such that

max
0≤q≤p−1

P (|Qij,q − E(Qij,q) | > t) ≤ 4p · C1 exp

(
−min{t, t1/2}

M2

)
.

Notice that Φq(Xi,Xj) = Qij,q − E(Qij,q). Letting 4C1 = C,K2 = M2, we

conclude that for any 1 ≤ i 6= j ≤ n and t > 0,

max
0≤q≤p−1

P (|Φp(Xi,Xj)| > t) ≤ Cp · exp

(
−min{t, t1/2}

K2

)
,

where K2 depends on K0.

Now we recall an inequality on U-statistics in Theorem A of Serfling

[1980]. Let Yi, Y2, · · · , Yn are i.i.d variables. If a < h(Yi1 , Yi2 , . . . , Yim) < b

for any 1 ≤ i1 < · · · < im ≤ n. Then the U-statistic

Fn =
1

Amn

∑
1≤i1<···<im≤n

h(Yi1 , Yi2 , . . . , Yim)

satisfies that for any t > 0,

P (Fn − E(Fn) ≥ t) ≤ exp

(
− nt2

(b− a)2

)
. (S2.11)

15



Lemma S2.3. Under Assumptions S2.1 and S2.2,we have

P

(
sup

0≤q≤p−1
|h̃(q)− h(q)| ≥ Cqn

)
= op(1),

where qn = O

(√
{log(p∨n)}5

n

)
.

Proof. First, we assume for any i 6= j, E(Φq(Xi,Xj)) = 0. For any 0 ≤ q ≤

p− 1, we have

h̃(q)− h(q) =
1

A2
n

∗∑
i,j

1

p− q

p−q∑
l=1

(XilXil+q)(XjlXjl+q)−
1

p− q

p−q∑
l=1

σ2
ll+q

=
1

A2
n

∗∑
i,j

(
1

p− q

p−q∑
l=1

XilXil+qXjlXjl+q −
1

p− q

p−q∑
l=1

σ2
ll+q

)

≡:
1

A2
n

∗∑
i,j

Φq(Xi,Xj).

Define the event An,t =

{
max

0≤q≤p−1,1≤i,j≤n
|Φq(Xi,Xj)| > t

}
for any t > 0

and let t0 = (5K1)
2{log(p ∨ n)}2. As Xi, 1 ≤ i ≤ n are i.i.d variables,

together with the conclusion (S2.8) in Lemma S2.2, we get

P (An,t0) ≤ pn2

{
max

0≤q≤p−1,1≤i,j≤n
|Φq(Xi,Xj)| > t0

}
≤ Cn2p2 · exp

(
−min{t0, t1/20 }/K1

)
≤ C(p ∨ n)−1,

(S2.12)
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and

P

(
max

0≤q≤p−1
|h̃(q)− h(q)| ≥ t

)
≤ P

({
max

0≤q≤p−1
|h̃(q)− h(q)| ≥ t

}
∩ Acn,t0

)
+ P (An,t0).

Define Φ̃q(Xi,Xj) = Φq(Xi,Xj)I(|Φq(Xi,Xj)| < t0) and

Fn =
1

A2
n

∗∑
i,j

{
Φ̃q(Xi,Xj)− E(Φ̃q(Xi,Xj))

}
,

for 0 ≤ q ≤ p− 1, 1 ≤ i, j ≤ n. It is obvious that Fn is an U-statistic with

bounded kernel function in the interval [−t0, t0]. Taking t = 2
√

2
√

log p
n
t0,

and applying the inequality (S2.11), we obtain

P

({
max

0≤q≤p−1
|h̃(q)− h(q)| ≥ t

}
∩ Acn,t0

)
= P

({
max

0≤q≤p−1
|Fn| ≥ t

}
∩ Acn,t0

)
≤ P

(
sup

0≤q≤p−1
|Fn| ≥ 2

√
2

√
log p

n
t0

)

≤ p sup
0≤q≤p−1

P

(
|Fn| ≥ 2

√
2

√
log p

n
t0

)

≤ exp(− log p)

= p−1.

(S2.13)
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S2.1 The Proof of Theorem 2.1

Therefore, combining the formula (S2.12) and (S2.13) and letting C̃ = C+1,

we derive that

P

(
sup

0≤q≤p−1
|h̃(q)− h(q)| ≥ 2

√
2

√
log p

n
t0

)
≤ C̃(p ∨ n)−1,

where
√

log p
n
t0 = O

(√
{log(p∨n)}5

n

)
. The proof is done.

