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Supplementary Material

This file is organized as follows. We provide technical proofs in Section S1. Section S2 gives

a detailed description of the simulation settings in the main paper. Section S3 gives additional

numerical results for the main paper, and Section S4 discusses the posterior sampling algorithm.

S1 Proofs

S1.1 Preliminary results

Before getting to the proofs of the main theorems, we first present some preliminary lemmas

that helps to construct the proofs. First, we define

An = {θ ∈ Θn(K) : ∥θ − θ⋆∥2n > Mnεn(θ
⋆)}.
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S1. PROOFS

For our theoretical analysis, it will help to rewrite the posterior distribution Πn(An) as the ratio

Πn(An) = Nn(An)/Dn. The numerator and denominator are

Nn(An) =
∑
B

πn(B)

∫
An∩ΘB

Rn(θ
B)α Πn(dθ

B | B),

Dn =
∑
B

πn(B)

∫
ΘB

Rn(θ
B)α Πn(dθ

B | B),

where Rn(θ) = Ln(θ)/Ln(θ
⋆) is the likelihood ratio, ΘB is the column space of ZB , i.e., ΘB

consists of all n-dimensional vectors θB such that θB = ZBβB . For a properly chosen matrix

Z, Nn(An) and Dn can be rewritten in terms of βB , given B,

Nn(An) =
∑
B

πn(B)

∫
{βB∈R|B|(K+1):ZBβB∈An}

Rn(Z
BβB)α π̃n(β

B | B) dβB , (S1.1)

Dn =
∑
B

πn(B)

∫
R|B|(K+1)

Rn(Z
BβB)α π̃n(β

B | B) dβB . (S1.2)

For the given Z and Bθ⋆ , we let β⋆ be such that θ⋆ = ZBθ⋆β⋆ and let β⋆
s be its sth (K + 1)-

dimensional component. We also abbreviate Bθ⋆ by B⋆ and ε2n(θ
⋆) by ε2n. As discussed above,

B⋆ may not be unique, but certain features of B⋆ are determined, in particular, its size |B⋆|

which, in turn, determines other features like πn(B
⋆), etc.

Lemma 1. There exists a constant c = c(α, σ2,K) such that Dn ≳ πn(B
⋆)e−c|B⋆| for all

sufficiently large n.

Proof. Given that Dn is a sum of non-negative terms, it is straightforward to have

Dn > πn(B
⋆)

∫
R|B⋆|(K+1)

Rn(Z
B⋆

βB⋆

)α π̃n(β
B⋆

| B⋆) dβB⋆

.

The integral in the right-hand side of the above inequality can be further written as,

|B⋆|∏
s=1

∫
e
− α

2σ2 {∥YB⋆(s)−ZB⋆(s)β
B⋆

s ∥2−∥YB⋆(s)−ZB⋆(s)β
⋆
s∥2}

N(βB⋆

s | β̂B⋆

s , v(Z⊤
B⋆(s)ZB⋆(s))

−1) dβB⋆

s .

Direct calculation shows that the above quantity equals

e
α

2σ2 ∥ZB⋆(s)(β̂
B⋆

s −β⋆
s )∥2(

1 + αv
σ2

)− (K+1)|B⋆|
2 ≥

(
1 + αv

σ2

)− (K+1)|B⋆|
2 .
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S1. PROOFS

Therefore, Dn > πn(B
⋆)e−c|B⋆|, where c = (K+1)

2
log(1 + αv

σ2 ) > 0.

Lemma 2. Take q > 1 such that αq < 1. Then Eθ∗{Nn(An)} ≲ e−Mnrnε2n , for all large n, where

r = α(1− qα)/2σ2.

Proof. Towards an upper bound, we interchange expectation with the finite sum over B and

the integral over βB , the latter step justified by Tonelli’s theorem, so that

Eθ⋆{Nn(An)} =
∑
B

πn(B)

∫
{βB :ZBβB∈An}

Eθ⋆{Rn(Z
BβB)α π̃n(β

B | B)} dβB . (S1.3)

Next, we work with each of the B-dependent integrands separately. For q > 1 such that αq < 1,

define the Hölder conjugate p = q/(q − 1) > 1. Then Hölder’s inequality gives

Eθ⋆{Rn(Z
BβB)α π̃n(β

B | B)} ≤ E
1/q
θ⋆ {Rn(Z

BβB)αq}E1/p
θ⋆ {π̃n(β

B | B)p}.

