Identifying the Most Appropriate Order

for Categorical Responses

Tianmeng Wang and Jie Yang

University of Illinois at Chicago

Supplementary Material

Proof. of Theorem 2.1: The \log-likelihood of the model at $\boldsymbol{\theta}_{1}$ with permuted responses $\mathbf{Y}_{i}^{\sigma_{1}}$ is

$$
l_{1}\left(\boldsymbol{\theta}_{1}\right)=\sum_{i=1}^{m} \log \left(n_{i}!\right)-\sum_{i=1}^{m} \sum_{j=1}^{J} \log \left(Y_{i \sigma_{1}(j)}!\right)+\sum_{i=1}^{m} \sum_{j=1}^{J} Y_{i \sigma_{1}(j)} \log \pi_{i j}\left(\boldsymbol{\theta}_{1}\right)
$$

while the \log-likelihood at $\boldsymbol{\theta}_{2}$ with $\mathbf{Y}_{i}^{\sigma_{2}}$ is

$$
l_{2}\left(\boldsymbol{\theta}_{2}\right)=\sum_{i=1}^{m} \log \left(n_{i}!\right)-\sum_{i=1}^{m} \sum_{j=1}^{J} \log \left(Y_{i \sigma_{2}(j)}!\right)+\sum_{i=1}^{m} \sum_{j=1}^{J} Y_{i \sigma_{2}(j)} \log \pi_{i j}\left(\boldsymbol{\theta}_{2}\right)
$$

Since $\mathbf{Y}_{i}^{\sigma_{1}}$ and $\mathbf{Y}_{i}^{\sigma_{2}}$ are different only at the order of individual terms,

$$
\sum_{j=1}^{J} \log \left(Y_{i \sigma_{1}(j)}!\right)=\sum_{j=1}^{J} \log \left(Y_{i \sigma_{2}(j)}!\right)
$$

On the other hand, $\pi_{i j}\left(\boldsymbol{\theta}_{2}\right)=\pi_{i \sigma_{2}\left(\sigma_{1}^{-1}(j)\right)}\left(\boldsymbol{\theta}_{1}\right)$ implies that

$$
\begin{aligned}
\sum_{j=1}^{J} Y_{i \sigma_{2}(j)} \log \pi_{i j}\left(\boldsymbol{\theta}_{2}\right) & =\sum_{j=1}^{J} Y_{i \sigma_{2}(j)} \log \pi_{i \sigma_{2}\left(\sigma_{1}^{-1}(j)\right)}\left(\boldsymbol{\theta}_{1}\right) \\
& =\sum_{j=1}^{J} Y_{i j} \log \pi_{i \sigma_{1}^{-1}(j)}\left(\boldsymbol{\theta}_{1}\right) \\
& =\sum_{j=1}^{J} Y_{i \sigma_{1}(j)} \log \pi_{i j}\left(\boldsymbol{\theta}_{1}\right)
\end{aligned}
$$

Therefore, $l_{1}\left(\boldsymbol{\theta}_{1}\right)=l_{2}\left(\boldsymbol{\theta}_{2}\right)$, which implies $\max _{\boldsymbol{\theta}_{1}} l_{1}\left(\boldsymbol{\theta}_{1}\right) \leq \max _{\boldsymbol{\theta}_{2}} l_{2}\left(\boldsymbol{\theta}_{2}\right)$. Similarly, $\max _{\boldsymbol{\theta}_{\mathbf{2}}} l_{2}\left(\boldsymbol{\theta}_{2}\right) \leq \max _{\boldsymbol{\theta}_{1}} l_{1}\left(\boldsymbol{\theta}_{1}\right)$. Thus $\max _{\boldsymbol{\theta}_{1}} l_{1}\left(\boldsymbol{\theta}_{1}\right)=\max _{\boldsymbol{\theta}_{\mathbf{2}}} l_{2}\left(\boldsymbol{\theta}_{2}\right)$.

Given that (2.4) is true for σ_{1} and σ_{2}, for any permutation $\sigma \in \mathcal{P}$,

$$
\pi_{i \sigma_{1}^{-1}\left(\sigma^{-1}(j)\right)}\left(\boldsymbol{\theta}_{1}\right)=\pi_{i \sigma_{2}^{-1}\left(\sigma^{-1}(j)\right)}\left(\boldsymbol{\theta}_{2}\right)
$$

for all i and j. That is, $\pi_{i\left(\sigma \sigma_{1}\right)^{-1}(j)}\left(\boldsymbol{\theta}_{1}\right)=\pi_{i\left(\sigma \sigma_{2}\right)^{-1}(j)}\left(\boldsymbol{\theta}_{2}\right)$ for all i and j. Following the same proof above, we have $\sigma \sigma_{1} \sim \sigma \sigma_{2}$.

