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S1. Further simulations

In the present section, our objective is to provide Monte-Carlo simulation

results to corroborate the conclusions drawn from Proposition 1 and in

Section 4. In the first simulation exercise, the objective is to illustrate

Proposition 1. We generated M = 10, 000 independent samples of i.i.d.

observations X
(b)
1 , . . . ,X

(b)
10,000, for b = 0, 1

4
, 1
2
, 1. The X

(b)
i ’s are i.i.d. with

a common (p = 8)-dimensional Gaussian distribution with mean zero and

covariance matrix

ΣΣΣ(b) = diag((1 + n−b)1q,1p−q).

For various values of q, we computed the value of T
(n)
q and performed the

test that rejects the null hypothesis H(n)
0q when T

(n)
q > χ2

d(p,q);.95. In Figure

1, we provide histograms of the distribution of the values of T
(n)
q (obtained
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from the M = 10, 000 replications). The histograms have to be compared

with (i) the red line which is the chi-square density function with d(p, q)

degrees of freedom and (ii) the grey line which is an approximation of the

density of T
(n)
q obtained in Proposition 1; the approximation has been ob-

tained by computing a kernel density estimator based on 100, 000 replica-

tions of the random variable in (3.3). In Figure 2 we provide the empirical

rejection frequencies (out of the M = 10, 000 replications) of the tests re-

jecting H(n)
0q when T

(n)
q > χ2

d(p,q);.95. Inspection of Figures 1 and 2 clearly

reveals that the conclusions drawn from Proposition 1 are correct. Provided

that n1/2r
(n)
q →∞, the weak limit of T

(n)
q is chi-square with d(p, q) degrees

of freedom. Now if n1/2r
(n)
q does not diverge to ∞, the weak limit of T

(n)
q

is not chi-square and the test φ(n) is such that limn→∞ E[φ(n)] is far below

the asymptotic nominal level α.

The second simulation study illustrates the results obtained in Section

4. We generated M = 1, 000 independent samples of i.i.d. observations

X
(b,τ)
1 , . . . ,X

(b,τ)
10,000,

for τ = 0, 1, 2, 4, 6, 8 and b = 0, 1
8
, 1
4
, 1
2
, 1, 2. The X

(b,τ)
i ’s are i.i.d. with

a common (p =)5-dimensional Gaussian distribution with mean zero and
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Figure 1: In red, histograms of the distribution of the values of T
(n)
q (obtained from

the M = 10, 000 replications) for various values of q and b. The histograms have to be

compared with (i) the orange line which is the chi-square density function with d(p, q)

degrees of freedom and (ii) the grey line which is an approximation of the density of T
(n)
q

obtained in Proposition 1.
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Figure 2: Empirical rejection frequencies of the tests that reject the null hypothesis H(n)
0q

when T
(n)
q > χ2

d(p,q);.95 for various values of q and various values of b.

covariance matrix

ΣΣΣ(b, τ) = diag(3, 1 + n−b, 1 + n−b, 1, 1− τ

n1/2
).

The values τ = 0 and b < 1/2 provide data generating processes that belong

to the null hypothesis λ3 > λ4 = λ5 while for τ = 1, 2, 4, 6, 8, the corre-

sponding distributions are increasingly under the alternative. The value

b = 0 provides data generating processes with three eigenvalues (virtually)

in block 1 of (3.2), the values b = 1
8
, 1
4

provide data generating procesess

with one eigenvalue (virtually) in block 1 and two eigenvalues (virtually) in

block 2 of (3.2), the value b = 1
2

provides data generating processes with one
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eigenvalue (virtually) in block 1 and two eigenvalues (virtually) in block 3

of (3.2) while the values b = 1, 2 provide data generating procesess with one

eigenvalue (virtually) in block 1 and two eigenvalues (virtually) in block 4

of (3.2). For each scenario, we performed at each replication the three tests

φ
(n)
βββ , φ

(n)
LRT and φ(n) at the nominal level α = .05. In Figure 3, we provide

the empirical power curves of the various tests as functions of τ . Inspection

of Figure 3 clearly confirms our theoretical findings: the three tests φ(n),

φ
(n)
LRT and φ

(n)
βββ are asymptotically equivalent provided that n1/2r

(n)
q diverges

to infinity as n→∞ and the tests φ(n) and φ
(n)
LRT (that are asymptotically

equivalent in all regimes as stated in Lemma 1) are such that limn→∞ E[φ(n)]

is far below the asymptotic nominal level α when n1/2r
(n)
q does not diverge

to infinity as n→∞.

