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S1 Proof of Lemma 1

In this section, we provide proof of Lemma 1 from Section 3.1 in the main

paper. For clarity, the lemma is restated here. To this end, let θ = (β,γ)

and recall that S(θ) = [S>L(θ),S>
D̃

(θ)]> denotes the vector of gradient equa-

tions with SL(θ) the gradient vector of the corrected L2 norm L(θ) as de-

fined in Section 2.2, and with SD̃(θ) the gradient of the phase function-

based statistic D̃(θ) as defined in Section 2.3 of the main paper. Let

S0(θ) = limn→∞ E[S(θ)] denote the limiting expectation of the gradient

equations. Subsequently, define

Q0(θ) = S>0 (θ)Ω−1S S0(θ).

Lemma 1 now follows.

Lemma 1. Assume that all variables in the model have at least two finite

moments. For θ ∈ Θ ⊆ Rp+q+1, the function Q(θ)
p→ Q0(θ) uniformly.

The proof of Lemma 1 relies on establishing the conditions established

in Lemma 2.9 of Newey and McFadden (1994). Specifically, the proof first
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shows that function Q converges in probability to Q0 for a fixed value of

θ and is continuously differentiable for all θ ∈ Θ. Then, it establishes a

Lipschitz condition that bounds the difference between Q at two arbitrary

parameter values. This Lipschitz condition is crucial to show that Q con-

verges uniformly in probability to Q0. Finally, the proof shows that S(θ)

and ∇S(θ) = ∂S(θ)/∂θ converge uniformly to their limiting expected val-

ues. Thus, the result from Newey & McFadden applies and the required

uniform convergence of Q to Q0 follows.

Proof of Lemma 1. Consider the function Q(θ) = S>(θ)Ω−1S S(θ) and

a fixed value θ ∈ Θ. Then, Q(θ)
P→ Q0(θ) by Slutsky’s theorem and the

continuous mapping theorem. Moreover, Q(θ) is continuously differentiable

for all θ ∈ Θ. Thus, by the mean value theorem, for θ1,θ2 ∈ Θ, we have

Q(θ1)−Q(θ2) = ∇Q(θz)(θ1 − θ2),

where∇Q(θ) = ∂Q/∂θ and θz is a linear interpolant of θ1 and θ2. Applying

the Cauchy-Schwarz inequality, we obtain

|Q(θ1)−Q(θ2)| ≤ ‖∇Q(θz)‖‖θ1 − θ2‖.

Subsequently, uniform convergence in probability will follow by by Lemma

2.9 of Newey and McFadden (1994) if we can establish the the Lipschitz

condition that for some constants α > 0 and a sequence Bn = Op(1) such

that for θ1 and θ2, we have

|Q(θ1)−Q(θ2)| ≤ Bn‖θ1 − θ2‖α. (S1.1)

Observe that equation (S1.1) will hold for α = 1 if ‖∇Q(θz)‖ = Op(1).

Now, by definition ∇Q(θ) = 2[∇S(θ)]>Ω−1S S(θ) with ∇S(θ) = ∂S(θ)/∂θ

a (p+q+1)×(p+q+1) matrix of partial derivatives. By another application
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of the Cauchy-Schwarz inequality, we obtain

‖∇Q(θz)‖ ≤ cS‖∇S(θz)‖‖S(θz)‖ ≤ cS sup
θ∈Θ
‖∇S(θ)‖ · sup

θ∈Θ
‖S(θ)‖

where cS is a constant depending only on ΩS and not on the arguments θ.

Thus, it remains only to be shown that S(θ) and ∇S(θ) converge uniformly

to E[S(θ)] and E[∇S(θ)].

To this end, consider the components SL(θ) and ∇SL(θ). These func-

tions are continuous for all θ ∈ Θ. Furthermore, provided the random

variables (Xj,Zj), Uj, and εj used to define Q have finite variances, there

exists dominating functions dL,1(θ) and dL,2(θ) such that ‖SL(θ)‖ ≤ dL,1(θ)

and ‖∇SL(θ)‖ ≤ dL,2(θ) for all θ ∈ Θ by a uniform law of large numbers

as in Hoadley (1971) or Pötscher and Prucha (1989).