Proof. of Theorem 2.2: We first show that $\sigma_{1}=\mathrm{id}$, the identity permutation, and any permutation σ_{2} satisfying $\sigma_{2}(J)=J$ are equivalent. Actually, given any $\boldsymbol{\theta}_{1}=\left(\boldsymbol{\beta}_{1}^{T}, \ldots, \boldsymbol{\beta}_{J-1}^{T}, \boldsymbol{\zeta}^{T}\right)^{T}$ for $\sigma_{1}=$ id, we let $\boldsymbol{\theta}_{2}=$ $\left(\boldsymbol{\beta}_{\sigma_{2}(1)}^{T}, \ldots, \boldsymbol{\beta}_{\sigma_{2}(J-1)}^{T}, \boldsymbol{\zeta}^{T}\right)^{T}$ for σ_{2}. Then $\eta_{i j}\left(\boldsymbol{\theta}_{2}\right)=\mathbf{h}_{j}^{T}\left(\mathbf{x}_{i}\right) \boldsymbol{\beta}_{\sigma_{2}(j)}+\mathbf{h}_{c}^{T}\left(\mathbf{x}_{i}\right) \boldsymbol{\zeta}=$ $\mathbf{h}_{\sigma_{2}(j)}^{T}\left(\mathbf{x}_{i}\right) \boldsymbol{\beta}_{\sigma_{2}(j)}+\mathbf{h}_{c}^{T}\left(\mathbf{x}_{i}\right) \boldsymbol{\zeta}=\eta_{i \sigma_{2}(j)}\left(\boldsymbol{\theta}_{1}\right)$ for all $i=1, \ldots, m$ and $j=1, \ldots, J-$ 1. According to (2.2) and (2.3), $\pi_{i j}\left(\boldsymbol{\theta}_{2}\right)=\pi_{i \sigma_{2}(j)}\left(\boldsymbol{\theta}_{1}\right)$ for all $i=1, \ldots, m$ and $j=1, \ldots, J$. Then id $\sim \sigma_{2}$ is obtained by Theorem 2.1.

For general σ_{1} and σ_{2} satisfying $\sigma_{1}(J)=\sigma_{2}(J)=J$, id $\sim \sigma_{1}^{-1} \sigma_{2}$ implies
$\sigma_{1} \sim \sigma_{2}$ by Theorem 2.1.

Proof. of Theorem 2.3: Given $\boldsymbol{\theta}_{1}=\left(\boldsymbol{\beta}_{1}^{T}, \boldsymbol{\beta}_{2}^{T}, \ldots, \boldsymbol{\beta}_{J-1}^{T}, \boldsymbol{\zeta}^{T}\right)^{T}$ with σ_{1}, we let $\boldsymbol{\theta}_{2}=\left(-\boldsymbol{\beta}_{J-1}^{T},-\boldsymbol{\beta}_{J-2}^{T}, \ldots,-\boldsymbol{\beta}_{1}^{T},-\boldsymbol{\zeta}^{T}\right)^{T}$ for σ_{2}. Then $\eta_{i j}\left(\boldsymbol{\theta}_{2}\right)=-\mathbf{h}_{j}^{T}\left(\mathbf{x}_{i}\right) \boldsymbol{\beta}_{J-j}-$ $\mathbf{h}_{c}^{T}\left(\mathbf{x}_{i}\right) \boldsymbol{\zeta}=-\mathbf{h}_{J-j}^{T}\left(\mathbf{x}_{i}\right) \boldsymbol{\beta}_{J-j}-\mathbf{h}_{c}^{T}\left(\mathbf{x}_{i}\right) \boldsymbol{\zeta}=-\eta_{i, J-j}\left(\boldsymbol{\theta}_{1}\right)$ and thus $\rho_{i j}\left(\boldsymbol{\theta}_{2}\right)=$ $1-\rho_{i, J-j}\left(\boldsymbol{\theta}_{1}\right)$ for all $i=1, \ldots, m$ and $j=1, \ldots, J-1$. It can be verified that $\pi_{i j}\left(\boldsymbol{\theta}_{2}\right)=\pi_{i, J+1-j}\left(\boldsymbol{\theta}_{1}\right)$ for all $i=1, \ldots, m$ and $j=1, \ldots, J$ according to (2.2) and (2.3). Then for all $i=1, \ldots, m$ and $j=1, \ldots, J$,

$$
\begin{aligned}
\pi_{i \sigma_{2}^{-1}(j)}\left(\boldsymbol{\theta}_{2}\right) & =\pi_{i, J+1-\sigma_{2}^{-1}(j)}\left(\boldsymbol{\theta}_{1}\right)=\pi_{i \sigma_{1}^{-1}\left(\sigma_{1}\left(J+1-\sigma_{2}^{-1}(j)\right)\right)}\left(\boldsymbol{\theta}_{1}\right) \\
& =\pi_{i \sigma_{1}^{-1}\left(\sigma_{2}\left(\sigma_{2}^{-1}(j)\right)\right)}\left(\boldsymbol{\theta}_{1}\right)=\pi_{i \sigma_{1}^{-1}(j)}\left(\boldsymbol{\theta}_{1}\right)
\end{aligned}
$$

That is, (2.4) holds given $\boldsymbol{\theta}_{1}$. Since it is one-to-one from $\boldsymbol{\theta}_{1}$ to $\boldsymbol{\theta}_{2}$, (2.4) holds given $\boldsymbol{\theta}_{2}$ as well. According to Theorem 2.1, $\sigma_{1} \sim \sigma_{2}$.