Now, we conclude this Section by providing some further simulation

results for a test similar to φ
(n)
new based on the pseudo-Gaussian tests men-

tioned in the real data application section. Letting κ̂(n) be a consistent

estimator of the underlying kurtosis coefficient, define

T̃
(n)
q,q+1 := (1 + κ̂(n))−1T

(n)
q,q+1,

and

T̃ (n)
q := (1 + κ̂(n))−1T (n)

q .

Our pseudo-Gaussian test φ̃
(n)
new rejects H(n)

0q at asymptotic confidence level
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Figure 3: Empirical rejection frequencies of the tests φ
(n)
LRT (based on L

(n)
q ), φ(n) (based

on T
(n)
q ) and φ

(n)
βββ (based on T

(n)
q (βββ)) performed at the nominal level α = .05.
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α when

φ̃(n)
new := I[T̃ (n)

q > χ2
d(p,q);1−α]I[T̃ (n)

q,q+1 > χ2
2;1−γ] + I[T̃ (n)

q,q+1 ≤ χ2
2;1−γ] = 1

(S1.1)

Letting φ̃(n) be the pseudo-Gaussian version of φ(n), we compare here φ̃
(n)
new

and φ̃(n) through simulations.

To do so, we generated M = 2, 000 independent samples of i.i.d. obser-

vations

X
(b,τ)
1 , . . . ,X(b,τ)

n ,

for τ = 0, 1, 2, 4, 6, 8 and b = 0, 1
8
, 1
4
, 1
2
, 1, 2. The X

(b,τ)
i ’s are i.i.d. having

(p = 5)-dimensional multivariate student distribution with zero mean, 5

degrees of freedom and scatter matrix

ΣΣΣ(b, τ) = diag(3, 1 + n−b, 1 + n−b, 1, 1− τ

n1/2
).

We performed the classical test φ(n), three versions of the φ
(n)
new test (γ = .9,

γ = .5 and γ = .05) for H(n)
03 (q = 3). We also performed the pseudo-

Gaussian versions φ̃(n) and φ̃
(n)
new of these tests, with same choices of γ. In

Figures 4 and 5, we provide empirical rejection frequencies of the Gaussian

tests as functions of τ for sample sizes n = 500 and n = 10, 000. Clearly,

the lack of robustness to non-Gaussian assumptions is shown in Figures 4

and 5.
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In Figures 6 and 7, the same empirical rejection frequencies are dis-

played for the pseudo-Gaussian tests. Pseudo-Gaussian procedures are

clearly robusts to non-Gaussianity.

Figure 4: Empirical rejection frequencies of the classical gaussian test φ(n) performed at

the asymptotic nominal level .05 and three versions of the φ
(n)
new test (all with α = .05)

based on three different choices of γ: γ = .9 (denoted as new(.1)), γ = .5 (denoted as

new(.5)) and γ = .05 (denoted as new(.95)). The sample size is n = 500.
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Figure 5: Empirical rejection frequencies of the classical gaussian test φ(n) performed at

the asymptotic nominal level .05 and three versions of the φ
(n)
new test (all with α = .05)

based on three different choices of γ: γ = .9 (denoted as new(.1)), γ = .5 (denoted as

new(.5)) and γ = .05 (denoted as new(.95)). The sample size is n = 10, 000.
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Figure 6: Empirical rejection frequencies of the classical pseudo-gaussian φ̃(n) performed

at the asymptotic nominal level .05 and three versions of the φ̃
(n)
new test (all with α = .05)

based on three different choices of γ: γ = .9 (denoted as new(.1)), γ = .5 (denoted as

new(.5)) and γ = .05 (denoted as new(.95)). The sample size is n = 500.
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Figure 7: Empirical rejection frequencies of the classical pseudo-gaussian φ̃(n) performed

at the asymptotic nominal level .05 and three versions of the φ̃
(n)
new test (all with α = .05)

based on three different choices of γ: γ = .9 (denoted as new(.1)), γ = .5 (denoted as

new(.5)) and γ = .05 (denoted as new(.95)). The sample size is n = 10, 000.
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S2. Proofs of the various results.

