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Proof. of Theorem 2.1: The log-likelihood of the model at θ1 with permuted

responses Yσ1
i is

l1(θ1) =
m∑
i=1

log(ni!)−
m∑
i=1

J∑
j=1

log(Yiσ1(j)!) +
m∑
i=1

J∑
j=1

Yiσ1(j) log πij(θ1)

while the log-likelihood at θ2 with Yσ2
i is

l2(θ2) =
m∑
i=1

log(ni!)−
m∑
i=1

J∑
j=1

log(Yiσ2(j)!) +
m∑
i=1

J∑
j=1

Yiσ2(j) log πij(θ2)

Since Yσ1
i and Yσ2

i are different only at the order of individual terms,

J∑
j=1

log(Yiσ1(j)!) =
J∑

j=1

log(Yiσ2(j)!)
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On the other hand, πij(θ2) = πiσ2(σ
−1
1 (j))(θ1) implies that

J∑
j=1

Yiσ2(j) log πij(θ2) =
J∑

j=1

Yiσ2(j) log πiσ2(σ
−1
1 (j))(θ1)

=
J∑

j=1

Yij log πiσ−1
1 (j)(θ1)

=
J∑

j=1

Yiσ1(j) log πij(θ1)

Therefore, l1(θ1) = l2(θ2), which implies maxθ1 l1(θ1) ≤ maxθ2 l2(θ2). Sim-

ilarly, maxθ2 l2(θ2) ≤ maxθ1 l1(θ1). Thus maxθ1 l1(θ1) = maxθ2 l2(θ2).

Given that (2.4) is true for σ1 and σ2, for any permutation σ ∈ P ,

πiσ−1
1 (σ−1(j))(θ1) = πiσ−1

2 (σ−1(j))(θ2)

for all i and j. That is, πi(σσ1)−1(j)(θ1) = πi(σσ2)−1(j)(θ2) for all i and j.

Following the same proof above, we have σσ1 ∼ σσ2 .

Proof. of Theorem 2.2: We first show that σ1 = id, the identity per-

mutation, and any permutation σ2 satisfying σ2(J) = J are equivalent.

Actually, given any θ1 = (βT
1 , . . . ,β

T
J−1, ζ

T )T for σ1 = id, we let θ2 =

(βT
σ2(1)

, . . . ,βT
σ2(J−1), ζ

T )T for σ2. Then ηij(θ2) = hT
j (xi)βσ2(j) + hT

c (xi)ζ =

hT
σ2(j)

(xi)βσ2(j)+hT
c (xi)ζ = ηiσ2(j)(θ1) for all i = 1, . . . ,m and j = 1, . . . , J−

1. According to (2.2) and (2.3), πij(θ2) = πiσ2(j)(θ1) for all i = 1, . . . ,m

and j = 1, . . . , J . Then id ∼ σ2 is obtained by Theorem 2.1.

For general σ1 and σ2 satisfying σ1(J) = σ2(J) = J , id ∼ σ−1
1 σ2 implies



Identifying the Most Appropriate Order

σ1 ∼ σ2 by Theorem 2.1.

Proof. of Theorem 2.3: Given θ1 = (βT
1 ,β

T
2 , . . . ,β

T
J−1, ζ

T )T with σ1, we let

θ2 = (−βT
J−1,−βT

J−2, . . . ,−βT
1 ,−ζT )T for σ2. Then ηij(θ2) = −hT

j (xi)βJ−j−

hT
c (xi)ζ = −hT

J−j(xi)βJ−j − hT
c (xi)ζ = −ηi,J−j(θ1) and thus ρij(θ2) =

1 − ρi,J−j(θ1) for all i = 1, . . . ,m and j = 1, . . . , J − 1. It can be verified

that πij(θ2) = πi,J+1−j(θ1) for all i = 1, . . . ,m and j = 1, . . . , J according

to (2.2) and (2.3). Then for all i = 1, . . . ,m and j = 1, . . . , J ,

πiσ−1
2 (j)(θ2) = πi,J+1−σ−1

2 (j)(θ1) = πiσ−1
1 (σ1(J+1−σ−1

2 (j)))(θ1)

= πiσ−1
1 (σ2(σ

−1
2 (j)))(θ1) = πiσ−1

1 (j)(θ1)

That is, (2.4) holds given θ1 . Since it is one-to-one from θ1 to θ2, (2.4)

holds given θ2 as well. According to Theorem 2.1, σ1 ∼ σ2 .