On the set An, since αq < 1, the first term above is uniformly bounded by e−Mnrnε2n . To see

this, note that, for a general θ ∈ An, if p
n
θ denotes the joint density of Y under Eq (1.1) in the

main paper, and Dαq the Rényi αq-divergence of one normal distribution from another (e.g.,

Van Erven and Harremos, 2014, p. 3800), then

Eθ⋆{Rn(Z
BβB)αq} =

∫
{pnθB (y)}αq {pnθ⋆(y)}1−αq dy = e

−αq(1−αq)n

2σ2 ∥θB−θ⋆∥2n .

Then for the second term in the upper bound above, using prior in Eq (2.7) of the main paper,

we can have

E
1/p
θ⋆ {π̃n(β

B | B)p} =

|B|∏
s=1

E
1/p
θ∗ {Np(βB

s | β̂B
s , v(Z

⊤
B(s)ZB(s))

−1)}, (S1.4)

which is equivalent to

|B|∏
s=1

|Z⊤
B(s)ZB(s)|

1
2

(2πv)
K+1

2

E
1/p
θ⋆ (e−

pσ2

2v
Vs), (S1.5)
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where

Vs = σ−2∥PB(s)(ZB(s)β
B
s − YB(s))∥2,

is distributed as a non-central chi-square with (K + 1) degrees of freedom and non-centrality

parameter

λs = σ−2∥PB(s)(ZB(s)β
B
s − θ⋆B(s))∥2,

with PB(s) = ZB(s)(Z
⊤
B(s)ZB(s))

−1Z⊤
B(s). Using the familiar formula for the moment generating

function of non-central chi-square, we have

E
1/p
θ∗ (e−

pσ2

2v
Vs) = (1 + pσ2/v)−(K+1)/(2p)e

− 1
2(v/σ2+p)

λs
(S1.6)

For the integral ∫
R|B|(K+1)

E
1/p
θ⋆ {π̃n(β

B | B)p} dβB ,

if we plug (S1.4), (S1.5), and (S1.6) into the integrand, then it simplfies as

|B|∏
s=1

|Z⊤
B(s)ZB(s)|

1
2

(2πv)
K
2

(1 + pσ2

v
)
− K

2p

×
∫
RK+1

N(βB
s | (Z⊤

B(s)ZB(s))
−1Z⊤

B(s)θ
⋆
B(s), (

v
σ2 + p)(Z⊤

B(s)ZB(s))
−1) dβB

s .

By direct calculation, this can be written as ζ|B|, where ζ =
{ (1+pσ2/v)1/q

σ2

}(K+1)/2
. Therefore,

we have

Eθ⋆{Nn(An)} ≤ e−Mnrnε2n
∑
B

ζ|B|πn(B) = e−Mnrnε2n

n∑
b=1

ζbfn(b).

Given that fn(b) ∝ n−λ(b−1) and ζ is a positive constant, the summation term in the above

upper bound is uniformly bounded in n, proving the claim.

S1.2 Proof of Theorem 1

By Lemma 1, for sufficiently large n, we have

Eθ⋆{Πn(An)} ≤ ec|B
⋆|

πn(B⋆)
Eθ⋆{Nn(An)}.
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Plug in the bound from Lemma 2 to get

Eθ⋆{Πn(An)} ≲ ec|B
⋆|−Mnrnε2n

(
n−1

|B⋆|−1

)
fn(B⋆)

.

On the one hand, if |Bθ⋆ | = 1, then both nε2n and the ratio in the above display are constant.

Therefore, the upper bound is ≲ e−GMn → 0 for a constant G and Mn → ∞. On the other

hand, if |Bθ⋆ | ≥ 2, then nε2n is diverging, and we takeMn ≡M a fixed constant. Also, using the

formula for fn(|B⋆|) in Eq (2.5) of the main paper and the standard bound,
(
n
b

)
≤ eb log(en/b),

on the binomial coefficient, we get

Eθ⋆{Πn(An)} ≲ exp{−Mrnε2n + nε2n + λ|B⋆| logn+ c|B⋆|}. (S1.7)

The exponent on the right-hand side can be rewritten as

−nε2n
(
Mr − 1− λ|B⋆| logn

nε2n
− c|B⋆|

nε2n

)
.