Proof of Proposition 1. The proof of Proposition 1 directly follows from

Proposition 1 below.

Proposition 6. Let r(n) and v be such that (3.1) holds and such that for

0 ≤ s1 ≤ s2 ≤ s3 ≤ q, (i) r
(n)
j ≡ 1 for each 1 ≤ j ≤ s1, (ii) r

(n)
j = o(1) with

n1/2r
(n)
j →∞, for each s1 < j ≤ s2, (iii) r

(n)
j = n−1/2, for each s2 < j ≤ s3

and (iv) r
(n)
j = o(n−1/2), for each s3 < j ≤ q. Let

Z(v1, . . . , vs1) =

 Z11 Z′21

Z21 Z22


where Z11 is the s2×s2 upper left block of Z(v1, . . . , vs1), Z22 is the p−s2×

p− s2 lower right block of Z(v1, . . . , vs1), etc, be such that

vec(Z(v1, . . . , vs1)) ∼ Np2(0, (Ip2 + Kp)(diag(1 + v1, . . . , 1 + vs1 ,1
′
p−s1))

⊗2).

Then as n→∞ under P
(n)

βββ,λλλ(n),

`̀̀
(n)
p−q = (`

(n)
q+1, . . . , `

(n)
p )′ := n1/2(λ̂q+1 − 1, . . . , λ̂p − 1)′ (S2.1)

converges weakly to the (p−q) smallest roots of Z22+diag(vs2+1, . . . , vs3 ,0
′
q−s3 ,0

′
p−q).

Proof of Proposition 1. Throughout the proof, we put

Z(n) := n1/2βββ′(S(n) −ΣΣΣ(n))βββ =

 Z
(n)
11 (Z

(n)
21 )′

Z
(n)
21 Z

(n)
22

 ,
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where Z
(n)
11 is the s2 × s2 upper left block of Z(n), Z

(n)
22 the p − s2 × p − s2

lower right block, etc. It follows along the same lines as in Lemma 2.1 of

Paindaveine et al. (2020) that Z(n) converges weakly to Z(v1, . . . , vs1) with

vec(Z(v1, . . . , vs1)) ∼ Np2(0, (Ip2 + Kp)(diag(1 + v1, . . . , 1 + vs1 ,1
′
p−s1))

⊗2)

under P
(n)

βββ,λλλ(n) . First note that for every q+ 1 ≤ j ≤ p, `
(n)
j is the jth largest

root of (ΛΛΛ(n) = βββ′ΣΣΣ(n)βββ)

Pq+1,n(h) = det(n1/2(S(n) − Ip)− hIp)

= det(Z(n) + n1/2(ΛΛΛ(n) − Ip)− hIp) = det(Z(n) + n1/2 diag((diag((r(n))′)v)′,0′p−q)− hIp).

It follows that (`
(n)
q+1, . . . , `

(n)
p ) are the smallest roots of

Pq+1,n(h)

(n1/2r
(n)
s2 vs2)

s2
=

1

(n1/2r
(n)
s2 vs2)

s2
det(Z(n) + n1/2 diag((diag((r(n))′)v)′,0′p−q))− hIp)

= det(

 (n1/2r
(n)
s2 vs2)

−1(Z
(n)
11 + diag(n1/2r

(n)
1 v1 − h, . . . , n1/2r

(n)
s2 vs2 − h)) (Z

(n)
21 )′

(n1/2r
(n)
s2 vs2)

−1(Z
(n)
21 ) Z

(n)
22


+diag(0′s2 , vs2+1 − h, . . . , vs3 − h, n1/2r

(n)
s3+1vs3+1 − h, . . . , n1/2r(n)q vq − h,−h1′p−q)).