Next, consider the component SD̃(θ) and ∇SD̃(θ). Again, these func-

tions are continuous for all θ ∈ Θ. While slightly tedious, one can also verify

that a dominating function dD̃,1(θ) exists for SD̃(θ) provided (Xj,Zj) and

Uj have finite first moments. Similarly, a dominating function dD̃,2(θ) exists

for ∇SD̃(θ) provided (Xj,Zj) and Uj have finite second moments. Again,

by the same uniform law of large numbers, uniform convergence is achieved.

Consequently, we have supθ∈Θ ‖S(θ)‖ = Op(1) and supθ∈Θ ‖∇S(θ)‖ =

Op(1), the conditions of Newey and McFadden (1994) are satisfied, and

the required uniform convergence of Q(θ) to Q0(θ) follows.
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S2 Proof of Theorem 1

This section presents the proof of Theorem 1 from Section 3.1 in the main

paper. For clarity, the theorem is restated here.

Theorem 1. Consider the heteroscedastic linear EIV model defined in

Equation (2.1) of the main paper. Assume Conditions C1, C3, and C5

from Section 2.1 hold. Furthermore, assume that all variables in the model

have at least two finite moments. Finally, assume the weights qj used for

constructing the weighted empirical phase function in (2.4) satisfy maxj qj =

O(n−1). Then, the estimator obtained by minimizing Q(θ) = S>(θ)Ω−1S S(θ)

is consistent for true value θ0 = (β0,γ0).

As Q0(θ) is a positive definite quadratic form in terms of S0(θ), the

global minimum occurs at a point θ∗ if and only if S0(θ
∗) = 0 for a unique

value of θ∗. The proof of Theorem 1 thus relies on showing that Q0(θ), the

uniform-in-probability limit of Q(θ), has a unique global minimum at the

true parameter values θ0 due to S0(θ) = 0 only when θ = θ0. Throughout

the proof, for any random variable V , we let φV (t) denote its characteristic

function. For any complex number z, let Re(z) and Im(z) be its real and

imaginary parts, respectively.

Proof of Theorem 1. By Lemma 1, the GMM objective function Q(θ)

converges uniformly in probability to Q0(θ). For consistency of the es-

timators obtained by minimizing Q(θ), it suffices to establish that limit-

ing function Q0(θ) has a unique global minimum at the true parameter

θ0 = (β0,γ0). This proof will separately consider the L2 norm and phase

function components contributing to Q(θ). Particularly, we will prove the

two following statements:
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Statement 1: The first p+ q+1 elements of S0(θ), which correspond to

the estimating equations from the corrected L2 norm, has a unique solution

at θ0.

Statement 2: θ0 is always a solution to the last p + q + 1 elements

of S0(θ), which correspond to the estimating equations from the phase

function distance D̃.

Given the two previous statements, Theorem 1 will follow immedi-

ately. Indeed, these two statements imply that θ0 is the unique solution

for S0(θ) = 0 as a whole. This also establishes that Q0(θ0) = 0, meaning

Q0(θ) has a unique global minimum of zero at θ0. As a result, the estimator

θ̂ that minimizes Q(θ) is consistent for θ0.

Hence it remains to prove the two statements, and we will do it in two

separate subsections.

S2.1 Proof of Statement 1

Consider first the corrected L2 norm function with estimating equations

SL(θ) = [SL,β(θ)>,SL,γ(θ)>]> as defined in equation (2.3) of the main

paper with

SL,β(θ) = − 2

n

n∑
j=1

Wj

(
yj −W>

j β − Z>j γ
)
− 2

n

n∑
j=1

1

nj
Σjβ,

SL,γ(θ) = − 2

n

n∑
j=1

Zj

(
yj −W>

j β − Z>j γ
)
.
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The expected values E[SL,β(θ)] and E[SL,γ(θ)] are found by evaluating the

