Supplementary Appendix to
“NAPA: Neighborhood-Assisted and Posterior-Adjusted
Two-sample Inference”

Li Ma', Yin Xia, and Lexin Li*

 Fudan University and *University of California at Berkeley

This supplement contains the proofs of all theoretical results in Section [ST] the technical lem-

mas and their proofs in Section[S2] and additional numerical results and discussions in Section

53l

S1 Proofs
S1.1 Proof of Theorem (1]

Proof. We show in this theorem that NAPA weight produces a better ranking of p-values than
LAWS weight. As such, NAPA yields a higher power than LAWS with an mFDR no larger
than LAWS. For any threshold ¢, we have that,

mFDR (6;*"%) =

In addition, we have,
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Let event A, = {U(s) : m(s,U(s)) < 1/(1 + tLaws)} and denote by AS the complement of

Ag. Then we have that,
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Then, by the concavity and non-decreasing of F, we have uniformly for s € S that,
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where (SI.1) is derived by the condition that y F](y|s) is non-decreasing in [0, 1]. Recall that
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Then we note that we can express (SI.2) = ¢.(n(s)) — 1. By F; and yF}(y|s) are both

non-decreasing, we have ¢, (z) is also non-decreasing on [0, 1]. Hence, we have
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Therefore, we have that,
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It implies that, with the oracle threshold of LAWS, NAPA yields a smaller FDR level. There-
fore, we have txapa > fraws. Recall that for a given group of weights v, the power of 47 is
defined as
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Therefore, we have,

(6NAPA) > /] <6NAPA) > ] (5LAWS) 7

tNAPA tLaws tLaws

which completes the proof of Theorem 0

S1.2 Proof of Theorem 2

Proof. Define the event
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To show 7.(s,U(s)) converges to 7-(s,U(s)) in probability, we calculate the conditional

mean square errors of the numerator and denominator of (S1.3)) under event A respectively.

Step 1. First, we deal with the numerator of (S1.3]).

Step 1.1 For the bias term, note that
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By Condition with probability 1 — O(m™!), the Hessian A has bounded eigenvalues at
(s'",U(s"),U(s))" uniformly forall s € S. This, together with Pr {p(s') > 7|U(s'),U(s)} €
0, 1], yields that, the first partial derivatives of Pr{p(s’) > 7|U(s’),U(s)} are bounded at
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of H into {sz haé] and that h = h? — a” Hg'a. Therefore, under the condition that Hg
U

is nonsingular and h # 0, we have that,
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uniformly in s € S. Letting (£",9)" = Q(x", yx)" = (Z1,- -+ , T, y)", we have that,
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Meanwhile, by Q"Q = QQ™ = I again, we have (Q — ev™/2)"' = Q", and v' Q" + ze™ =
(1,0,---,0). These together with e"e + 2% = 1 give

|

By Condition we have that,

v(Q—ev'/2) 7tz

<1+ HzeTH2 <2

SzZ‘

,UTQT
2

max

/@2K<a~c,@>dm - ﬁva T oyal? K{Q(@", o) }da

<| Q—ev'/z)” ‘ K(z 0)dm+ﬁ2yz| K{Q(z", yz)" }dz

<4 ﬂlﬁﬁf{(:@,@)d:& + [2K{Q@, ) Vdx < .

Hence, we obtain uniformly in: = 1,--- , b that,

‘/aéfK(i,gj)dm

These, together with Condition [(C4)] yield that the right-hand-side of (SI.4)) goes to 0.

< oQ.

< 00, ‘/gsz(i,gj)dm

Step 1.2 We show that the variance term converges to zero. Under Condition [(C3)l we

have
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where |K(&,7)| < M < oo. Therefore, there exist some constants ¢y, c2 > 0, such that
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By m~'|H| /2 = o(h'/?), we have the right-hand-side of (S1.5) also goes to 0.
Combine (S1.4) and (S1.3)), and then we have that

Ep(s),U(s)}.s7es Z Ku(s—38,U(s) - U(s)) —

s'€Z(T)

Pr{p(s) > 7|U(s)} % Z Eusy [Ku(s—s,U(s) —U(s'))] U(s)} — 0, (S1.6)

s'eS

in probability as S — S.

Step 2. Next, we deal with the denominator of (S1.3]).

Note that
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and that
Vary(s),s'es) {Z Ku(s—s',U(s) - U(S/))|U(3)}
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Then, we can similarly obtain

2
U(s)} 0, (S1.7)

in probability as S — S.