Since (n1/2r
(n)
s2 vs2)

−1 = o(1), (n1/2r
(n)
s2 vs2)

−1Z
(n)
21 = oP(1) and (n1/2r

(n)
s2 vs2)

−1Z
(n)
11 =

oP(1) as n→∞. It follows that the s2 largest roots of (n1/2r
(n)
s2 vs2)

−s2Pq+1,n(h)

converge to +∞ in probability while the p − s2 smallest roots converge

weakly to the roots (in the decreasing order) of the weak limit of the poly-
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nomial

det(Z
(n)
22 − hIp−s2 + diag(vs2+1, . . . , vs3 , n

1/2r
(n)
s3+1vs3+1, . . . , n

1/2r(n)q vq,0
′
p−q));

that is the vector of the ordered eigenvalues of

Z22 + diag(vs2+1, . . . , vs3 ,0
′
q−s3 ,0

′
p−q).

This implies that the vector (`
(n)
q+1, . . . , `

(n)
p ) converges weakly to the (p− q)

smallest eigenvalues of

Z22 + diag(vs2+1, . . . , vs3 ,0
′
q−m,0

′
p−q)

which is the desired result.

In the proof of Proposition 2, we will use the following preliminary Lemma

that follows along the same lines as Lemma S.1.1 in Paindaveine et al.

(2020).

Lemma 1. Let A be a p× p matrix. Assume that λ is an eigenvalue of A

and that the corresponding eigenspace Vλ has dimension one. Denoting

as C = (Cij) the cofactor matrix of A − λIp, assume that for 1 ≤ j ≤

p v := (Cj1, . . . , Cjp)
′ 6= 0. Then Vλ = {tv : t ∈ R}.

Proof of Proposition 2. First, note that using the fact that

E(n) =

E
(n)
11 E

(n)
12

E
(n)
21 E

(n)
22
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is an orthogonal matrix, we have that

E
(n)
21 (E

(n)
11 )′ = −E(n)

22 (E
(n)
12 )′ and E

(n)
22 (E

(n)
22 )′ = Ip−q − E

(n)
21 (E

(n)
21 )′. (S2.2)

We first will prove (a). Following the notations of the proof of Proposition

1, we put

Z(n) := n1/2βββ′(S(n) −ΣΣΣ(n))βββ =

Z
(n)
11 (Z

(n)
21 )′

Z
(n)
21 Z

(n)
22

 ,

where Z
(n)
11 the q× q upper-left block and Z

(n)
22 the p− q× p− q lower-right

block of Z(n). For 1 ≤ j ≤ q, we put

θ̂θθ
(n)

j := βββ′β̂ββj = (b
(n)
j , e

(n)
j )′,

where b
(n)
j is the jth line of E

(n)
11 and e

(n)
j the jth line of E

(n)
12 . We also use

the notation

`̀̀(n)q = (`
(n)
1 , . . . , `(n)q ) := n1/2(λ̂1− (1 + r

(n)
1 v1), . . . , λ̂q− (1 + r(n)q vq)) (S2.3)

as in Proposition 1. For any 1 ≤ j ≤ q, it is easy to verify that `
(n)
j is the

jth (largest) eigenvalue of

n1/2βββ′S(n)βββ − n1/2(1 + r
(n)
j vj)Ip = Z(n) − diag(k

(n)
j1 , . . . , k

(n)
jq , n

1/2r
(n)
j vj1

′
p−q),

where k
(n)
j` := n1/2(r

(n)
j vj − r

(n)
` v`); obviously k

(n)
jj = 0. The eigenvector

associated with `
(n)
j is θ̂θθ

(n)

j . Therefore, using Lemma 1, we have that θ̂θθ
(n)

j is



Gaspard Bernard and Thomas Verdebout

proportional to the vector of the cofactors obtained with respect to the jth

row of (K(n) := diag(k
(n)
j1 , . . . , k

(n)
jq ))Z

(n)
11 −K(n) − `(n)j Iq (Z

(n)
21 )′

Z
(n)
21 Z

(n)
22 − n1/2r

(n)
j vjIp−q − `(n)j Ip−q

 ,

or equivalently, proportional to the vector of the cofactors obtained with

respect to the jth row of

(

q∏
`=1

c
(n)
j` )(n1/2r

(n)
j vj)