conditional expectations of the component summands. For SL,β(θ), we have

E
[
Wj

(
yj −W>

j β − Z>j γ
)∣∣∣Xj,Zj

]
= E

[(
Xj + Uj

)(
X>j β0 + Z>j γ0 + εj −X>j β − Z>j γ −U>j β

)∣∣∣Xj,Zj

]
(i)
= XjX

>
j

(
β0 − β

)
+ XjZ

>
j

(
γ0 − γ

)
− n−1j Σjβ,

where step (i) follows from the independence of Uj and (Xj,Zj), as well as

noting that E
[
UjU

>
j

]
= n−1j Σj. Similarly, for SL,γ(θ), we have

E
[
Zj

(
yj −W>

j β − Z>j γ
)∣∣∣Xj,Zj

]
= ZjX

>
j

(
β0 − β

)
+ ZjZ

>
j

(
γ0 − γ

)
.

Letting (X,Z) denote an independent copy of (Xj,Zj), we have

E[SL,β(θ)] = −2 E
[
XX>

](
β0 − β

)
− 2 E

[
XZ>

](
γ0 − γ

)
E[SL,γ(θ)] = −2 E

[
ZX>

](
β0 − β

)
− 2 E

[
ZZ>

](
γ0 − γ

)
.

As a consequence of Lemma 1, SL,β(θ) and SL,γ(θ) converge uniformly to

E[SL,β(θ)] and E[SL,γ(θ)], the first p + q + 1 components of S0(θ). It is

straightforward to see that the corresponding system of equations

E[SL,β(θ)] = 0 and E[SL,γ(θ)] = 0

has a unique solution at θ = θ0 = (β0,γ0).

S2.2 Proof of Statement 2

Consider next the phase function-based criterion D̃(θ) directly. From Lemma

1, we have the uniform convergence of D̃(θ) to a limiting function D0(θ).
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We will now evaluate this limiting function. Recall that

D̃(θ) =

∫ t∗

0

(
Cy(t)

[
n∑
j=1

qj sin
{
t
(
W>

j β + Z>j γ
)}]

− Sy(t)

[
n∑
j=1

qj cos
{
t
(
W>

j β + Z>j γ
)}])2

Kt∗(t)dt. (S2.2)

Let V0 = X>β0 + Z>γ0 and Y = V0 + ε. For arbitrary t, by the weak law

of large numbers,

Cy(t) =
1

n

n∑
j=1

cos(yjt)
p→ E [cos(Y t)] = Re[φY (t)] = Re[φV0(t)]φε(t),

where the last equality follows upon noting that ε has a real-valued char-

acteristic function. Similarly, Sy(t)
p→ Im[φV0(t)]φε(t). Furthermore, noting

that for any θ, the random variables sin
[
t(W>

j β+Z>j γ)
]

and cos
[
t(W>

j β+

Z>j γ)
]

are bounded, and subsequently have finite variances. By a general-

ized weak law of large numbers,

n∑
j=1

qj sin
{
t
(
W>

j β + Z>j γ
) } p→ E

[
n∑
j=1

qj sin
{
t
(
W>

j β + Z>j γ
)}]

.

Letting Vj(β,γ) = X>j β + Z>j γ, we have

E
[
sin
{
t
(
W>

j β + Z>j γ
)}]

= Im
{
φVj(β,γ)(t)

}
φU>j β

(t),

where we make use of the fact that U>j β has a symmetric distribution

about zero and hence a real-valued characteristic function. Since (Xj,Zj)

are iid by Condition C1, the random variables Vj(β,γ), j = 1, . . . , n are

also iid and have a common characteristic function φV (β,γ)(t) = φVj(β,γ)(t)

for j = 1, . . . , n. As a consequence, we have

E

[
n∑
j=1

qj sin
{
t
(
W>

j β + Z>j γ
)}]

= Im
{
φV (β,γ)(t)

}( n∑
j=1

qjφU>j β
(t)

)
.
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Similarly,

E

[
n∑
j=1

qj cos
{
t
(
W>

j β + Z>j γ
)}]

= Re
{
φV (β,γ)(t)

}( n∑
j=1

qjφU>j β
(t)

)
.