Proof. of Theorem 2.4: Similar as the proof of Theorem 2.3, for ppo models satisfying $\mathbf{h}_{1}\left(\mathbf{x}_{i}\right)=\cdots=\mathbf{h}_{J-1}\left(\mathbf{x}_{i}\right)$, given $\boldsymbol{\theta}_{1}=\left(\boldsymbol{\beta}_{1}^{T}, \boldsymbol{\beta}_{2}^{T}, \ldots, \boldsymbol{\beta}_{J-1}^{T}, \boldsymbol{\zeta}^{T}\right)^{T}$ with σ_{1}, we let $\boldsymbol{\theta}_{2}=\left(-\boldsymbol{\beta}_{J-1}^{T},-\boldsymbol{\beta}_{J-2}^{T}, \ldots,-\boldsymbol{\beta}_{1}^{T},-\boldsymbol{\zeta}^{T}\right)^{T}$ for σ_{2}. Then $\eta_{i j}\left(\boldsymbol{\theta}_{2}\right)=$ $-\mathbf{h}_{j}^{T}\left(\mathbf{x}_{i}\right) \boldsymbol{\beta}_{J-j}-\mathbf{h}_{c}^{T}\left(\mathbf{x}_{i}\right) \boldsymbol{\zeta}=-\mathbf{h}_{J-j}^{T}\left(\mathbf{x}_{i}\right) \boldsymbol{\beta}_{J-j}-\mathbf{h}_{c}^{T}\left(\mathbf{x}_{i}\right) \boldsymbol{\zeta}=-\eta_{i, J-j}\left(\boldsymbol{\theta}_{1}\right)$ and thus $\rho_{i j}\left(\boldsymbol{\theta}_{2}\right)=1-\rho_{i, J-j}\left(\boldsymbol{\theta}_{1}\right)$ for all $i=1, \ldots, m$ and $j=1, \ldots, J-1$. It can be verified that for $j=1, \ldots, J-1$,

$$
\prod_{l=j}^{J-1} \frac{\rho_{i l}\left(\boldsymbol{\theta}_{2}\right)}{1-\rho_{i l}\left(\boldsymbol{\theta}_{2}\right)}=\prod_{l=j}^{J-1} \frac{1-\rho_{i, J-l}\left(\boldsymbol{\theta}_{1}\right)}{\rho_{i, J-l}\left(\boldsymbol{\theta}_{1}\right)}=\prod_{l=1}^{J-j} \frac{1-\rho_{i l}\left(\boldsymbol{\theta}_{1}\right)}{\rho_{i l}\left(\boldsymbol{\theta}_{1}\right)}
$$

implies $\pi_{i j}\left(\boldsymbol{\theta}_{2}\right)=\pi_{i, J+1-j}\left(\boldsymbol{\theta}_{1}\right)$ for all $i=1, \ldots, m$ and $j=1, \ldots, J$ due to (2.2) and (2.3). Then $\pi_{i \sigma_{2}^{-1}(j)}\left(\boldsymbol{\theta}_{2}\right)=\pi_{i \sigma_{1}^{-1}(j)}\left(\boldsymbol{\theta}_{1}\right)$ similarly as in the proof of Theorem 2.3, which leads to $\sigma_{1} \sim \sigma_{2}$ based on Theorem 2.1.

Proof. of Theorem 2.5: According to Theorem 2.1, we only need to show that (2.4) holds for $\sigma_{1}=$ id and an arbitrary permutation $\sigma_{2} \in \mathcal{P}$.

Case one: $\sigma_{2}(J)=J$. In this case, for any $\boldsymbol{\theta}_{1}=\left(\boldsymbol{\beta}_{1}^{T}, \ldots, \boldsymbol{\beta}_{J-1}^{T}\right)^{T}$, we let $\boldsymbol{\theta}_{2}=\left(\boldsymbol{\beta}_{\sigma_{2}(1)}^{T}, \ldots, \boldsymbol{\beta}_{\sigma_{2}(J-1)}^{T}\right)^{T}$. Then $\eta_{i j}\left(\boldsymbol{\theta}_{2}\right)=\mathbf{h}_{j}^{T}\left(\mathbf{x}_{i}\right) \boldsymbol{\beta}_{\sigma_{2}(j)}=\mathbf{h}_{\sigma(j)}^{T}\left(\mathbf{x}_{i}\right) \boldsymbol{\beta}_{\sigma_{2}(j)}$ $=\eta_{i \sigma_{2}(j)}\left(\boldsymbol{\theta}_{1}\right)$, which leads to $\rho_{i j}\left(\boldsymbol{\theta}_{2}\right)=\rho_{i \sigma_{2}(j)}\left(\boldsymbol{\theta}_{1}\right)$ for all $i=1, \ldots, m$ and $j=1, \ldots, J-1$. According to (2.2) in Lemma $1, \pi_{i j}\left(\boldsymbol{\theta}_{1}\right)=\pi_{i \sigma_{2}^{-1}(j)}\left(\boldsymbol{\theta}_{2}\right)$, which is (2.4) in this case. Since the correspondence between $\boldsymbol{\theta}_{1}$ and $\boldsymbol{\theta}_{2}$ is one-to-one, then (2.4) holds for given $\boldsymbol{\theta}_{2}$ as well.