−(p−q)

Z
(n)
11 −K(n) − `(n)j Iq (Z

(n)
21 )′

Z
(n)
21 Z

(n)
22 − n1/2r

(n)
j vjIp−q − `(n)j Ip−q

 ,

(S2.4)

where

c
(n)
j` :=


(k

(n)
j` )−1 if limn→∞ k

(n)
j` 6= 0

1 else.

Note that since n1/2r
(n)
q diverges to∞, provided that limn→∞ r

(n)
j vj−r(n)` v` 6=

0, (k
(n)
j` )−1 = c

(n)
j` converges to zero as n→∞ while obviously c

(n)
jj = 1. Fol-

lowing (S2.4), letting C(n) := diag(c
(n)
j1 , . . . , c

(n)
jq ), classical algebra yields to

the fact that θ̂θθ
(n)

j is also proportional to the vector of the cofactors obtained

with respect to the jth row of(C(n)(Z
(n)
11 − `

(n)
j Iq)−C(n)K(n) C(n)(Z

(n)
21 )′

(n1/2r
(n)
j vj)

−1Z
(n)
21 (n1/2r

(n)
j vj)

−1Z
(n)
22 − Ip−q −

`
(n)
j

n1/2r
(n)
j vj

Ip−q

 .

(S2.5)
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It is easy to check that (b
(n)
j )′ = OP(1) (and not oP(1)) while the cofactors

associated with the jth line and the `th column of the above matrix with

q < ` ≤ p are all OP((n1/2r
(n)
j )−1); indeed these cofactors are obtained

by computing the determinants of matrices containing a line with only

OP((n1/2r
(n)
j )−1) elements or zeros while the other entries are OP(1) as n→

∞. It follows that e
(n)
j = OP((n1/2r

(n)
j )−1). Point (a) then follows easily

from (S2.2). We now turn to point (b). For point (b), we will show the

result for the qth line of E
(n)
12 which is obviously enough. First note that

since n1/2r
(n)
q → c <∞,

n1/2(λ̂q − 1) = `(n)q + n1/2r(n)q vq

is (i) OP(1) and (ii) the qth (largest) eigenvalue of

Z(n)+diag(n1/2r
(n)
1 v1, . . . , n

1/2r(n)q vq,0
′
p−q) = Z(n)+diag(n1/2(diag((r(n))′)v)′,0′p−q).

The associated eigenvector is θ̂θθ
(n)

q = βββ′β̂ββq = (b
(n)
q , e

(n)
q )′, using the same

notations as in point (a) above. Using again the same technique as for

point (a) above, Lemma 1 entails that θ̂θθ
(n)

q is proportional to the vector of

the cofactors obtained with respect to the first row of

(
s∗∏
`=1

(n1/2r
(n)
` v`)

−1)

Z
(n)
11 + n1/2diag((diag((r(n))′)v)′)− n1/2(λ̂q − 1)Iq (Z

(n)
21 )′

Z
(n)
21 Z

(n)
22 − n1/2(λ̂q − 1)Ip−q

 ,

(S2.6)
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where s∗ = max{j ∈ {1, . . . , q}, n1/2r
(n)
j → ∞} (s∗ ≡ 0 if the maximum

does not exist). Letting

R(n) := diag((n1/2r
(n)
1 v1)

−1, . . . , (n1/2r
(n)
s∗ vs∗)−1,1′q−s∗),

it follows from (S2.6) that θ̂θθ
(n)

q is proportional to the vector of the cofactors

obtained with respect to the qth row of

M(n) :=

R(n)Z
(n)
11 + n1/2R(n)diag((diag((r(n))′)v)′)− n1/2(λ̂q − 1)R(n) R(n)(Z

(n)
21 )′

Z
(n)
21 Z

(n)
22 − n1/2(λ̂q − 1)Ip−q

 .