Since |B⋆| = o(n), if we let nε2n = |B⋆| logn, the two ratios inside the parentheses in

the above display are upper bounded by a constant for sufficiently large n. Therefore, for a

sufficiently large M , there exists a constant G > 0, depending on the constants M , r, λ, and

c = c(α, σ2,K), such that the right-hand side of (S1.7) can be written as e−Gnε2n → 0.

S1.3 Proof of Theorem 2

It follows from Jensen’s inequality that ∥θ̂− θ⋆∥2n ≤
∫
∥θ− θ⋆∥2n Πn(dθ). So it suffices to bound

the expectation of the upper bound. Towards this, write Rn as A ∪ Ac, where A = An is as

defined above. Then

Eθ⋆

∫
∥θ − θ⋆∥2n Πn(dθ) ≤Mnε

2
n + Eθ⋆

∫
A

∥θ − θ⋆∥2n Πn(dθ). (S1.8)
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That remaining integral can be expressed as a ratio of numerator to denominator, where the

denominator Dn is just as in Lemma 1 and the numerator Ñn(A) is

Ñn(A) =

∫
A

∥θ − θ⋆∥2nRn(θ)
α Πn(dθ)

=
∑
B

πn(B)

∫
A∩ΘB

∥θB − θ⋆∥2nRn(θ
B)α πn(dθ

B | B).

Take expectation of the numerator to the inside of the integral and apply Hölder’s inequality

just like in the proof of Lemma 2. This gives the following upper bound on each B-specific

integral: ∫
A∩ΘB

∥θ − θ⋆∥2ne−h∥θ−θ⋆∥2E
1/p
θ⋆ {πn(dθ

B | B)p},

where h > 0 is a constant that depends only on α, σ2, and the Hölder constant q > 1. Since the

function x 7→ xe−hx is eventually monotone decreasing, for sufficiently large M we get a trivial

upper bound on the above display, i.e.,

Mnε
2
ne

−Mnhnε2n

∫
ΘB

E
1/p
θ⋆ {πn(dθ

B | B)p}.

The same argument as above bounds the remaining integral by ζ|B|, and the prior πn(B) takes

care of that contribution. In the case where |B⋆| = 1, where nε2n is bounded, choosingMn → ∞

will take care of the bound on Dn from Lemma 1. Similarly, for cases when nε2n → ∞, we can

use a sufficiently large constant Mn ≡ M to take care of the lower bound on Dn. Therefore,

the second term on the right-hand side of (S1.8) is also bounded by a multiple of Mnε
2
n.

S1.4 Proof of Theorem 3

Following arguments similar to those in the proof of Theorem 1, we get

Eθ⋆πn({B : |B| > C|B⋆|}) ≲ ec|B
⋆|

πn(B⋆)

n∑
b=C|B⋆|+1

ζbfn(b).
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From the formula (2.5) for fn in the main paper, factor out a common (ζn−λ)C|B⋆| from the

summation, which will be the dominant term. Indeed, like in the proof of Theorem 1, the ratio

in the above display is of order exp{nε2n + λ|B⋆| logn}. Then the right-hand side above is of

order

exp{nε2n + λ|B⋆| logn+ C|B⋆| log ζ − Cλ|B⋆| logn}.

The exponent can be written as

−|B⋆| logn
(
Cλ− λ− C log ζ

logn
− nε2n

|B⋆| logn

)
.

Since nε2n ≤ |B⋆| logn, it is clear that, if C is strictly larger than 1 + λ−1, then the term in

parentheses is bigger than some constant G > 0 for all large n.

S1.5 Proof of Theorem 4

Choose and fix any B⋆ ∈ B⋆. For a generic configuration B, we have

πn(B) ≤ πn(B)/πn(B⋆)

= πn(B)
πn(B⋆)

(1 + vα
σ2 )

(K+1)(|B⋆|−|B|)/2e
− α

2σ2 {
∑|B|

s=1 ∥(I−PB(s))YB(s)∥
2−

∑|B⋆|
s=1 ∥(I−PB⋆(s))YB⋆(s)∥

2}

= πn(B)
πn(B⋆)

(1 + vα
σ2 )