Step 3. By the continuous mapping theorem, combining the results of (S1.6) and (S1.7)), we
complete the proof of Theorem 2] [

S1.3 Proof of Theorem

Proof. Recall that

ty = sup
t

{t- 2ses Tr(8,U(8))t < O‘}
“max { Y5 H{pu(s) <t} 1}~ [

and we reject the null hypothesis Hy(s) if p,(s) < t, where p,(s) = p(s)/ IW;TS(;JU

Hence, to prove Theorem 3] it is sufficient to show that, uniformly for all ¢ > ¢,,,

’Zses 1 {pu(s) < t,6(s) =0}
CY ses (8, U(8))t

in probability for some 0 < ¢ < 1, where the indicator | {p,,(s) < ¢,6(s) = 0} incorporates

—1‘ — 0, (S1.8)

U (s) via the p-value weight.
By Genovese et al. (2006), the BH procedure controls FDR when it is applied to the

weighted p-values, when the weights sum to m and they are independent of the p-values.

9



Algorithm S1.1 The scaled weighting procedure (SWP).

—1
Step 1. Calculate the weights as (s, U(s)) = {Zse S lf;ss’(g((f’()g))} = 1:((2%((8’8)))), and then

adjust p-values by pgz(s) = p(s)/w(s,U(s)) for s € S.
Step 2. Obtain the data-driven threshold

mit
teg =sup 0<t<1: <a,.
t { max {3, s {pa(s) <t} 1} }

Step 3. Reject Hy(s) if pg(s) < tgforalls € S.

Therefore, we first propose a scaled weighting procedure (SWP) in Algorithm [ST.T] and show
that it controls FDR and FDP asymptotically in Lemma[2l We then further prove (S1.8).
Recall that we aim to show the false rejections ) ¢ I {pw(s) < t,0(s) = 0} is close to
€Y ses (8, U(s))t for some 0 < ¢ < 1. However, it is difficult to achieve this goal di-
rectly. Hence, we introduce two intermediate quantities as a bridge. Specifically, let By =
{U(s) : w(s,U(s)) € [€,1 — €] and |U(8) — u(s)| < (2logm)/?}, and then we divide the
proof into three steps. First, by Lemma 2 and comparing the p-value thresholds of NAPA and
SWP, we show that, given {f(s) : s € S}, the false rejection ) o1 {pw,(s) <t,0(s) =0}
is close to its expectation over {(p(s), U(s)) : s € S}, 3 55— Evs) [ Pr{p.(s) < t|0(s) =
0,Bs}|{6(s) : s € S}]. Next, we further show that > 6(s)=0 Ev(s) [ Pr{pu(s) < t6(s) =
0, Bs}|[{0(s) : s € S}] is close to its expectation over {(6(s)) : s € S}, >, s Evs) [Pr{pw(s)
< t|0(s) = 0, Bs} Pr{f(s) = 0|U(s)}], by dealing with the randomness of {f(s) : s € S}.

Finally, we show that ) ©__¢ 7, (s, U(s))t can conservatively estimate ) __ ¢ Ey(s) [Pr{pw(s) <

seS

t|0(s) = 0, Bs} Pr{0(s) = 0|U(s)}]. By combining these steps, we establish the asymptotic
FDP and FDR control of the NAPA procedure.

Step 1. Firstly, we show that given {0(s),s € S}, >, s {puw(s) < t,0(s) = 0} is close to
2 _6(s)=0 EU(s) [Pr{p.(s) < t|6(s) =0, Bs}’{Q(s) :s € S} forall t > t,.
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Note that, by the proof of Lemma|2|, we have uniformly for all £ > ¢ that,
> ses {pa(s) < t,0(s) =0}
ze(s)zo Evs) [Pr{pﬁ,(s) <t|f(s) =0, BS}|{0(8) 1S € S}]

in probability as S — S, where p;(s) = pu(s)m™" > s %

-1} =0, (S1.9)

Letting t = {ZS cs % } - mt, then we have that,

mr(s,U(s) 7
mt D ses T (s.U(s))

max {3, s H{pals) < t},1} ~ max {Y s {pu(s) <t} 1}
Thus, the corresponding threshold for p,,(s) in SWP is

- > ses 12(5(’553()3)))75
s =sup 0<t<1: R <ajy.
: { max {3 cs 1 {puls) < 11,1]

We have that t;, =t -m™' Y, g %, which implies that (ST.9) holds for t > £, with

Pw- Recall that

ty = Sup {O <t<1: 2scs (8, U(s))t < } _
t

max{zseg H{pw(s) <t}, 1} =

Comparing the definition of ¢,, and ts, we see that £ < t,,. Then by (ST.9), we have uniformly
forallt > t,,

> ses H{pu(s) < 1,0(s) = 0}
> o(s)=0 Evts) [Pr{pu(s) < t|0(s) = 0, Bs}[{0(s) : s € S}]
in probability as S — S.