Case two: $\sigma_{2}(J) \neq J$. Given $\boldsymbol{\theta}_{1}=\left(\boldsymbol{\beta}_{1}^{T}, \ldots, \boldsymbol{\beta}_{J-1}^{T}\right)^{T}$, we let $\boldsymbol{\theta}_{2}=$ $\left(\boldsymbol{\beta}_{21}^{T}, \ldots, \boldsymbol{\beta}_{2, J-1}^{T}\right)^{T}$ such that for $j=1, \ldots, J-1$,

$$
\boldsymbol{\beta}_{2 j}=\left\{\begin{array}{cc}
\boldsymbol{\beta}_{\sigma_{2}(j)}-\boldsymbol{\beta}_{\sigma_{2}(J)} & \text { if } j \neq \sigma_{2}^{-1}(J) \\
-\boldsymbol{\beta}_{\sigma_{2}(J)} & \text { if } j=\sigma_{2}^{-1}(J)
\end{array}\right.
$$

Then for $i=1, \ldots, m$ and $j=1, \ldots, J-1$,

$$
\eta_{i j}\left(\boldsymbol{\theta}_{2}\right)=\mathbf{h}_{j}^{T}\left(\mathbf{x}_{i}\right) \boldsymbol{\beta}_{2 j}=\left\{\begin{array}{cc}
\eta_{i \sigma_{2}(j)}\left(\boldsymbol{\theta}_{1}\right)-\eta_{i \sigma_{2}(J)}\left(\boldsymbol{\theta}_{1}\right) & \text { if } j \neq \sigma_{2}^{-1}(J) \\
-\eta_{i \sigma_{2}(J)}\left(\boldsymbol{\theta}_{1}\right) & \text { if } j=\sigma_{2}^{-1}(J)
\end{array}\right.
$$

It can be verified that: (i) If $\sigma_{2}^{-1}(j) \neq J$ and $j \neq J$, then $\pi_{i \sigma_{2}^{-1}(j)}\left(\boldsymbol{\theta}_{2}\right)=$ $\pi_{i j}\left(\boldsymbol{\theta}_{1}\right)$ according to (2.2); (ii) $\pi_{i \sigma_{2}^{-1}(J)}\left(\boldsymbol{\theta}_{2}\right)=\pi_{i J}\left(\boldsymbol{\theta}_{1}\right)$ according to (2.2);
and (iii) if $\sigma_{2}^{-1}(j)=J$, then $\pi_{i \sigma_{2}^{-1}(j)}\left(\boldsymbol{\theta}_{2}\right)=\pi_{i j}\left(\boldsymbol{\theta}_{1}\right)$ according to (2.3). Thus (2.4) holds given $\boldsymbol{\theta}_{1}$. Given σ_{2}, the correspondence between $\boldsymbol{\theta}_{1}$ and $\boldsymbol{\theta}_{2}$ is one-to-one, then (2.4) holds given $\boldsymbol{\theta}_{2}$ as well. Thus id $\sim \sigma_{2}$ according to Theorem 2.1.

For general σ_{1} and σ_{2}, id $\sim \sigma_{1}^{-1} \sigma_{2}$ implies $\sigma_{1} \sim \sigma_{2}$ according to Theorem 2.1.

Proof. of Theorem 2.6: Similar as the proof of Theorem 2.5, we first show that (2.4) holds for $\sigma_{1}=\mathrm{id}$ and an arbitrary permutation σ_{2}.

For any $\boldsymbol{\theta}_{1}=\left(\boldsymbol{\beta}_{1}^{T}, \ldots, \boldsymbol{\beta}_{J-1}^{T}\right)^{T}$ with $\sigma_{1}=$ id, we let $\boldsymbol{\theta}_{2}=\left(\boldsymbol{\beta}_{21}^{T}, \ldots\right.$, $\left.\boldsymbol{\beta}_{2, J-1}^{T}\right)^{T}$ for σ_{2}, where

$$
\boldsymbol{\beta}_{2 j}=\left\{\begin{array}{cl}
\sum_{l=\sigma_{2}(j)}^{\sigma_{2}(j+1)-1} \boldsymbol{\beta}_{l} & \text { if } \sigma_{2}(j)<\sigma_{2}(j+1) \tag{S.1}\\
-\sum_{l=\sigma_{2}(j+1)}^{\sigma_{2}(j)-1} \boldsymbol{\beta}_{l} & \text { if } \sigma_{2}(j)>\sigma_{2}(j+1)
\end{array}\right.
$$