(K+1)(|B⋆|−|B|)/2e
− α

2σ2 {∥(In−PB)Y ∥2−∥(In−PB⋆
)Y ∥2}

(S1.9)

where PB = ZB(ZB⊤ZB)−1ZB⊤, PB⋆

= ZB⋆

(ZB⋆⊤ZB⋆

)−1ZB⋆⊤ and ZB is defined in Eq

(2.3) in the main paper. If B is a refinement of B⋆, then column space of ZB⋆

is a subset of

the column space of ZB , i.e., C(ZB⋆

) ⊆ C(ZB) and therefore, PB − PB⋆

is idempotent of rank

(K + 1)(|B| − |B⋆|) > 0. Thus, (S1.9) can be rewritten as,

πn(B) ≤ πn(B)

πn(B⋆)

(
1 +

vα

σ2

)(K+1)(|B|−|B⋆|)/2
e

α
2σ2 V

, (S1.10)
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where V = Y ⊤(PB −PB⋆

)Y and V/σ2 is distributed as a central chi-square with (K+1)(|B|−

|B⋆|) degrees of freedom. From the chi-square moment generating function and α < 1, we get

Eθ⋆{πn(B)} ≤ πn(B)

πn(B⋆)
ψ|B|−|B⋆|,

where ψ = ψ(α, v, σ,K) is a positive constant. For a suitable constant C as in Theorem 3, write

Bn = {B : B ⊐ B⋆, |B| ≤ C|B⋆|}. Then

{B : B ⊐ B⋆} ⊆ Bn ∪ {B : |B| > C|B⋆|}.

Since the right-most event has vanishing Πn-probability by Theorem 3, it follows that we can

focus just on the event Bn, and

Eθ⋆π
n(Bn) =

∑
B∈Bn

Eθ⋆π
n(B) ≤

∑
B∈Bn

πn(B)

πn(B⋆)
ψ|B|−|B⋆|.

Plug in the prior for B—which only depends on |B|—and simplify:

Eθ⋆{Πn(θ : Bθ ∈ Bn)} ≤
Cb⋆∑

b=b⋆+1

(
n−1
b⋆−1

)(
n−b⋆

b−b⋆

)(
n−1
b−1

) (ψn−λ)b−b⋆ ,

where b⋆ = |B⋆|. From (
n−1
b⋆−1

)(
n−b⋆

b−b⋆

)(
n−1
b−1

) =

(
b− 1

b⋆ − 1

)
≤ bb−b⋆ ,

and the assumption that b⋆ = o(nλ), we get that the summation on the right-hand side above

is upper-bounded by

Cb⋆∑
b=b⋆+1

(ψbn−λ)b−b⋆ ≤
Cb⋆∑

b=b⋆+1

(Cψb⋆n−λ)b−b⋆ ≲ e−λb⋆ logn, for all large n.

This argument can be duplicated for any B⋆ ∈ B⋆, and there are at most O(|B⋆|) many

equivalent block configurations, so we get

Eθ⋆π
n({B : B ⊐ B⋆ for some B⋆ ∈ B⋆}) ≲ |B⋆|e−λ|B⋆| logn → 0.

8



S1. PROOFS

S1.6 Proof of Theorem 5

Choose and fix any B⋆ ∈ B⋆. In light of Theorem 4, it suffices to show that

Eθ⋆π
n({B : B ̸⊒ B⋆}) → 0.

For a generic B ̸⊒ B⋆, according to (S1.9) we have

πn(B) ≤ πn(B)

πn(B⋆)

(
1 +

vα

σ2

)(K+1)(|B|−|B⋆|)/2
e

α
2σ2 Y ⊤(PB−PB⋆

)Y
.

We proceed with a proof for the piecewise constant (K = 0) case first, then describe how the

general K case is the same. Let θ be a piecewise constant signal corresponding to the block

configuration B. Then we can rewrite θ as Xη, where X is an n × n lower triangular matrix

with unit entries and

η = (θ1, θ2 − θ1, θ3 − θ2, . . . , θn − θn−1)
⊤.

It is easy to show that η is sparse. Let J = {1} ∪ {j : ηj ̸= 0}, then |J | = |B|. Let ηJ be the

|J |-vector containing the particular entries with their indices in J and XJ be the columns of X

corresponding to J . Then we can also write θ = XJηJ . Hence we can reformulate model (1.1)

in the main paper as

Y = Xη⋆ + σξ, ξ ∼ N(0, I). (S1.11)

Under this formulation, recovering block structure B⋆ is equivalent to identifying the non-

zero coefficients in η⋆, i.e., recovering J⋆. One basic observation is that PB is equal to PJ =

XJ(X
⊤
J XJ)

−1X−1
J . Then we can rewrite Y ⊤(PB − PB⋆

)Y as,

−∥(I − PJ)Xη
⋆∥2 − 2σξ⊤(I − PJ)Xη

⋆ + σ2ξ⊤(PJ − PJ⋆)ξ.