S2.1 The Proof of Theorem 2.1

To prove that, as min(n, p)→ 0,

P

(
max

0≤q≤p−1
|ĥ(q)− h(q)| > Cqn

)
= o(1).

Proof. It can be seen easily that for any t,

P

(
max

0≤q≤p−1
|ĥ(q)− h(q)| > t

)
≤P

(
max

0≤q≤p−1
|ĥ(q)− h̃(q)| > t/2

)
+ P

(
max

0≤q≤p−1
|h̃(q)− h(q)| ≥ t/2

)
.
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S2.1 The Proof of Theorem 2.1

Similarly, we have

P

(
max

0≤q≤p−1
|ĥ(q)− h̃(q)| > t/2

)
=P

(
max

0≤q≤p−1

∣∣∣∣ 1

p− q

p−q∑
l=1

{
− 2

A3
n

∗∑
i,j,k

XilXkl+q(XjlXjl+q)

+
1

A4
n

∗∑
i,j,k,m

XilXjl+qXklXml+q

}∣∣∣∣ > t

)

≤P
(

max
0≤q≤p−1

|Fn1| >
t

8

)
+ P

(
max

0≤q≤p−1
|Fn2| >

t

4

)
,

where Fn1 and Fn2 have the following forms:

Fn1 =
1

A3
n

∗∑
i,j,k

1

p− q

p−q∑
l=1

XilXkl+qXjlXjl+q,

Fn2 =
1

A4
n

∗∑
i,j,k,m

1

p− q

p−q∑
l=1

XilXjl+qXklXml+q.

Notice that Fn1 and Fn2 have the same type as Fn and are both U-statistics.

By using the similar arguments as the previous proof for Lemma S2.3, there

exist constants C1, C2 such that

P

(
sup

0≤q≤p−1
|Fn1 − EFn1| ≥ C1qn

)
= op(1),

P

(
sup

0≤q≤p−1
|Fn2 − EFn2| ≥ C2qn

)
= op(1).
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S2.2 The Proof of Theorem 2.2

Note that EFn1 = EFn2 = 0. Letting C = max{8C1, 4C2}, we have

P

(
max

0≤q≤p−1
|ĥ(q)− h̃(q)| > Cqn

)
≤ P

(
max

0≤q≤p−1
|Fn1| >

Cqn
8

)
+P

(
max

0≤q≤p−1
|Fn2| >

Cqn
4

)
= op(1). (S2.14)

The results in S2.14 and Lemma S2.3 lead to the conclusion of this theorem.

S2.2 The Proof of Theorem 2.2

Proof. Under Assumptions S2.1 and S2.2, Theorem 2.1 indicates that the

following inequality holds with a probability tending to 1:

max
0≤k≤p−1

|ĥ(k)− h(k)| < C0qn. (S2.15)

Thus, we have that with a probability tending to 1,

h(k)− C0qn ≤ ĥ(k) ≤ h(k) + C0qn, ∀ 0 ≤ k ≤ p− 1.
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S2.3 The Proof of Theorem 3.1

This implies that

−C0qn ≤ min
K+1≤k≤p−1

ĥ(k) ≤ max
K+1≤k≤p−1

ĥ(k) ≤ C0qn.

Now we turn to compute the VCC objective function. From the defi-

nition of ŝk in (2.2), we can see that when k = K, the following inequality

holds:

−C0qn + cn
h(K) + C0qn + cn

≤ ŝ(K) =
ĥ(K + 1) + cn

ĥ(K) + cn
≤ C0qn + cn
h(K)− C0qn + cn

.

Due to the conditions cn → 0, cn/h(K) → 0 and qn/cn = o(1), we have in

probability

ŝ(K)→ 0.

Additionally, we have the following inequality in probability:

min
k>K

ŝ(k) ≥
min
k>K

ĥ(k + 1) + cn

max
k>K

ĥ(k) + cn
≥ −C0qn + cn

C0qn + cn
→ 1,

which is also due to the conditions cn → 0, cn/h(K)→ 0 and qn/cn = o(1).

Therefore, we can conclude P (K̂ = K)→ 1, as n, p→∞.