Letting h(t,β) = φε(t)
2
[∑n

j=1 qjφU>j β
(t)
]2

, and recalling the established

uniform convergence for (β,γ) ∈ Θ, the statistic D̃(θ) converges uniformly

to

D0(θ) =

∫ t∗

0

[
Re {φV0 (t)} Im

{
φV (β,γ)(t)

}
− Im {φV0(t)}Re

{
φV (β,γ)(t)

} ]2
h(t,β)Kt∗(t)dt

=

∫ t∗

0

[
Im{φV0−V (β,γ)(t)}

]2
h(t,β)Kt∗dt,

where random variables V0 and V (β,γ) are independent. Note that

Im
{
φV0−V (β,γ)(t)

}
= 0 for all t ∈ R

if and only if the distribution of V0−V (β,γ) is symmetric about 0. When

Condition C4 holds, this is only true for θ = θ0 = (β0,γ0). On the other

hand, when Condition C4 does not hold, D0(θ) may have infinitely many

global minima, but one of those minima still occurs at θ = θ0.

We conclude by noting that D̃(θ) is continuous, as is the gradient vector

∇D̃(θ) = ∂D̃(θ)/∂θ. From Lemma 1, it subsequently follows that ∇D̃(θ)

also converges uniformly to ∇D0(θ). Thus, ∇D0(θ0) = 0, even though

this is not a unique solution to this system of equations. Note also that

∇D0(θ0) represents the last p+ q + 1 elements of S0(θ). The proof is now

complete.
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S3 Calculating the Quasi-Likelihood Weights

The quasi-likelihood weights are defined in Section 3.2 of the main paper

to be the minimizer of the L2 discrepancy

L(q) =
n∑
j=1

(Wj − µ̂q)>
(
Σx + n−1j Σj

)−1
(Wj − µ̂q)>,

where µ̂q =
∑n

j=1 qjWj, subject to qj ≥ 0, j = 1, . . . , n and
∑n

j=1 qj = 1.

To find the minimizer, let Ωj = Σx+n−1j Σj for j = 1, . . . , n. Some algebraic

manipulation gives

L(q) =
n∑
j=1

W>
j Ω−1j Wj − µ̂>q

(
n∑
j=1

Ω−1j Wj

)

−

(
n∑
j=1

W>
j Ω−1j

)
µ̂q + µ̂>q

(
n∑
j=1

Ω−1j

)
µ̂q.

Note that L(q) is a function of q only through µ̂q. To calculate the weights,

we define the function D(q) to be only the terms in L(q) involving µ̂q, and

also introducing two Lagrange-multiplier type terms. The first of these

ensures the weights qj sum to 1, while the second ensures a numerically

stable solution by constraining the squared differences between the qj. The

resulting function to be minimized is

D(q, λ) = −µ̂>q

(
n∑
j=1

Ω−1j Wj

)
−

(
n∑
j=1

W>
j Ω−1j

)
µ̂q + µ̂>q

(
n∑
j=1

Ω−1j

)
µ̂q

+2λ

(
n∑
j=1

qj − 1

)
+ γ

∑
j,k

(qj − qk)2.

This function is minimized over (q, λ), while γ is a user-specified constant

ensuring a numerically stable solution. Now, defining

A1 =
n∑
j=1

Ω−1j Wj and A2 =
n∑
j=1

Ω−1j
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the target function can be written in the convenient form

D(q, λ) = −2µ̂>q A1 + µ̂>q A2µ̂q + 2λ

(
n∑
j=1

qj − 1

)
+ γ

∑
i,j

(qi − qj)2.

This function is quadratic in (q, λ) with a global minimum that can be

found by solving a linear system of equations. Taking partial derivatives of

with respect to the qk, for k = 1, . . . , n, we have estimating equations

∂D

∂qk
= −2V>k A1 + 2V>k A2µ̂q + 2λ+ 2γ

∑
j 6=k

(qk − qj) = 0.