In addition, because (PJ⋆ −PJ∩J⋆) is positive definite, the right-most quadratic form above can

be bounded as follows,

ξ⊤(PJ − PJ⋆)ξ = ξ⊤(PJ − PJ∩J⋆)ξ − ξ⊤(PJ⋆ − PJ∩J⋆)ξ ≤ ξ⊤(PJ − PJ∩J⋆)ξ.
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Therefore, Y ⊤(PB − PB⋆

)Y can be bounded above by,

−∥(I − PJ)Xη
⋆∥2 − 2σξ⊤(I − PJ)Xη

⋆ + ξ⊤(PJ − PJ∩J⋆)ξ.

Note that the second and third terms in the above upper bound follow normal and chi-square

distributions respectively, and additionally (I − PJ)(PJ − PJ∩J⋆) = 0 implies independence.

Hence, using normal and chi-square moment generating functions we can have,

Eθ⋆ [e
α

2σ2 Y ⊤(PB−PB⋆
)Y

] ≤ (1− α)−
1
2
(|J⋆|−|J∩J⋆|)e

−α(1−α)

2σ2 ∥(I−PJ )Xη⋆∥2
.

Since

∥(I − PJ)Xη
⋆∥2 = ∥(I − PJ)XJ⋆∩Jcη⋆J⋆∩Jc∥,

if we let

δn = min
j∈J⋆∩{j>1}

|θ⋆j − θ⋆j−1|,

then

∥(I − PJ)Xη
⋆∥2 ≥ λmin

(
X⊤

J⋆∩JcXJ⋆∩Jc

)
∥η⋆J⋆∩Jc∥2

≥ λmin

(
X⊤

J⋆XJ⋆

)
δ2n(|J⋆| − |J⋆ ∩ J |).

Then we let

γn = min
j,j′∈J⋆,j ̸=j′

|j − j′|,

according to Lemma 3 below, ∥(I − PJ)Xη
⋆∥2 can be further lower bounded by,

γnδ
2
n(|J⋆| − |J⋆ ∩ J |)/4.

Therefore, if we let

γnδ
2
n ≥ 4Mσ2

α(1− α)
logn,

then

Eθ⋆{πn(B)} ≤ πn(B)

πn(B⋆)
ϕ|B⋆|−|B|(ωn−M )|J

⋆|−|J∩J⋆|, (S1.12)
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where ω = (1 − α)−1/2 and ϕ = (1 + vα
σ2 )

−1/2. Plug in the expressions for πn(B) and πn(B
⋆)

from Eq (2.5) and then sum over all B such that B ̸⊒ B⋆ to get

Eθ⋆π
n({B : B ̸⊒ B⋆)}) ≤

Cb⋆∑
b=1

b∧b⋆∑
t=1

(
b⋆

t

)(
n−b⋆

b−t

)(
n
b⋆

)(
n
b

) (ϕnλ)b
⋆−b(ωn−M )b

⋆−t,

where b⋆ = |B⋆| and the first sum is restricted to b ≤ Cb⋆ by Theorem 3. The ratio of binomial

coefficients can be bounded as(
b⋆

t

)(
n−b⋆

b−t

)(
n
b⋆

)(
n
b

) =

(
b

t

)(
n− b

b⋆ − t

)
≤ (n3)b∨b⋆−t.

Plug in this bound and split the sum over b into two cases: b ≤ b⋆ and b > b⋆. For the first

case, we have

b⋆∑
b=1

b∑
t=1

(ϕnλ)b
⋆−b(n3)b

⋆−t(ωn−M )b
⋆−t ≲

b⋆∑
b=1

(ϕn3+λ−M )b
⋆−b,

and the right-hand side vanishes since M > 3 + λ. Similarly, for the second case

Cb⋆∑
b=b⋆+1

b⋆∑
t=1

(ϕnλ)b
⋆−b(n3)b

⋆−t(ωn−M )b
⋆−t ≲ ωn3−M

Cb⋆∑
b=b⋆+1

(n3−λ)b−b⋆ ,

and if λ ≥ 3, then the sum is dominated by term n3−M . In either case, the upper bound

vanishes—actually the upper bound is O(n−1) because M > 4 + λ—which proves the claim for

the particular B⋆ ∈ B⋆. The above argument is not specific to any B⋆, so if we repeat the above

argument sum over all such B⋆ ∈ B⋆, then we get

∑
B⋆∈B⋆

Eθ⋆π
n({B : B ̸⊒ B⋆}) ≲ |B⋆|n−1 → 0.