For $j=1, \ldots, J-1$,

$$
\eta_{i j}\left(\boldsymbol{\theta}_{2}\right)=\mathbf{h}_{j}^{T}\left(\mathbf{x}_{i}\right) \boldsymbol{\beta}_{2 j}=\sum_{l=\sigma_{2}(j)}^{\sigma_{2}(j+1)-1} \mathbf{h}_{l}^{T}\left(\mathbf{x}_{i}\right) \boldsymbol{\beta}_{l}=\sum_{\sigma_{2}(j)}^{\sigma_{2}(j+1)-1} \eta_{i l}\left(\boldsymbol{\theta}_{1}\right)
$$

if $\sigma_{2}(j)<\sigma_{2}(j+1)$; and $\eta_{i j}\left(\boldsymbol{\theta}_{2}\right)=-\sum_{l=\sigma_{2}(j+1)}^{\sigma_{2}(j)-1} \eta_{i l}\left(\boldsymbol{\theta}_{1}\right)$ if $\sigma_{2}(j)>\sigma_{2}(j+1)$.
It can be verified that (S.1) implies for any $1 \leq j<k \leq J-1$,

$$
\sum_{l=j}^{k} \boldsymbol{\beta}_{2 j}=\left\{\begin{array}{cl}
\sum_{l=\sigma_{2}(j)}^{\sigma_{2}(k+1)-1} \boldsymbol{\beta}_{l} & \text { if } \sigma_{2}(j)<\sigma_{2}(k+1) \tag{S.2}\\
-\sum_{l=\sigma_{2}(k+1)}^{\sigma_{2}(j)-1} \boldsymbol{\beta}_{l} & \text { if } \sigma_{2}(j)>\sigma_{2}(k+1)
\end{array}\right.
$$

Then for $j=1, \ldots, J-1$,

$$
\begin{aligned}
\prod_{l=j}^{J-1} \frac{\rho_{i l}\left(\boldsymbol{\theta}_{2}\right)}{1-\rho_{i l}\left(\boldsymbol{\theta}_{2}\right)} & =\exp \left\{\sum_{l=j}^{J-1} \eta_{i l}\left(\boldsymbol{\theta}_{2}\right)\right\} \\
& = \begin{cases}\prod_{l=\sigma_{2}(j)}^{\sigma_{2}(J)-1} \frac{\rho_{i l}\left(\boldsymbol{\theta}_{1}\right)}{1-\rho_{i l}\left(\boldsymbol{\theta}_{1}\right)} & \text { if } \sigma_{2}(j)<\sigma_{2}(J) \\
\frac{1}{\prod_{l=\sigma_{2}(J)}^{\sigma_{2}(j)-1} \frac{\rho_{i l}\left(\boldsymbol{\theta}_{1}\right)}{1-\rho_{i l}\left(\boldsymbol{\theta}_{1}\right)}} & \text { if } \sigma_{2}(j)>\sigma_{2}(J)\end{cases}
\end{aligned}
$$

According to (2.2) and (2.3), it can be verified that $\pi_{i j}\left(\boldsymbol{\theta}_{2}\right)=\pi_{i \sigma_{2}(j)}\left(\boldsymbol{\theta}_{1}\right)$ for all $i=1, \ldots, m$ and $j=1, \ldots, J$. That is, (2.4) holds given $\boldsymbol{\theta}_{1}$.

On the other hand, S.2 implies an inverse transformation from $\boldsymbol{\theta}_{2}$ to $\boldsymbol{\theta}_{1}$

$$
\begin{equation*}
\boldsymbol{\beta}_{j}=\sum_{l=\sigma_{2}^{-1}(j)}^{\sigma_{2}^{-1}(j+1)} \boldsymbol{\beta}_{2 l} \tag{S.3}
\end{equation*}
$$

with $j=1, \ldots, J-1$. That is, it is one-to-one from $\boldsymbol{\theta}_{1}$ to $\boldsymbol{\theta}_{2}$. According to Theorem 2.1, id $\sim \sigma_{2}$.

Similar as in the proof of Theorem 2.5, we have $\sigma_{1} \sim \sigma_{2}$ for any two permutations σ_{1} and σ_{2}.