Here, Vk denotes a n× 1 column vector of zeros, with the kth entry equal

to 1. Writing these estimating equations explicitly in terms of the weights

q gives

−V>k A1 +
n∑
j=1

qj
(
V>k A2Vj

)
+ λ+ γ

∑
j 6=k

(qk − qj) = 0, k = 1, . . . , n.

The minimizer of D(q, λ) is found by solving the linear system



V>1 A2V1 + (n− 1)γ V>1 A2V2 − γ · · · V>1 A2Vn − γ 1

V>2 A2V1 − γ V>2 A2V2 + (n− 1)γ · · · V>2 A2Vn − γ 1
...

...
. . .

...
...

V>nA2V1 − γ V>nA2X2 − γ · · · V>nA2Vn + (n− 1)γ 1

1 1 · · · 1 0





q1

q2
...

qn

λ


=



V>1 A1

V>2 A1

...

V>nA1

1


.

Numerical exploration suggests the solution q̂ of this system, which

is easily obtained numerically, is fairly robust with regards to the specific

choice of γ. In a simulation study not reported here, the choices γ = 1/n

and γ = log(n) resulted in nearly identical estimators of the observation-

specific weights. Furthermore, any value of γ > 0 resulted in a numerically

stable system to solve. We therefore use γ = 1/n in the remainder of the

paper.
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S4 Additional Simulation Results

S4.1 Simulation for simple linear EIV models

In this section, we report a set of simulation results for the simple errors-

in-variables model yj = γ + βXj + εj, Wjk = Xj + Ujk for j = 1, . . . , n

and k = 1, . . . , nrep. In this setting, the true covariates Xj are generated

from the half-normal distribution scaled to have variance 1, i.e. Xj
iid∼

(1− 2/π)−1/2
∣∣N(0, 1)

∣∣. Three scenarios are considered for the distribution

of the measurement error terms, namely normal, Ujk ∼ N(0, σ2
j ), Student’s

t with 2.5 degrees of freedom, Ujk ∼ σj/
√

5 t2.5, and a contaminated normal,

Ujk ∼ σj/
√

10.9{0.9N(0, 1) + 0.1N(0, 102)}. In each scenario, the Ujk are

generated independently, have mean 0, and are scaled to have Var(Ujk) = σ2
j

for k = 1, . . . , nrep. In all the three scenarios, the measurement error vari-

ances σ2
j are generated from the uniform distribution nrep × U(0.2, 1.5), so

the signal-to-noise ratio Var(Xj)/Var(Uj) for the averaged replicate mea-

surement error Uj ranges from 2/3 (fairly weak signal) to 5 (fairly strong

signal). The true intercept and slope are set to be γ00 = 2 and β = 1,

respectively. The regression error εj’s are generated to match the distribu-

tion of the measurement error in each scenario and with constant variance

σ2
ε = 0.25.

For each generated sample, we compute the same set of estimators and

used the same criterion det(MSErob) as described in Section 4.2 of the main

paper. Note that in the simple linear EIV model, the two heteroscedas-

tic weighting schemes (minimax and quasi-likelihood) result in the same

estimates. Table S1 summarizes the results.

It comes as no surprise that the naive estimator has the worst per-

formance among the estimators considered. The large values observed
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Table S1: Simple Linear EIV model performance naive OLS (Naive), moment-corrected

(MC), and GMM estimators with equal (Equal), minimax (MM) and quasi-likelihood

(QL) weights with nrep ∈ {2, 3} as measured by det(1000×MSErob).