-1

— 0, (S1.10)

Step 2. Next, we show that Y5, Ev(s) [Pr{pu(s) < 1|0(s) =0, Bs}|{0(s) : s € S}] is
close to ) . s Evs) [Pr{pw(s) < t|0(s) = 0, Bs} Pr{0(s) = 0[U(s)}].

More specifically, by Lemmal[l] we have
(s),s€8 Z EU Pr{p’w ) < t|€(8) = 07 BS}‘{Q(S) 1S € S}}

= Z Eo(s),U(s) 0(s) = 0} Pr{p,(s) < t|f(s) =0, Bs}]

seS

= {1+0(1)} ) Eue) Pr{pu(s) < t0(s) = 0, B;} Pr{6(s) = 0|U(s)}],

seS
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where the o(1) is in the limit of S — S.

Also note that, by Condition and the proof of Lemma 2]
Varg(s),ses 2_g(s)=0 Ev(s) [Pr{p.(s) < tl0(s) =0, Bs}|{0(s) : s € S}]

(Eutorocs Saormo Evo [Pripuls) < 160() = 0, B,}|{6(s) : 5 € 8}})2
 Varugacs e (Evie) [Pr{pu(s) < 16(s) = 0. B} {6(s) - s € )] 1{0(s) = 0})
~ {Entoses Ses (vt [Pripals) < t0(s) = 0. B}[{0(s) + s € 51| 1{0(s) = 0}) }”

<V3r9(5)7865 Y ses (EU(S) [w(s U(sz))‘{ﬁ(s) 18 € S}} 1{0(s) = 0})) — of1).

m

Therefore, we have

(s) [Pr{pu(s) < t|0(s) = 0. Bs}[{0(s) : s € S}]
Zses [Pr{pw( ) <t|0(s) = 0, Bs} Pr{0(s) = 0[U(s)}]

in probability.

—1] =0, (SLID)

Step 3. Finally, we show that > __s Ey(s) [Pr{p.(s) < t|0(s) =0, Bs} Pr{6(s) = 0|U(s)}]
can be further conservatively estimated by > __s 7. (s, U(s))t.

By the proof of Lemma [2, under event Bj, the thresholds for {p,(s),U(s)} is in the
corresponding range of {7'(s), U(s)} where Lemma l|holds. Then we have uniformly for all

t 2> ty,

> Eus [Pr{pu(s) < tl6(s) = 0, B,} Pr{6(s) = 0]U(s)}]

seS

_ o mE U)o
_gEU@{[{H<1>}1_WT(SU(S))t+0< )| a-auen) st

<3 Euy [{1+ D) ”T(S(U( 2>))

={1+0(1)} > Evom(s,U(s))t + O(m™")

sES

={1+ 0(1)}Eq(s)ses Y m-(s,U(s))t,

seS

{1~ 7 (s, U(s))} + 0<m-2>}

where o(1) is in the limit of S — S, and (ST.12) is obtained by Lemmal[l]
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Also, by Condition[(C7)} 7, (s, U(s)) has bounded first derivatives and is hence continuous
in U(s). By the proof of Proposition[I} we have {U(s),s € S} — N({u(s),s € S}, %) in
distribution, where ¥ = (05,), 051 = (a1 +{9(8)0(1) 1 rg10) /({1 +9(8) H1+9(1)}) /2.
Let g({U(s),s € S}) = > ,cs (8, U(s)). By delta method, we have g({U(s),s € S}) —
N(g({u(s),s € S}),07) in distribution with

0y = Vg({u(s),s € S}'EVg({u(s), s € S}) = O (max{Ai(R1), \i(Rz) }m)

Then, under Condition we have

Vary(s)ses »_ {m:(s,U(s))t} = o <E2U(3)7365 > (s, U(s))t) .

seS seS

Hence, we have

¢ Zses 7T7.(S, U(S))t
2 ses Eugs) [Pr{pu(s) < 1[0(s) = 0, By} Pr{6(s) = 0|U(s)}]

in probability for some 0 < ¢ < 1.

Finally, by combining (ST.10), (SI.T1)) and (S1.13), (S1.8)) is proved, which completes the
proof of Theorem O

—1‘ — 0, (S1.13)

S1.4 Proof of Theorem 4

Proof. Note that, to show Theorem it suffices to show,

> ses ! {pa(s) <t,6(s) = 0}
¢ Zses 7ATT(S’ U(S))t

in probability for some 0 < ¢ < 1.
First, define the events B, = B, N {U(s) : #,(s,U(s)) = {1+ o(1)}n,(s,U(s))} for
all s € S. Then, under Theoremand Condition [(C7), we have Pr(és) — 1forall s € S.