Since Z(n) and n1/2(λ̂q − 1) are both OP(1) (and not oP(1)) as n→∞, we

readily have that

M(n) :=


Is∗ 0

Y
(n)
11 Y

(n)
12

Z
(n)
21 Z

(n)
22 − n1/2(λ̂q − 1)Ip−q

+ oP(1)

as n→∞, where (Y
(n)
11

... Y
(n)
12 ) is a (q − s∗)× p matrix whose elements are

OP(1) (and not oP(1)). It is then easy to see that the cofactor associated

with the qth line and the (q+1)th column of the above matrix is not oP(1).

Point (b) follows.

Before providing the proof of Proposition 3, the following Lemma can be

obtained along the same lines as Proposition 1.
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Lemma 2. Let r(n), v and Z be as in Proposition 1. Then we have that as

n→∞ under P
(n)

βββ,λλλ(n) with λλλ(n) as in (3.1), ((`̀̀(n)q )′, (`̀̀
(n)
p−q)

′)′ defined through

(S2.1) and (S2.3) is OP(1) as n→∞.

Proof of Proposition 3. In this proof, we put Λ̂ΛΛ
(n)

= diag(Λ̂ΛΛ
(n)

q , Λ̂ΛΛ
(n)

p−q) =

β̂ββ
′
S(n)β̂ββ, where Λ̂ΛΛ

(n)

q := diag(λ̂1, . . . , λ̂q) and Λ̂ΛΛ
(n)

p−q := diag(λ̂q+1, . . . , λ̂p) and

R(n) := diag((r(n))′). We have that

S
(n)
Y = (0(p−q)×q

... Ip−q)(E
(n))′Λ̂ΛΛ

(n)
E(n)(0(p−q)×q

... Ip−q)
′ = ((E

(n)
12 )′

... (E
(n)
22 )′)Λ̂ΛΛ

(n)
((E

(n)
12 )′

... (E
(n)
22 )′)′.

(S2.7)

This entails that

n1/2(S
(n)
Y − Ip−q) = n1/2(((E

(n)
12 )′

... (E
(n)
22 )′)Λ̂ΛΛ

(n)
((E

(n)
12 )′

... (E
(n)
22 )′)′ − Ip−q)

= n1/2((E
(n)
12 )′Λ̂ΛΛ

(n)

q

... (E
(n)
22 )′Λ̂ΛΛ

(n)

p−q)((E
(n)
12 )′

... (E
(n)
22 )′)′ − Ip−q).

Now, since E(n) is orthogonal, (E
(n)
12 )′E

(n)
12 + (E

(n)
22 )′E

(n)
22 = Ip−q, which im-

plies, that letting

n1/2(S
(n)
Y − Ip−q) = n1/2((E

(n)
12 )′(Λ̂ΛΛ

(n)

q − Iq)E
(n)
12 + (E

(n)
22 )′(Λ̂ΛΛ

(n)

p−q − Ip−q)E
(n)
22 )

= (E
(n)
12 )′(R(n))−1(Λ̂ΛΛ

(n)

q − Iq)n
1/2R(n)E

(n)
12 + +(E

(n)
22 )′(Λ̂ΛΛ

(n)

p−q − Ip−q)E
(n)
22 )

Note that for each 1 ≤ j ≤ q, (r
(n)
j )−1(λ̂j−1) = (r

(n)
j )−1(λ̂j−1−r(n)j vj)+vj.