U n nrep = 2 nrep = 3

Naive MC GMM Naive MC GMM

Equal QL Equal QL

Normal 250 381.98 29.58 26.80 25.80 397.80 28.47 25.08 25.24

500 181.67 9.44 6.21 6.65 160.34 8.13 6.52 6.10

1000 88.78 2.13 1.63 1.56 90.83 1.80 1.40 1.40

t2.5 250 263.14 20.89 10.56 8.74 322.03 17.25 9.32 7.99

500 128.75 5.66 2.29 1.90 143.20 3.75 2.05 1.60

1000 87.26 1.44 0.52 0.42 72.70 1.27 0.49 0.36

Cont.Normal 250 19.96 22.19 2.18 1.97 20.05 12.25 1.94 1.26

500 44.30 15.28 0.98 0.66 46.25 11.49 0.90 0.48

1000 98.12 14.27 0.75 0.48 90.87 12.58 0.66 0.37

demonstrate the consequences of ignoring measurement errors when they

are present. When considering the various corrected estimators, the GEE

estimators outperform the moment-corrected approach regardless of the

weighting scheme used. The improvement of GMM estimators over moment

correction is especially pronounced in contaminated normal error scenario,

with the t2.5 error scenario also showing some large decreases in estima-

tion error. These cases illustrate the value of combining moment correction

with the phase function-based approach. When comparing the two GMM

weighting schemes, the estimator with quasi-likelihood weights also outper-

forms the equal weights estimator in almost all cases. The only exceptions

occur under the normal measurement error model, where equal weighting
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in two instances performs better than quasi-likelihood weighting.

S4.2 Additional results for multiple linear EIV models

In this section, we summarize simulation results equivalent to those in Sec-

tion 4.2 of the main paper. Tables S2 through S4 are analogous to Tables

1 through 3, but with nrep = 3 whereas the main paper presents results for

nrep = 2. For greater specificity regarding the simulation configurations,

see the descriptions in Section 4.2 of the main paper. We note here here

that similar conclusions can be drawn for the case with nrep = 3 replicates.

Specifically, when the measurement error follows a t2.5 or contaminated

normal distribution, the GMM estimators outperform moment correction.

On the other hand, when the measurement error follows a normal distri-

bution, there isn’t a clear preference for either the moment corrected or

GMM estimators, each in turn outperforming the other. Finally, Table S5

is analogous to Table 4 of the main paper, showing the accuracy with which

the standard error is estimated for the model parameters.
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Table S2: Setting I performance of uncontaminated OLS (True), naive OLS (Naive),

moment-corrected (MC), and GMM estimators with equal (Equal), minimax (MM) and

quasi-likelihood (QL) weights with nrep = 3 as measured by det(1000×MSErob).

R U n True Naive MC GMM

Equal MM QL

ρ = 0 Normal 250 0.010 14.237 1.565 2.082 2.023 2.087

500 0.001 3.385 0.188 0.182 0.180 0.180

1000 0.000 0.944 0.028 0.029 0.031 0.030

t2.5 250 0.012 20.132 1.827 0.967 0.805 0.802

500 0.001 4.778 0.108 0.075 0.072 0.071

1000 0.000 1.364 0.018 0.014 0.012 0.012

Cont.Normal 250 0.009 13.100 1.009 0.853 0.650 0.676

500 0.001 3.744 0.128 0.100 0.073 0.080

1000 0.000 1.036 0.017 0.015 0.012 0.013

ρ = 0.5 Normal 250 0.009 34.094 2.511 3.097 2.892 2.771

500 0.001 6.323 0.286 0.252 0.274 0.253

1000 0.000 1.715 0.042 0.042 0.044 0.042

t2.5 250 0.008 39.974 2.152 1.134 1.004 1.129

500 0.001 8.377 0.166 0.105 0.108 0.111

1000 0.000 3.272 0.027 0.020 0.017 0.019

Cont.Normal 250 0.009 41.149 2.271 1.761 1.400 1.475

500 0.001 10.698 0.311 0.241 0.157 0.191

1000 0.000 2.413 0.035 0.027 0.019 0.023
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Table S3: Setting II performance of uncontaminated OLS (True), naive OLS (Naive),

moment-corrected (MC), and GMM estimators with equal (Equal), minimax (MM) and

quasi-likelihood (QL) weights with nrep = 3 as measured by det(1000×MSErob).