S2.3 The Proof of Theorem 3.1
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S2.3 The Proof of Theorem 3.1

Proof. As Xi follow a normal distribution, given χ
(M)
j , t̂

(M)
j,j−k has the con-

ditional normal distribution whose mean is tj,j−k. Let t̃(j) = t̂
(M)
j,j−k − tj,j−k.

It is easy to obtain that t̃(j) for k + 1 ≤ j ≤ p are sub-Gaussian variables.

By applying Lemma 5 of Vershynin [2010], we can derive that there exist

constants C2 and K0 such that

P (|t̃(j)| > t) ≤ C2 exp

(
−nt

2

K2
0

)
.

Let t = C ′2K0

√
log p
n

with C ′2 >
√

3. We have

P

(
max

0≤k≤M
|l̂(k)− l(k)| ≥ t

)
≤ p · max

0≤k≤M
P
(
|l̂(k)− l(k)| ≥ t

)
≤ p · max

0≤k≤M
P

(
1

p− k

∣∣∣∣∣
p∑

j=k+1

(|t̂(M)
j,j−k| − |tj,j−k|)

∣∣∣∣∣ ≥ t

)

≤ p · max
0≤k≤M

P

(
1

p− k

∣∣∣∣∣
p∑

j=k+1

t̃(j)

∣∣∣∣∣ ≥ t

)

≤ p2 · max
0≤k≤M

P (|t̃(j)| > t)

≤ C2 exp

(
−nt

2

K2
0

+ 2 log p

)
≤ C2p

−1.

Letting C1 = C ′2K0, the proof is completed.
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S2.4 The Proof of Theorem 3.2

S2.4 The Proof of Theorem 3.2

Proof. We follow the similar arguments of proving Theorem 2.2 to prove

this theorem. Under Assumptions S2.1 and S2.2, Theorem 3.2 indicates

that with a probability tending to 1, we have the following inequality as:

max
0≤k≤M

|l̂(k)− l(k)| < C0γn, (S2.16)

where γn = O(
√

log p/n). The above implies that with a probability tend-

ing to 1,

l(K)− C0γn ≤ l̂(K) ≤ l(K) + C0γn,

−C0γn ≤ min
K+1≤k≤p−1

l̂(k) ≤ max
K+1≤k≤p−1

l̂(k) ≤ C0γn.

Combining the definition of r̂k in (3.3), we have the following inequality:

−C0γn + c̃n
l(K) + C0γn + c̃n

≤ l̂(K + 1) + c̃n

l̂(K) + c̃n
≤ C0γn + c̃n
l(K)− C0γn + c̃n

.

As c̃n → 0, c̃n/l(K)→ 0 and c̃n
√
n/ log p→∞, we have in probability

r̂(K) =
l̂(K + 1) + c̃n

l̂(K) + c̃n
→ 0.
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S2.5 The Proof of Theorem S1.1

On the other hand, we derive:

min
k>K

r̂(k) ≥
min
k>K

l̂(k + 1) + cn

max
k>K

l̂(k) + cn
≥ −C0γn + cn

C0γn + cn
→ 1,

due to c̃n → 0, c̃n/l(K)→ 0 and c̃n
√
n/ log p→∞.

Therefore, as n, p→∞, K̂ = K with a probability going to 1.

S2.5 The Proof of Theorem S1.1

Proof. To get the order of ‖Σ̂B,K̂−Σ‖, we calculate the following probability

value:

P (‖Σ̂B,K̂ − Σ‖ > t) =P (‖Σ̂B,K̂ − Σ‖ > t|K̂ = K)P (K̂ = K)

+ P (‖Σ̂B,K̂ − Σ‖ > t|K̂ 6= K)P (K̂ 6= K)

≤P (‖Σ̂B,K̂ − Σ‖ > t|K̂ = K) + P (K̂ 6= K)

≤E‖Σ̂B,K − Σ‖2

t2
+ P (K̂ 6= K).

(S2.17)

By the proof of Theorem 1 in Bickel and Levina [2008] and noticing

that σij = 0 for all |i− j| > K, we have

E‖Σ̂B,K−Σ‖2 ≤ C

(
K

log p

n
+K

(
log p

n

)1/2
)2

≤ C

(
K2 log p

n

)
. (S2.18)
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S2.6 The Proof of Theorem S1.2

The last inequality is obtained as log p
n
→ 0. Combining (S2.17) and (S2.20)

and letting t = Klog(p ∨ n)1/2−5γ/4nγ/4−1/2 for any γ > 0, we have

P (‖Σ̂B,K̂ − Σ‖ > t) ≤ C

(√
log(p ∨ n)5

n

)γ

+ P (K̂ 6= K).