Proof. of Theorem 2.7: We frist verify condition (2.4) for $\sigma_{1}=$ id and $\sigma_{2}=(J-1, J)$. In this case, given $\boldsymbol{\theta}_{1}=\left(\boldsymbol{\beta}_{1}^{T}, \ldots, \boldsymbol{\beta}_{J-2}^{T}, \boldsymbol{\beta}_{J-1}^{T}\right)^{T}$ for σ_{1}, we let $\boldsymbol{\theta}_{2}=\left(\boldsymbol{\beta}_{1}^{T}, \ldots, \boldsymbol{\beta}_{J-2}^{T},-\boldsymbol{\beta}_{J-1}^{T}\right)^{T}$ for σ_{2}. Then $\eta_{i j}\left(\boldsymbol{\theta}_{2}\right)=\mathbf{h}_{j}^{T}\left(\mathbf{x}_{i}\right) \boldsymbol{\beta}_{j}=\eta_{i j}\left(\boldsymbol{\theta}_{1}\right)$ for $j=1, \ldots, J-2$, and $\eta_{i, J-1}\left(\boldsymbol{\theta}_{2}\right)=-\mathbf{h}_{J-1}^{T}\left(\mathbf{x}_{i}\right) \boldsymbol{\beta}_{J-1}=-\eta_{i, J-1}\left(\boldsymbol{\theta}_{1}\right)$. We further obtain $\rho_{i j}\left(\boldsymbol{\theta}_{2}\right)=\rho_{i j}\left(\boldsymbol{\theta}_{1}\right)$ for $j=1, \ldots, J-2$ and $\rho_{i, J-1}\left(\boldsymbol{\theta}_{2}\right)=$ $1-\rho_{i, J-1}\left(\boldsymbol{\theta}_{1}\right)$. According to (2.2) and (2.3), we obtain $\pi_{i j}\left(\boldsymbol{\theta}_{2}\right)=\pi_{i j}\left(\boldsymbol{\theta}_{1}\right)$ for
$j=1, \ldots, J-2 ; \pi_{i, J-1}\left(\boldsymbol{\theta}_{2}\right)=\pi_{i J}\left(\boldsymbol{\theta}_{1}\right) ;$ and $\pi_{i J}\left(\boldsymbol{\theta}_{2}\right)=\pi_{i, J-1}\left(\boldsymbol{\theta}_{1}\right)$. That is, (2.4) holds given $\boldsymbol{\theta}_{1}$, which also holds given $\boldsymbol{\theta}_{2}$ since it is one-to-one from $\boldsymbol{\theta}_{1}$ to $\boldsymbol{\theta}_{2}$. According to Theorem 2.1, id $\sim(J-1, J)$ and thus $\sigma_{1} \sim \sigma_{1}(J-1, J)$ for any permutation σ_{1}.

Proof. of Lemma 2: It is well known that for each $i=1, \ldots, m,\left(\frac{Y_{i 1}}{N_{i}}, \ldots, \frac{Y_{i J}}{N_{i}}\right)$ maximizes $\sum_{j=1}^{J} Y_{i j} \log \pi_{i j}$ as a function of $\left(\pi_{i 1}, \ldots, \pi_{i J}\right)$ under the constraints $\sum_{j=1}^{J} \pi_{i j}=1$ and $\pi_{i j} \geq 0, j=1, \ldots, J$ (see, for example, Section 35.6 of Johnson et al. (1997)). If $\hat{\boldsymbol{\theta}} \in \boldsymbol{\Theta}$ and $\hat{\sigma} \in \mathcal{P}$ satisfy $\pi_{i \hat{\sigma}^{-1}(j)}(\hat{\boldsymbol{\theta}})=$ $\frac{Y_{i j}}{N_{i}}$ for all i and j, then $\left\{\pi_{i \hat{\sigma}^{-1}(j)}(\hat{\boldsymbol{\theta}})\right\}_{i j}$ maximizes $\sum_{i=1}^{m} \sum_{j=1}^{J} Y_{i j} \log \pi_{i \sigma^{-1}(j)}(\boldsymbol{\theta})$, which implies $(\hat{\boldsymbol{\theta}}, \hat{\sigma})$ maximizes $l_{N}(\boldsymbol{\theta}, \sigma)$ and thus $l(\boldsymbol{\theta}, \sigma)$.

Proof. of Lemma 3: According to the strong law of large numbers (see, for example, Chapter 4 in Ferguson (1996)), $\frac{N_{i}}{N}=N^{-1} \sum_{l=1}^{N} \mathbf{1}_{\left\{X_{l}=\mathbf{x}_{i}\right\}} \rightarrow$ $E\left(\mathbf{1}_{\left\{X_{l}=\mathbf{x}_{i}\right\}}\right)=\frac{n_{i}}{n}$ almost surely, as $N \rightarrow \infty$, for each $i=1, \ldots, m$. Since $n_{0} \geq 1$, it can be verified that $\min \left\{N_{1}, \ldots, N_{m}\right\} \rightarrow \infty$ almost surely, as $N \rightarrow \infty$. Similarly, we have $\frac{Y_{i j}}{N_{i}} \rightarrow \pi_{i \sigma_{0}^{-1}(j)}\left(\boldsymbol{\theta}_{0}\right)$ almost surely, as $N_{i} \rightarrow \infty$,
for each $i=1, \ldots, m$ and $j=1, \ldots, J$. Then as N goes to infinity,