Finally, since

1− Eθ⋆π
n(B⋆) =

∑
B⋆∈B⋆

Eθ⋆π
n({B : B ⊐ B⋆}) +

∑
B⋆∈B⋆

Eθ⋆π
n({B : B ̸⊒ B⋆}),

and first term on the right-hand side vanishes by Theorem 4 and the second term vanishes by

the argument above, we conclude that

Eθ⋆π
n(B⋆) → 1, n→ ∞.
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Next, we show that for general piecewise polynomial K ≥ 1, Eθ⋆ [Π
n(θ : Bθ ̸⊒ B⋆)] can be

bounded in a similar fashion. We define

X(K) =

IK
Ln−K

 , K = 1, . . . , n− 1,

where Ln−K is an (n−K)× (n−K)-dimensional lower triangular matrix with unit entries.

Now, let’s consider a generic degree-K piecewise polynomial signal θ with underlying block

configuration B, then θ can be written as Xη, where X = LnX
(1) · · ·X(K) and,

η =
(
(∆0θ)1, (∆

1θ)1, . . . , (∆
Kθ)1,∆

K+1θ
)
,

with ∆K being the Kth-order difference operator defined in Section 3.3 of the main paper. Note

that η is also sparse here, and if we let J = {1, . . . ,K+1}∪{j : ηj ̸= 0}, then |J | = (K+1)|B|.

Therefore, a similar result to (S1.12) can be obtained,

π(B) ≤ πn(B)

πn(B⋆)
ϕ(K+1)(|B|−|B⋆|)/2(ωn−M )|J

⋆|−|J∩J⋆|.

Then based on Lemma 3, using recursion, rest of the proofs can follow similar arguments in the

K = 0 case with

δn = min
j∈J⋆∩{j>K+1}

|ηj |,

and

γnδ
2
n ≥ 4K+1Mσ2

α(1− α)
logn.

S1.7 An eigenvalue bound

Lemma 3. Consider J = {j1, . . . , js} ⊂ {1, . . . , n}, let X be an n × n-dimensional lower tri-

angular matrix with unit entries and XS be the n × s-dimensional sub-matrix of X with the

columns corresponding to J , define

γ = min
1≤ℓ<k≤s

|jℓ − jk|,

12



S1. PROOFS

then the smallest eigenvalue of X⊤
S XS satisfies

λmin(X
⊤
S XS) > γ/4.

Proof. Without loss of generality, here and throughout we assume that j1 < · · · < js. It is

straightforward to observe that,

X⊤
S XS =



a1 a2
... as

a2 a2
...

...

· · · · · · ·
...

as · · · · · · as


,

with ai = n+1− ji, i = 1, . . . , s. According to Lemma 3 in Qian and Jia (2016), the inverse of

X⊤
S XS is tridiagonal, i.e.,

(X⊤
S XS)

−1 =



r11 r12

r21 r22 r23

r32 r33 r34

. . .
. . .

. . .

rs−1,s−2 rs−1,s−1 rs−1,s

rs,s−1 rs,s


where

rij =



1
a1−a2

i = j = 1

− 1
aj−1−aj

i = j − 1

− 1
aj−aj+1

i = j + 1

aj−1−aj+1

(aj−1−aj)(aj−aj+1)
1 < i = j < s

as−1

(as−1−as)(as)
i = j = s

0 otherwise.

13



S2. SIMULATION SETTING

For any vector u ∈ Rs×1,

u⊤(X⊤
S XS)

−1u =

s∑
i=1

riiu
2
i +

s−1∑
i=1

ri,i+1uiui+1 +

s−1∑
i=1

ri+1,iuiui+1

≤ max
i

|rii|
s∑

i=1

u2
i + (max

i
|ri,i+1|+max

i
|ri+1,i|)

s−1∑
i=1

|uiui+1|

Because
∑s−1

i=1 |uiui+1| ≤ 1
2

∑s−1
i=1 (u

2
i + u2

i+1) ≤
∑s

i=1 u
2
i ,

u⊤(X⊤
S XS)

−1u ≤ max
i

|rii|+max
i

|ri,i+1|+max
i

|ri+1,i|)
s∑

i=1

u2
i

≤ 4

γ

s∑
i=1

u2
i .