Since n1/2r
(n)
j →∞, Lemma 2 entails that

(r
(n)
j )−1(λ̂j − 1− r(n)j vj) = (n1/2r

(n)
j )−1n1/2(λ̂j − 1− r(n)j vj)
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is oP(1) as n→∞ so that since from Proposition 2 (point (a)), n1/2R(n)E
(n)
12

is OP(1) as n→∞, we have that

n1/2(S
(n)
Y − Ip−q) = n1/2(E

(n)
22 )′(Λ̂ΛΛ

(n)

p−q − Ip−q)E
(n)
22 + oP(1) (S2.8)

as n→∞. Now, using (S2.8),

T (n)
q (βββ) =

n

2

(
(p− q)
tr(S

(n)
Y )

)2(
tr((S

(n)
Y )2)− 1

p− q
tr2(S

(n)
Y )

)

=
n

2

(
(p− q)
tr(S

(n)
Y )

)2(
tr((S

(n)
Y − Ip−q)

2)− 1

p− q
tr2(S

(n)
Y − Ip−q)

)

=
1

2

(
(p− q)∑p
j=q+1 λ̂j

)2 (
tr((n1/2(E

(n)
22 )′(Λ̂ΛΛ

(n)

p−q − Ip−q)E
(n)
22 )2)

− 1

p− q
tr2(n1/2(E

(n)
22 )′(Λ̂ΛΛ

(n)

p−q − Ip−q)E
(n)
22 )
)

+ oP(1), (S2.9)

as n → ∞. Using the fact that Proposition 2 yields E
(n)
22 (E

(n)
22 )′ = Ip−q +

oP(1), (S2.9) and the Slutsky Lemma yield

T (n)
q (βββ) =

1

2

(
(p− q)∑p
j=q+1 λ̂j

)2( p∑
j=q+1

(n1/2(λ̂j − 1))2 − 1

p− q
(

p∑
j=q+1

n1/2(λ̂j − 1))2

)
+ oP(1)

= T (n)
q + oP(1)

under P
(n)

βββ,λλλ(n) as n→∞, which ends the proof.

Proof of Proposition 4. Fix 0 < q ≤ p−2 (the case q = 0 is trivial). Letting

`̀̀
(n)
2,q := (`(n)q , `

(n)
q+1) = n1/2((λ̂q − (1 + r(n)q vq), (λ̂q+1 − 1)),
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we have that (with e1 = (1, 0) ∈ R2)

T
(n)
q,q+1 =

n(
∑q+1

j=q λ̂
2
j − 1

2
(
∑q+1

j=q λ̂j)
2)

1
2
(
∑q+1

j=q λ̂j)
2

=
n(
∑q+1

j=q(λ̂j − 1)2 − 1
2
(
∑q+1

j=q(λ̂j − 1))2)

1
2
(
∑q+1

j=q λ̂j)
2

=
(`̀̀

(n)
2,q + n1/2r

(n)
q vqe1)

′(I2 − 12(1
′
212)

−11′2)(`̀̀
(n)
2,q + n1/2r

(n)
q vqe1)

1
2
(
∑q+1

j=q λ̂j)
2

so that since from Lemma 2, `̀̀
(n)
2,q is OP(1) as n→∞ under P

(n)

βββ,λλλ(n) ,

T
(n)
q,q+1 =

(`̀̀
(n)
2,q + n1/2r

(n)
q vqe1)

′(I2 − 12(1
′
212)

−11′2)(`̀̀
(n)
2,q + n1/2r

(n)
q vqe1)

1
2
(
∑q+1

j=q λ̂j)
2

(S2.10)

converges to +∞ in probability when n1/2r
(n)
q → ∞. We therefore have

that, for any γ ∈ (0, 1),

E[|φ(n)
new − φ(n)|] = P[(T (n)

q < χ2
d(p,q);1−α) ∩ (T

(n)
q,q+1 ≤ χ2

2;1−γ)]

≤ P[T
(n)
q,q+1 ≤ χ2

2;1−γ],

so that E[|φ(n)
new − φ(n)|] converges to zero when n1/2r

(n)
q →∞.

S3. Consistency of k̂new

In this Section, we provide the consistency (under some conditions) of the

estimator k̂new.
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Proposition 7. Let c(n) and b
(n)
0 , . . . , b

(n)
p−2 be positive sequences that diverge

to ∞ and are such that (i) c(n) = o(n) and b
(n)
q = o(n) as n → ∞ for q =

0, . . . , p− 2 and (ii) (max(c(n), b
(n)
0 , . . . , b

(n)
p−2))

−1/2n1/2(λ
(n)
k − λ

(n)
k+1) diverges

to ∞ as n→∞. Then limn→∞ P(k̂new = k) = 1.