R U n True Naive MC GMM

Equal MM QL

ρ = 0 Normal 250 0.001 34.108 2.509 2.777 2.673 2.403

500 0.000 1.716 0.096 0.108 0.122 0.108

1000 0.000 0.089 0.002 0.003 0.003 0.003

t2.5 250 0.002 13.080 1.388 1.133 0.814 0.746

500 0.000 2.394 0.051 0.042 0.036 0.034

1000 0.000 0.255 0.002 0.001 0.002 0.001

Cont.Normal 250 0.001 18.461 1.571 1.483 1.460 1.041

500 0.000 1.495 0.055 0.055 0.055 0.036

1000 0.000 0.057 0.001 0.001 0.001 0.001

ρ = 0.5 Normal 250 0.001 51.039 9.331 14.770 18.866 14.313

500 0.000 4.915 0.234 0.266 0.291 0.257

1000 0.000 0.336 0.009 0.010 0.011 0.011

t2.5 250 0.002 92.843 6.001 3.647 2.989 2.726

500 0.000 5.910 0.143 0.105 0.104 0.090

1000 0.000 0.648 0.006 0.004 0.003 0.003

Cont.Normal 250 0.001 60.581 4.318 3.805 3.496 2.731

500 0.000 4.936 0.150 0.149 0.128 0.094

1000 0.000 0.296 0.005 0.004 0.004 0.003
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Table S4: Setting III performance of uncontaminated OLS (True), naive OLS (Naive),

moment-corrected (MC), and GMM estimators with equal (Equal), minimax (MM) and

quasi-likelihood (QL) weights with nrep = 3 as measured by det(1000×MSErob).

R U n True Naive MC GMM

Equal MM QL

ρ = 0 Normal 250 0.001 14.862 1.997 1.972 1.964 1.976

500 0.000 0.789 0.043 0.043 0.043 0.043

1000 0.000 0.042 0.001 0.001 0.001 0.001

t2.5 250 0.001 13.456 1.132 1.087 0.978 1.056

500 0.000 0.837 0.022 0.022 0.020 0.020

1000 0.000 0.118 0.001 0.001 0.001 0.001

Cont.Normal 250 0.001 21.877 2.346 2.379 2.159 2.282

500 0.000 1.116 0.053 0.053 0.049 0.052

1000 0.000 0.055 0.002 0.002 0.001 0.001

ρ = 0.5 Normal 250 0.001 51.724 4.557 4.554 4.543 4.555

500 0.000 3.059 0.145 0.145 0.145 0.145

1000 0.000 0.180 0.005 0.005 0.005 0.005

t2.5 250 0.001 32.805 2.819 2.777 2.470 2.635

500 0.000 2.937 0.081 0.076 0.069 0.070

1000 0.000 0.354 0.003 0.003 0.003 0.003

Cont.Normal 250 0.001 44.184 4.592 4.594 4.243 4.462

500 0.000 3.465 0.149 0.149 0.135 0.145

1000 0.000 0.205 0.004 0.005 0.004 0.004



S4. ADDITIONAL SIMULATION RESULTS

Table S5: Monte Carlo standard errors (MC-SE) and average of average of the bootstrap

plug-in standard errors (Avg-SE) for the GMM estimators with the minimax weighting

scheme in simulation settings I and III with nrep = 3 replicates and ρ = 0.5.

Setting U Coeff n = 500 n = 1000

MC-SE Avg-SE MC-SE Avg-SE

II Normal β̂1 0.030 0.029 0.021 0.021

β̂2 0.028 0.029 0.022 0.021

γ̂00 0.043 0.044 0.031 0.031

t2.5 β̂1 0.023 0.026 0.022 0.019

β̂2 0.027 0.025 0.019 0.019

γ̂00 0.035 0.036 0.027 0.025

IV Normal β̂1 0.036 0.033 0.021 0.022

β̂2 0.032 0.030 0.021 0.022

γ̂00 0.061 0.049 0.037 0.035

γ̂1 0.026 0.027 0.020 0.019

γ̂2 0.028 0.028 0.019 0.019

t2.5 β̂1 0.029 0.032 0.020 0.021

β̂2 0.027 0.027 0.020 0.020

γ̂00 0.043 0.046 0.032 0.030

γ̂1 0.028 0.026 0.022 0.018

γ̂2 0.029 0.025 0.016 0.018
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