Thus, λmax{(X⊤
S X

⊤
S )−1} ≤ 4/γ, and therefore, λmin(X

⊤
S X

⊤
S ) ≥ γ/4.

S2 Simulation setting

We describe six different models for the true signal θ⋆ in the simulation study. The underlying

truth and the simulated data are depicted in Figure S1.

Model 1. Piecewise constant model:

θ⋆i = f1(i), for i = 1, . . . , n, n = 497,

where f1 is a piecewise constant function with |B⋆| = 7 as in Frick et al. (2014), p. 561; see,

also, Fryzlewicz (2014), Appendix B(2). See Figure S1(a). The data is generated by

Yi
ind∼ N(θ⋆i , 0.04), i = 1, . . . , n, n = 497.

Model 2. Piecewise constant model:

θ⋆i = f2(i), for i = 1, . . . , n, n = 1000,

where f2 is a piecewise constant function with equal block lengths and jump sizes. Here, δ(θ⋆) =

2.5, γ(θ⋆) = 50 and |B⋆| = 20. See Figure S1(b). Then the data is generated by

Yi
ind∼ N(θ⋆i , 0.25), i = 1, . . . , n, n = 1000.

14



S2. SIMULATION SETTING

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

(e) Model 5 (f) Model 6

Figure S1: Plots of the signal and a representative data set from each of the six models.
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S2. SIMULATION SETTING

Model 3. Piecewise linear model with continuous mean:

θ⋆i = f3(i), for i = 1, . . . , n, n = 1000,

where f3 is a piecewise linear function with continuous means (signal only with a change in its

slope); |B⋆| = 10; see Figure S1(c). Then the data is generated by

Yi
ind∼ N(θ⋆i , 0.25), i = 1, . . . , n, n = 1000.

Model 4. Piecewise linear model with jumps in mean:

θ⋆i = f4(i), for i = 1, . . . , n, n = 1000,

where f4 is a piecewise linear function with signal both changing in its slope and intercept;

|B⋆| = 10; see Figure S1(d). Then the data is generated by

Yi
ind∼ N(θ⋆i , 0.25), i = 1, . . . , n, n = 1000.

Model 5. Trigonometric wave:

θ⋆i = sin(i/100) + cos(i/33), for i = 1, . . . , n, n = 1000,

see Figure S1(e). Then the data is generated by

Yi
ind∼ N(θ⋆i , 0.04), i = 1, . . . , n, n = 1000.

Model 6. Doppler wave as in Tibshirani (2014), p. 298:

θ⋆i = sin(4n/i) + 1.5, for i = 1, . . . , n, n = 1000,

see Figure S1(f). Then the data is generated by

Yi
ind∼ N(θ⋆i , 0.04), i = 1, . . . , n, n = 1000.
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S3. ADDITIONAL NUMERICAL RESULTS

S3 Additional numerical results

We provide additional numerical results for simulation and data analysis sections.

Method Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Empirical Bayes 1.22 21.96 14.79 20.07 3.61 10.64

λ = 1.0 (0.07) (1.01) (0.47) (0.54) (0.09) (0.25)

Empirical Bayes 0.82 9.60 10.79 15.30 2.85 8.04

λ = 0.50 (0.05) (0.67) (0.33) (0.41) (0.09) (0.15)

Empirical Bayes 0.70 8.09 13.06 15.44 2.84 7.35

λ = 0.20 (0.03) (0.52) (0.44) (0.54) (0.07) (0.14)

Trend Filtering 1.52 22.94 6.85 29.99 1.26 45.22

(cross-validation) (0.04) (0.55) (0.18) (0.29) (0.04) (0.70)

Table S1: Squared error loss between θ̂ and θ⋆ across 100 replications. Tuning parameter

of trend filtering is selected by 5-fold cross-validation.
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S4. POSTERIOR SAMPLING ALGORITHM

Method P(B̂ = B⋆) P(B̂ ⊃ B⋆) Hamming Hausdorff E|B̂|

Empirical Bayes
0.03 0.03

4.14 3.86 7.00

λ = 1.0 (0.19) (0.40) (0.00)

Empirical Bayes
0.11 0.11

3.13 2.73 7.00

λ = 0.50 (0.18) (0.31) (0.00)

Empirical Bayes
0.19 0.19

2.39 2.57 7.01

λ = 0.20 (0.15) (0.41) (0.01)

Trend Filtering
0.05 0.28

3.27 17.99 8.77

(one std error) (0.17) (3.53) (0.13)

Table S2: Structure recovery results for Model 1 (|B⋆| = 7) across 100 replications. The

tuning parameter of trend filtering is chosen by one-standard-error rule.