Proof. of Theorem 2.4: Similar as the proof of Theorem 2.3, for ppo models

satisfying h1(xi) = · · · = hJ−1(xi), given θ1 = (βT
1 ,β

T
2 , . . . ,β

T
J−1, ζ

T )T with

σ1, we let θ2 = (−βT
J−1,−βT

J−2, . . . ,−βT
1 ,−ζT )T for σ2 . Then ηij(θ2) =

−hT
j (xi)βJ−j − hT

c (xi)ζ = −hT
J−j(xi)βJ−j − hT

c (xi)ζ = −ηi,J−j(θ1) and

thus ρij(θ2) = 1 − ρi,J−j(θ1) for all i = 1, . . . ,m and j = 1, . . . , J − 1. It

can be verified that for j = 1, . . . , J − 1,

J−1∏
l=j

ρil(θ2)

1− ρil(θ2)
=

J−1∏
l=j

1− ρi,J−l(θ1)

ρi,J−l(θ1)
=

J−j∏
l=1

1− ρil(θ1)

ρil(θ1)
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implies πij(θ2) = πi,J+1−j(θ1) for all i = 1, . . . ,m and j = 1, . . . , J due to

(2.2) and (2.3). Then πiσ−1
2 (j)(θ2) = πiσ−1

1 (j)(θ1) similarly as in the proof of

Theorem 2.3, which leads to σ1 ∼ σ2 based on Theorem 2.1.

Proof. of Theorem 2.5: According to Theorem 2.1, we only need to show

that (2.4) holds for σ1 = id and an arbitrary permutation σ2 ∈ P .

Case one: σ2(J) = J . In this case, for any θ1 = (βT
1 , . . . ,β

T
J−1)

T , we let

θ2 = (βT
σ2(1)

, . . . ,βT
σ2(J−1))

T . Then ηij(θ2) = hT
j (xi)βσ2(j) = hT

σ(j)(xi)βσ2(j)

= ηiσ2(j)(θ1), which leads to ρij(θ2) = ρiσ2(j)(θ1) for all i = 1, . . . ,m and

j = 1, . . . , J − 1. According to (2.2) in Lemma 1, πij(θ1) = πiσ−1
2 (j)(θ2),

which is (2.4) in this case. Since the correspondence between θ1 and θ2 is

one-to-one, then (2.4) holds for given θ2 as well.

Case two: σ2(J) ̸= J . Given θ1 = (βT
1 , . . . ,β

T
J−1)

T , we let θ2 =

(βT
21, . . . , β

T
2,J−1)

T such that for j = 1, . . . , J − 1,

β2j =


βσ2(j) − βσ2(J) if j ̸= σ−1

2 (J)

−βσ2(J) if j = σ−1
2 (J)

Then for i = 1, . . . ,m and j = 1, . . . , J − 1,

ηij(θ2) = hT
j (xi)β2j =


ηiσ2(j)(θ1)− ηiσ2(J)(θ1) if j ̸= σ−1

2 (J)

−ηiσ2(J)(θ1) if j = σ−1
2 (J)

It can be verified that: (i) If σ−1
2 (j) ̸= J and j ̸= J , then πiσ−1

2 (j)(θ2) =

πij(θ1) according to (2.2); (ii) πiσ−1
2 (J)(θ2) = πiJ(θ1) according to (2.2);
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and (iii) if σ−1
2 (j) = J , then πiσ−1

2 (j)(θ2) = πij(θ1) according to (2.3). Thus

(2.4) holds given θ1 . Given σ2, the correspondence between θ1 and θ2 is

one-to-one, then (2.4) holds given θ2 as well. Thus id ∼ σ2 according to

Theorem 2.1.

For general σ1 and σ2, id ∼ σ−1
1 σ2 implies σ1 ∼ σ2 according to Theo-

rem 2.1.

Proof. of Theorem 2.6: Similar as the proof of Theorem 2.5, we first show

that (2.4) holds for σ1 = id and an arbitrary permutation σ2 .

For any θ1 = (βT
1 , . . . ,β

T
J−1)

T with σ1 = id, we let θ2 = (βT
21, . . . ,

βT
2,J−1)

T for σ2, where

β2j =


∑σ2(j+1)−1

l=σ2(j)
βl if σ2(j) < σ2(j + 1)

−
∑σ2(j)−1

l=σ2(j+1) βl if σ2(j) > σ2(j + 1)

(S.1)

For j = 1, . . . , J − 1,

ηij(θ2) = hT
j (xi)β2j =

σ2(j+1)−1∑
l=σ2(j)

hT
l (xi)βl =

σ2(j+1)−1∑
σ2(j)

ηil(θ1)

if σ2(j) < σ2(j + 1); and ηij(θ2) = −
∑σ2(j)−1

l=σ2(j+1) ηil(θ1) if σ2(j) > σ2(j + 1).