$$
\begin{aligned}
N^{-1} l_{N}\left(\boldsymbol{\theta}_{0}, \sigma_{0}\right) & =\frac{1}{N} \sum_{i=1}^{m} \sum_{j=1}^{J} Y_{i j} \log \pi_{i \sigma_{0}^{-1}(j)}\left(\boldsymbol{\theta}_{0}\right) \\
& =\sum_{i=1}^{m} \sum_{j=1}^{J} \frac{N_{i}}{N} \cdot \frac{Y_{i j}}{N_{i}} \log \pi_{i \sigma_{0}^{-1}(j)}\left(\boldsymbol{\theta}_{0}\right) \\
& \xrightarrow{\text { a.s. }} \sum_{i=1}^{m} \sum_{j=1}^{J} \frac{n_{i}}{n} \pi_{i \sigma_{0}^{-1}(j)}\left(\boldsymbol{\theta}_{0}\right) \log \pi_{i \sigma_{0}^{-1}(j)}\left(\boldsymbol{\theta}_{0}\right) \\
& =\sum_{i=1}^{m} \sum_{j=1}^{J} \frac{n_{i}}{n} \pi_{i j}\left(\boldsymbol{\theta}_{0}\right) \log \pi_{i j}\left(\boldsymbol{\theta}_{0}\right)=l_{0}<0
\end{aligned}
$$

Proof. of Theorem 3.1: First we claim that for large enough N, all $i=$ $1, \ldots, m$ and $j=1, \ldots, J, 0>\log \pi_{i \hat{\sigma}_{N}^{-1}(j)}\left(\hat{\boldsymbol{\theta}}_{N}\right) \geq \frac{2 n\left(l_{0}-1\right)}{n_{0} \pi_{0}}$, which is a finite constant. Actually, since $\left(\hat{\boldsymbol{\theta}}_{N}, \hat{\sigma}_{N}\right)$ is an MLE, we have $N^{-1} l_{N}\left(\hat{\boldsymbol{\theta}}_{N}, \hat{\sigma}_{N}\right) \geq$ $N^{-1} l_{N}\left(\boldsymbol{\theta}_{0}, \sigma_{0}\right)$ for each N. According to Lemma $3, N^{-1} l_{N}\left(\boldsymbol{\theta}_{0}, \sigma_{0}\right) \rightarrow l_{0}$ almost surely, then $N^{-1} l_{N}\left(\hat{\boldsymbol{\theta}}_{N}, \hat{\sigma}_{N}\right)>l_{0}-1$ for large enough N almost surely. On the other hand, since $\log \pi_{i \hat{\sigma}_{N}^{-1}(j)}\left(\hat{\boldsymbol{\theta}}_{N}\right)<0$ for all i and j, then $N^{-1} l_{N}\left(\hat{\boldsymbol{\theta}}_{N}, \hat{\sigma}_{N}\right)=\sum_{i=1}^{m} \sum_{j=1}^{J} \frac{N_{i}}{N} \cdot \frac{Y_{i j}}{N_{i}} \log \pi_{i \hat{\sigma}_{N}^{-1}(j)}\left(\hat{\boldsymbol{\theta}}_{N}\right)<\frac{N_{i}}{N} \cdot \frac{Y_{i j}}{N_{i}} \log \pi_{i \hat{\sigma}_{N}^{-1}(j)}\left(\hat{\boldsymbol{\theta}}_{N}\right)$ for each i and j. Since $\frac{N_{i}}{N} \rightarrow \frac{n_{i}}{n}$ almost surely and $\frac{Y_{i j}}{N_{i}} \rightarrow \pi_{i \sigma_{0}^{-1}(j)}\left(\boldsymbol{\theta}_{0}\right)$ almost surely, then $\frac{N_{i}}{N} \cdot \frac{Y_{i j}}{N_{i}} \log \pi_{i \hat{\sigma}_{N}^{-1}(j)}\left(\hat{\boldsymbol{\theta}}_{N}\right)<\frac{1}{2} \cdot \frac{n_{i}}{n} \pi_{i \sigma_{0}^{-1}(j)}\left(\boldsymbol{\theta}_{0}\right) \log \pi_{i \hat{\sigma}_{N}^{-1}(j)}\left(\hat{\boldsymbol{\theta}}_{N}\right)$ for large enough N almost surely. Then we have

$$
0>\frac{1}{2} \cdot \frac{n_{i}}{n} \pi_{i \sigma_{0}^{-1}(j)}\left(\boldsymbol{\theta}_{0}\right) \log \pi_{i \hat{\sigma}_{N}^{-1}(j)}\left(\hat{\boldsymbol{\theta}}_{N}\right)>l_{0}-1
$$

almost surely for large enough N and each i and j. Since $l_{0}-1<0$, we further have almost surely for large enough N,

$$
0>\log \pi_{i \hat{\sigma}_{N}^{-1}(j)}\left(\hat{\boldsymbol{\theta}}_{N}\right)>\frac{l_{0}-1}{\frac{1}{2} \cdot \frac{n_{i}}{n} \pi_{i \sigma_{0}^{-1}(j)}\left(\boldsymbol{\theta}_{0}\right)} \geq \frac{l_{0}-1}{\frac{1}{2} \cdot \frac{n_{0}}{n} \pi_{0}}=\frac{2 n\left(l_{0}-1\right)}{n_{0} \pi_{0}}
$$