S4 Posterior sampling algorithm

The posterior sampling can be achieved by the following steps.

1. At iteration t, given current block partition B(t), sample B′ ∼ q(· | B(t)).

2. Sample U ∼ Unif(0, 1), let B(t+1) = B′, if

U ≤ min
{
1,

πn(B′) q(B(t) | B′)

πn(B(t)) q(B′ | B(t))

}
;

otherwise, let B(t+1) = B(t).

3. Given B(t+1), obtain βB(t+1)

= (βB(t+1)

1 , . . . , βB(t+1)

|B| )⊤ via sampling

βB(t+1)

s ∼ NK+1(β̂
B(t+1)

s , σ2v
σ2+αv

{Z⊤
B(t+1)(s)ZB(t+1)(s)}

−1),

and then set θB
(t+1)

= ZB(t+1)

βB(t+1)

.
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S4. POSTERIOR SAMPLING ALGORITHM

Method P(B̂ = B⋆) P(B̂ ⊃ B⋆) Hamming Hausdorff E|B̂|

Empirical Bayes
0.02 0.02

5.80 2.20 20.00

λ = 1.0 (0.44) (0.56) (0.00)

Empirical Bayes
0.52 0.54

1.32 0.58 20.04

λ = 0.50 (0.24) (0.12) (0.03)

Empirical Bayes
0.14 0.74

2.26 13.78 21.58

λ = 0.20 (0.27) (1.38) (0.19)

Trend Filtering
0.00 0.96

25.41 20.76 45.36

(one std error) (0.63) (0.58) (0.63)

Table S3: Structure recovery results for Model 2 (|B⋆| = 20) across 100 replications.

The tuning parameter of trend filtering is chosen by one-standard-error rule.

Repeating this processM times and discarding the firstm burn-in iterations, we obtain a sample

of (B(m+1), θB
(m+1)

), . . . , (B(M), θB
(M)

) from the joint posterior πn(B, θB). Then posterior

mean of θ can be approximated by (M −m)−1∑M
i=m+1 θ

B(i)

. Credible sets for any real-valued

function g(θ) of θ can be obtained by obtaining quantiles of the samples g(θB
(i)

), i = m +

1, . . . ,M. For block configuration recovery, the maximum a posteriori (MAP) estimator for B

can be readily found by evaluating πn, up to the normalizing constant, using formula (2.12), for

each Monte Carlo sample B(i) and returning the maximizer. For simplicity, we use a symmetric

proposal distribution q(B′ | B) for the above algorithm, i.e., in each iteration, there is 0.5

probability for a “jump location” to vanish and 0.5 probability for a non-jump location to

become a “jump”.
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(a) Model 4: Empirical Bayes (b) Model 4: Trend filtering

(c) Model 5: Empirical Bayes (d) Model 5: Trend filtering

(e) Model 6: Empirical Bayes (f) Model 6: Trend filtering

Figure S2: Plots of the empirical Bayes and trend filtering estimates of the signal for

representative cased under Models 4–6.
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Figure S3: Plots of δ⋆ 7→ P(B̂ = B⋆) (exact) and δ⋆ 7→ P(B̂ ⊃ B⋆) (cover) in Model 2,

with δ⋆ ranging over [0.5, 4.0], all the other conditions fixed, for the emprical Bayes (EB)

and trend filtering (TF) methods.

(a) Plot of δ⋆ vs. Hamming Distance (b) Plot of δ⋆ vs. Hausdorff Distance

Figure S4: Results of Model 2 with δ⋆ ranging over [0.5, 4.0], with all the other conditions

fixed, for the empirical Bayes (EB) and trend filtering (TF) methods.
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Figure S5: Simulated data (gray) from a distribution with a monotone piecewise constant

mean (red) and the projection posterior mean (black).
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