It can be verified that (S.1) implies for any 1 ≤ j < k ≤ J − 1,

k∑
l=j

β2j =


∑σ2(k+1)−1

l=σ2(j)
βl if σ2(j) < σ2(k + 1)

−
∑σ2(j)−1

l=σ2(k+1) βl if σ2(j) > σ2(k + 1)

(S.2)
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Then for j = 1, . . . , J − 1,

J−1∏
l=j

ρil(θ2)

1− ρil(θ2)
= exp

{
J−1∑
l=j

ηil(θ2)

}

=


∏σ2(J)−1

l=σ2(j)
ρil(θ1)

1−ρil(θ1)
if σ2(j) < σ2(J)

1∏σ2(j)−1

l=σ2(J)

ρil(θ1)

1−ρil(θ1)

if σ2(j) > σ2(J)

According to (2.2) and (2.3), it can be verified that πij(θ2) = πiσ2(j)(θ1) for

all i = 1, . . . ,m and j = 1, . . . , J . That is, (2.4) holds given θ1 .

On the other hand, (S.2) implies an inverse transformation from θ2 to

θ1

βj =

σ−1
2 (j+1)∑

l=σ−1
2 (j)

β2l (S.3)

with j = 1, . . . , J − 1. That is, it is one-to-one from θ1 to θ2 . According

to Theorem 2.1, id ∼ σ2 .

Similar as in the proof of Theorem 2.5, we have σ1 ∼ σ2 for any two

permutations σ1 and σ2 .

Proof. of Theorem 2.7: We frist verify condition (2.4) for σ1 = id and

σ2 = (J − 1, J). In this case, given θ1 = (βT
1 , . . . ,β

T
J−2,β

T
J−1)

T for σ1, we

let θ2 = (βT
1 , . . . ,β

T
J−2,−βT

J−1)
T for σ2. Then ηij(θ2) = hT

j (xi)βj = ηij(θ1)

for j = 1, . . . , J − 2, and ηi,J−1(θ2) = −hT
J−1(xi)βJ−1 = −ηi,J−1(θ1). We

further obtain ρij(θ2) = ρij(θ1) for j = 1, . . . , J − 2 and ρi,J−1(θ2) =

1−ρi,J−1(θ1). According to (2.2) and (2.3), we obtain πij(θ2) = πij(θ1) for
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j = 1, . . . , J − 2; πi,J−1(θ2) = πiJ(θ1); and πiJ(θ2) = πi,J−1(θ1). That is,

(2.4) holds given θ1, which also holds given θ2 since it is one-to-one from θ1

to θ2 . According to Theorem 2.1, id ∼ (J−1, J) and thus σ1 ∼ σ1(J−1, J)

for any permutation σ1 .

Proof. of Lemma 2: It is well known that for each i = 1, . . . ,m,
(

Yi1

Ni
, . . . , YiJ

Ni

)
maximizes

∑J
j=1 Yij log πij as a function of (πi1, . . . , πiJ) under the con-

straints
∑J

j=1 πij = 1 and πij ≥ 0, j = 1, . . . , J (see, for example, Sec-

tion 35.6 of Johnson et al. (1997)). If θ̂ ∈ Θ and σ̂ ∈ P satisfy πiσ̂−1(j)(θ̂) =

Yij

Ni
for all i and j, then {πiσ̂−1(j)(θ̂)}ij maximizes

∑m
i=1

∑J
j=1 Yij log πiσ−1(j)(θ),

which implies (θ̂, σ̂) maximizes lN(θ, σ) and thus l(θ, σ).

Proof. of Lemma 3: According to the strong law of large numbers (see,

for example, Chapter 4 in Ferguson (1996)), Ni

N
= N−1

∑N
l=1 1{Xl=xi} →

E(1{Xl=xi}) = ni

n
almost surely, as N → ∞, for each i = 1, . . . ,m. Since

n0 ≥ 1, it can be verified that min{N1, . . . , Nm} → ∞ almost surely, as

N → ∞. Similarly, we have
Yij

Ni
→ πiσ−1

0 (j)(θ0) almost surely, as Ni → ∞,
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for each i = 1, . . . ,m and j = 1, . . . , J . Then as N goes to infinity,

N−1lN(θ0, σ0) =
1

N

m∑
i=1

J∑
j=1

Yij log πiσ−1
0 (j)(θ0)