To simplify the interpretation of Proposition 2, assume that the se-

quences c(n) and b
(n)
0 = . . . = b

(n)
p−2 ≡ c(n) are all the same. Proposition 2

then shows that provided that c(n) does not diverge too quickly to ∞ in

the sense that c(n) = o(n) and (c(n))−1/2n1/2(λ
(n)
k − λ

(n)
k+1) diverges to ∞ as

n→∞, the resulting estimator k̂new is consistent.

Proof of Proposition 2. Fix k < p − 1 (the case k = p − 1 is considered at

the end of the proof). In the proof, we assume without loss of generality

that λλλ(n) is as in (3.1) and work under P
(n)

βββ,λλλ(n) with λλλ(n) such that H(n)
0k holds.

Therefore, since

(max(c(n), b
(n)
0 , . . . , b

(n)
p−2))

−1/2n1/2(λ
(n)
k − λ

(n)
k+1)→∞

as n → ∞, we have that (c(n))−1/2n1/2(λ
(n)
k − λ

(n)
k+1) → ∞ as n → ∞. We

then have using the same notations as in (S2.10) that

T
(n)
k,k+1

c(n)
=

(c(n))−1/2(`̀̀
(n)
2,k + n1/2r

(n)
k vke1)

′(I2 − 12(1
′
212)

−11′2)(c
(n))−1/2(`̀̀

(n)
2,k + n1/2r

(n)
k vke1)

1
2
(
∑k+1

q=k λ̂q)
2

(S3.11)

converges to +∞ in probability for k > 0. When k = 0, T
(n)
0,1 is arbitrarily
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taken such that T
(n)
0,1 > c(n) (T

(n)
0,1 can be arbitrarily fixed). Now, since H(n)

0k

holds, we also have by (1) that

(`
(n)
k+1, . . . , `

(n)
p ) = n1/2(λ̂k+1 − 1, . . . , λ̂p − 1) = OP(1)

as n→∞. Following the same lines as in S3.11 then yields that

(b
(n)
k )−1T

(n)
k = oP(1) (S3.12)

as n→∞. Combining S3.11 and S3.12, we obtain that under P
(n)

βββ,λλλ(n) with

λλλ(n) such that H(n)
0k holds,

lim
n→∞

P(I[T (n)
k > b

(n)
k ]I[T (n)

k,k+1 > c(n)] + I[T (n)
k,k+1 ≤ c(n)] = 0) = 1. (S3.13)

Now, for 0 ≤ j < k, since (b
(n)
j )−1/2n1/2(λ

(n)
k −λ

(n)
k+1)→∞, working along the

same line as S3.11, we obtain that T
(n)
j /b

(n)
j converges to +∞ in probability.

Therefore,

lim
n→∞

P(I[T (n)
j > b

(n)
j ]I[T (n)

j,j+1 > c(n)] + I[T (n)
j,j+1 ≤ c(n)] = 1) = 1. (S3.14)

as n→∞ under P
(n)

βββ,λλλ(n) with λλλ(n) such that H(n)
0k holds. Since

k̂new = min
j∈{0,...,p−2}

{I[T (n)
j > b

(n)
j ]I[T (n)

j,j+1 > c(n)] + I[T (n)
j,j+1 ≤ c(n)] = 0},

it follows from S3.13 and S3.14 that k̂new − k is oP(1) as n → ∞. Finally,

for k = p− 1, since

(max(c(n), b
(n)
0 , . . . , b

(n)
p−2))

−1/2n1/2(λ
(n)
p−1 − λ(n)p )→∞
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as n→∞ we have that

lim
n→∞

P(T
(n)
j ≥ b

(n)
j ) = 1 (S3.15)

for all 0 ≤ j ≤ p− 2. The result follows.
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Département de Mathématique and ECARES
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