Noting that
√

log(p∨n)5
n

= qn → 0 and P (K̂ 6= K) = op(1), it follows that

P (‖Σ̂B,K̂ − Σ‖ > t) = op(1).

Thus, we conclude that ‖Σ̂B,K̂ − Σ‖ = Op

(
Klog(p ∨ n)1/2−5γ/4nγ/4−1/2

)
.

This completes the proof.

S2.6 The Proof of Theorem S1.2

Proof. Similarly, we have

P (‖Σ̂T,K̂ − Σ‖ > t) ≤ E‖Σ̂T,K − Σ‖2

t2
+ P (K̂ 6= K). (S2.19)

By the proof of Theorem 2 in Cai et al. [2010] and the fact that σij =

0 for all |i− j| > K, we have

E‖Σ̂T,K − Σ‖2 ≤ C
K + log p

n
. (S2.20)
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S2.7 The Proof of Theorem S1.3

Letting t = (K+log p)1/2

log(p∨n)5α/4n1/2−α/4 for any α > 0, it follows that

P (‖Σ̂T,K̂ − Σ‖ > t) ≤ C

(√
log(p ∨ n)5

n

)α

+ P (K̂ 6= K) = op(1).

Then the result holds.

S2.7 The Proof of Theorem S1.3

Proof. Let

X̂j =

j−1∑
t=1

ajtXt = ZTj aj

where Zj = (X1, . . . ,Xj−1)
T and aj = (aj1, . . . , aj,j−1)

T the coefficients.

Each vector aTj can be computed as

aj = (Var (Zj))
−1 Cov (Xj,Zj) .

Let εj = Xj− X̂j, d
2
j = Var (εj) and let D = diag

(
d21, . . . , d

2
p

)
. By Cholesky

decomposition, we can have

Σp = (I − A)−1D
[
(I − A)−1

]T
,

Σ−1p = (I − A)TD−1(I − A).
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S2.7 The Proof of Theorem S1.3

Let Ak = Bk(A) and Dk be the diagonal matrix containing the correspond-

ing residual variances. Moreover, by Ãk and D̃k, we denote the empirical

versions of Ak and Dk. Therefore, we have

Ω̂K̂ − ΩK̂ =
(
I − ÃK̂

)
D̃−1
K̂

(
I − ÃK̂

)T
− (I − AK̂)D−1

K̂
(I − AK̂)T .

DefineA(1) =
[
A(3)

]T
= I−ÃK̂ , B(1) =

[
B(3)

]T
= I−AK̂ , A(2) = D̃−1

K̂
, B(2) =

D−1
K̂

, and then we have

‖A(1)A(2)A(3) −B(1)B(2)B(3)‖

≤
3∑
j=1

∥∥A(j) −B(j)
∥∥∏
k 6=j

∥∥B(k)
∥∥+

3∑
j=1

∥∥B(j)
∥∥∏
k 6=j

∥∥A(k) −B(k)
∥∥

+
3∏
j=1

∥∥A(j) −B(j)
∥∥ .

By the Lemma A.2 and Lemma A.3 in Bickel and Levina [2008], we have

3∑
j=1

∥∥A(j) −B(j)
∥∥∏
k 6=j

∥∥B(k)
∥∥ = Op

((
log p

n

)1/2
(K2 log p)2

n

)
,

3∑
j=1

∥∥B(j)
∥∥∏
k 6=j

∥∥A(k) −B(k)
∥∥ = Op

(
K2 (log p)2

n

(
1 +

(
log p

n

)1/2
))

,

3∏
j=1

∥∥A(j) −B(j)
∥∥ = Op

((
K2 (log p)2

n
+

(
log p

n

)1/2
))

.
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S2.7 The Proof of Theorem S1.3

Noting that log p
n
→ 0, we have ‖Ω̂K̂ − ΩK̂‖ = Op

(
K2 (log p)

2

n

)
. By similar

analysis with the proof of Theorem S1.1 and choosing t = K2 (log p)
2−β/4

n1−β/4 , we

can get

P (‖Ω̂K̂ − Ω‖ > t) = op(1).

This completes the proof.
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