=
m∑
i=1

J∑
j=1

Ni

N
· Yij

Ni

log πiσ−1
0 (j)(θ0)

a.s.−→
m∑
i=1

J∑
j=1

ni

n
πiσ−1

0 (j)(θ0) log πiσ−1
0 (j)(θ0)

=
m∑
i=1

J∑
j=1

ni

n
πij(θ0) log πij(θ0) = l0 < 0

Proof. of Theorem 3.1: First we claim that for large enough N , all i =

1, . . . ,m and j = 1, . . . , J , 0 > log πiσ̂−1
N (j)(θ̂N) ≥ 2n(l0−1)

n0π0
, which is a finite

constant. Actually, since (θ̂N , σ̂N) is an MLE, we have N−1lN(θ̂N , σ̂N) ≥

N−1lN(θ0, σ0) for each N . According to Lemma 3, N−1lN(θ0, σ0) → l0

almost surely, then N−1lN(θ̂N , σ̂N) > l0 − 1 for large enough N almost

surely. On the other hand, since log πiσ̂−1
N (j)(θ̂N) < 0 for all i and j, then

N−1lN(θ̂N , σ̂N) =
m∑
i=1

J∑
j=1

Ni

N
· Yij

Ni

log πiσ̂−1
N (j)(θ̂N) <

Ni

N
· Yij

Ni

log πiσ̂−1
N (j)(θ̂N)

for each i and j. Since Ni

N
→ ni

n
almost surely and

Yij

Ni
→ πiσ−1

0 (j)(θ0) almost

surely, then Ni

N
· Yij

Ni
log πiσ̂−1

N (j)(θ̂N) < 1
2
· ni

n
πiσ−1

0 (j)(θ0) log πiσ̂−1
N (j)(θ̂N) for

large enough N almost surely. Then we have

0 >
1

2
· ni

n
πiσ−1

0 (j)(θ0) log πiσ̂−1
N (j)(θ̂N) > l0 − 1
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almost surely for large enough N and each i and j. Since l0 − 1 < 0, we

further have almost surely for large enough N ,

0 > log πiσ̂−1
N (j)(θ̂N) >

l0 − 1
1
2
· ni

n
πiσ−1

0 (j)(θ0)
≥ l0 − 1

1
2
· n0

n
π0

=
2n(l0 − 1)

n0π0

Now we are ready to check the asymptotic difference betweenN−1lN(θ̂N , σ̂N)

and N−1lN(θ0, σ0). According to Lemma 2 and its proof, (θ0, σ0) maximizes∑m
i=1

∑J
j=1

Ni

N
πiσ−1

0 (j)(θ0) log πiσ−1(j)(θ). Then

0 ≤ N−1[lN(θ̂N , σ̂N)− lN(θ0, σ0)]

=
m∑
i=1

J∑
j=1

Ni

N
πiσ−1

0 (j)(θ0) log πiσ̂−1
N (j)(θ̂N)

−
m∑
i=1

J∑
j=1

Ni

N
πiσ−1

0 (j)(θ0) log πiσ−1
0 (j)(θ0)

+
m∑
i=1

J∑
j=1

Ni

N

[
Yij

Ni

− πiσ−1
0 (j)(θ0)

]
·
[
log πiσ̂−1

N (j)(θ̂N)− log πiσ−1
0 (j)(θ0)

]
≤

m∑
i=1

J∑
j=1

Ni

N

[
Yij

Ni

− πiσ−1
0 (j)(θ0)

]
·
[
log πiσ̂−1

N (j)(θ̂N)− log πiσ−1
0 (j)(θ0)

]
Then for large enough N , we have almost surely

1

N
|lN(θ̂N , σ̂N)− lN(θ0, σ0)|

≤
m∑
i=1

J∑
j=1

∣∣∣∣Yij

Ni

− πiσ−1
0 (j)(θ0)

∣∣∣∣ · [−2n(l0 − 1)

n0π0

− log π0

]
Since

Yij

Ni
→ πiσ−1

0 (j)(θ0) almost surely for each i and j, then N−1|lN(θ̂N , σ̂N)

− lN(θ0, σ0)| → 0 almost surely as N goes to infinity. The rest parts of the

theorem are straightforward.
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Proof. of Corollary 1: Since AIC − AIC(θ0, σ0) = BIC − BIC(θ0, σ0) =

−2l(θ̂N , σ̂N) + 2l(θ0, σ0) = −2lN(θ̂N , σ̂N) + 2lN(θ0, σ0), the conclusion fol-

lows directly by Theorem 3.1.
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