Now we are ready to check the asymptotic difference between $N^{-1} l_{N}\left(\hat{\boldsymbol{\theta}}_{N}, \hat{\sigma}_{N}\right)$ and $N^{-1} l_{N}\left(\boldsymbol{\theta}_{0}, \sigma_{0}\right)$. According to Lemma 2 and its proof, $\left(\boldsymbol{\theta}_{0}, \sigma_{0}\right)$ maximizes $\sum_{i=1}^{m} \sum_{j=1}^{J} \frac{N_{i}}{N} \pi_{i \sigma_{0}^{-1}(j)}\left(\boldsymbol{\theta}_{0}\right) \log \pi_{i \sigma^{-1}(j)}(\boldsymbol{\theta})$. Then

$$
\begin{aligned}
0 & \leq N^{-1}\left[l_{N}\left(\hat{\boldsymbol{\theta}}_{N}, \hat{\sigma}_{N}\right)-l_{N}\left(\boldsymbol{\theta}_{0}, \sigma_{0}\right)\right] \\
& =\sum_{i=1}^{m} \sum_{j=1}^{J} \frac{N_{i}}{N} \pi_{i \sigma_{0}^{-1}(j)}\left(\boldsymbol{\theta}_{0}\right) \log \pi_{i \hat{\sigma}_{N}^{-1}(j)}\left(\hat{\boldsymbol{\theta}}_{N}\right) \\
& -\sum_{i=1}^{m} \sum_{j=1}^{J} \frac{N_{i}}{N} \pi_{i \sigma_{0}^{-1}(j)}\left(\boldsymbol{\theta}_{0}\right) \log \pi_{i \sigma_{0}^{-1}(j)}\left(\boldsymbol{\theta}_{0}\right) \\
& +\sum_{i=1}^{m} \sum_{j=1}^{J} \frac{N_{i}}{N}\left[\frac{Y_{i j}}{N_{i}}-\pi_{i \sigma_{0}^{-1}(j)}\left(\boldsymbol{\theta}_{0}\right)\right] \cdot\left[\log \pi_{i \hat{\sigma}_{N}^{-1}(j)}\left(\hat{\boldsymbol{\theta}}_{N}\right)-\log \pi_{i \sigma_{0}^{-1}(j)}\left(\boldsymbol{\theta}_{0}\right)\right] \\
& \leq \sum_{i=1}^{m} \sum_{j=1}^{J} \frac{N_{i}}{N}\left[\frac{Y_{i j}}{N_{i}}-\pi_{i \sigma_{0}^{-1}(j)}\left(\boldsymbol{\theta}_{0}\right)\right] \cdot\left[\log \pi_{i \hat{\sigma}_{N}^{-1}(j)}\left(\hat{\boldsymbol{\theta}}_{N}\right)-\log \pi_{i \sigma_{0}^{-1}(j)}\left(\boldsymbol{\theta}_{0}\right)\right]
\end{aligned}
$$

Then for large enough N, we have almost surely

$$
\begin{aligned}
& \frac{1}{N}\left|l_{N}\left(\hat{\boldsymbol{\theta}}_{N}, \hat{\sigma}_{N}\right)-l_{N}\left(\boldsymbol{\theta}_{0}, \sigma_{0}\right)\right| \\
\leq & \sum_{i=1}^{m} \sum_{j=1}^{J}\left|\frac{Y_{i j}}{N_{i}}-\pi_{i \sigma_{0}^{-1}(j)}\left(\boldsymbol{\theta}_{0}\right)\right| \cdot\left[\frac{-2 n\left(l_{0}-1\right)}{n_{0} \pi_{0}}-\log \pi_{0}\right]
\end{aligned}
$$

Since $\frac{Y_{i j}}{N_{i}} \rightarrow \pi_{i \sigma_{0}^{-1}(j)}\left(\boldsymbol{\theta}_{0}\right)$ almost surely for each i and j, then $N^{-1} \mid l_{N}\left(\hat{\boldsymbol{\theta}}_{N}, \hat{\sigma}_{N}\right)$ $-l_{N}\left(\boldsymbol{\theta}_{0}, \sigma_{0}\right) \mid \rightarrow 0$ almost surely as N goes to infinity. The rest parts of the theorem are straightforward.

Proof. of Corollary 1: Since $\operatorname{AIC}-\operatorname{AIC}\left(\boldsymbol{\theta}_{0}, \sigma_{0}\right)=\operatorname{BIC}-\operatorname{BIC}\left(\boldsymbol{\theta}_{0}, \sigma_{0}\right)=$ $-2 l\left(\hat{\boldsymbol{\theta}}_{N}, \hat{\sigma}_{N}\right)+2 l\left(\boldsymbol{\theta}_{0}, \sigma_{0}\right)=-2 l_{N}\left(\hat{\boldsymbol{\theta}}_{N}, \hat{\sigma}_{N}\right)+2 l_{N}\left(\boldsymbol{\theta}_{0}, \sigma_{0}\right)$, the conclusion follows directly by Theorem 3.1.

Bibliography

Ferguson, T. S. (1996). A Course in Large Sample Theory. Chapman \& Hall.

Johnson, N. L., S. Kotz, and N. Balakrishnan (1997). Discrete Multivariate Distributions. John Wiley \& Sons.