-1} =0, (S1.14)

Hence, it is easy to see that Lemmal[2]still holds with estimated weights {7 (s, U(s)) : s € S}.
Therefore, similar to the proof of Theorem we have, uniformly for all £ > ¢,

> ses 1 {pa(s) <t,0(s) =0}
S oe)20 Evee) [Pr{pﬁ,(s) < tl6(s) = 0, B,}|{0(s) : s € S}

-1/ =0, (S1.15)
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in probability as S — S.
Then, by Condition Lemma [2]and Theorem [2] we can similarly obtain that,

S oter=0 Eve [Pr{pw(s) < tl0(s) = 0, B.}|{0(s) : s 3}}
S e Evte) [Pripals) < t16(s) = 0, B} Pr {8(s) = 01U (s)}]

—1| =0, (SL16)

in probability.

Finally, by Lemma[l]and Theorem 2| we have uniformly for all ¢ > ¢, that,

S Evtey [Pripuls) < 116(s) = 0, B} Pr {6(s) = 0[U(s)}

seS

) e mls U)o

=3 vt |0 o T gyt e Ue)) + 00
' rels,U(s)) .

<3 vt [ (1o} 175 gy L (5. U6} + O )

={1+0(1)} Y Eyslr-(s,U(s))]t + O(m™")

seS

:{1 + 0(1)} EU(s),sGS Z 7%7(37 U(S))t,

seS

where o(1) is in the limit of S — S. Similarly, we also obtain

Vary(sses ) {-(s,U(s))t} = o <E2U<s),ses > it(s,U (S))t> :

seS seS

Then we have

€ 2ses fol8, Uls))t 10, (SLID)
Y s Evte) [Pr{pu(s) < tl0(s) = 0, B} Pr{0(s) = 0[U(s)}

for some 0 < ¢ < 1.

By combining (ST.13)), (ST.16) and (ST.17), (ST1.14)) is proved and we complete the proof
of Theorem 4] ]
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S1.5 Proof of Proposition 1]

Proof. We aim to verify the asymptotic normality of 7'(s) and U (s) and show the asymptotic

independence between 7'(s) and U (s), under the null. Recall the fact

G (t + o{(log m)_l/Q}) ¢ (t + o{(logm)~1/?})
G(t) (t)

uniformly in 0 < ¢ < ¢o(logm)'/? for any constant ¢y > 0, where ¢(-) is the probability den-

=1+0(1), (S1.18)

=1+o0(1),

sity function of a standard normal variable. Then we can use normal variables to approximate
T'(s) and U(s) simultaneously. Without loss of generality, we assume that 0 | < 03, < 1,
forall s € S and d = 1, 2, throughout.

We divide the proof into three steps. First, we replace the estimated variances with the truth
and obtain {T'(s), U(s)} with zero mean and unit variance. Next, we truncate {7'(s),U(s)}
to {T'(s),U(s)}, and show the difference is negligible. Finally, we use normal variables to

approximate {7'(s), U(s)}, and derive the asymptotic results.

Step 1. Following the proof of Lemma 2 of (Cai and Liu| (2011)), for any constant C' > 0, there

exists a constant Cy > 0, such that

Pr {maX 62— 024 > C’m/logm/nd} =0(m™),

seS
for d = 1, 2. We then replace the estimators with the true variances, and define
i Yi(s) — Ya(s)
T(s) = 2 9 1727
{US,l/nl + 0572/712}
O(s) = Yi(s) — Bi(s) + r(8){Ya(s) — fa(s)}
{03,1/711 + %2(8)032/712}1/2

where (s) = (n202,)/(n102,). Recall the condition that log m = o(n'/?), we have, for any

?

constant C' > 0, there exists b,,, = 0{(logm)~'/2}, such that

Pr{rsrgg)( T(s) —T(s)) > bm} — O(m™°), (S1.19)
Pr{ggo( U(s) — p(s)] — U(s)) > bm} — O(mO), (S1.20)
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where p(s) = (14 o{(logm)~*})E{U(s)}. This establishes the asymptotic normality of

T'(s) and U(s). It remains to show the asymptotic independence, for which it suffices to show

i Pr{T(s)[ > 1 |U(s) —u| < e}

0 Pr{|U(s) —u| < e} = {1+ 0(1)}G(t) + O(m™), (S1.21)

uniformly in t = O{(logm)'/?}, |U(s) — u(s)| = O{(logm)"/?}, and all s € S;.

Step 2. Next, we reconstruct T(s) and U (s). Let ny/ny < Kj with K7 > 1, and define
Zi(s) = (no/ni){Yea(s) — fi(s)} for 1 < k < ny, Zi(s) = —{Yi—n,2(s) — Pa(s)} for

ny + 1 < k < ny + ny. We can rewrite ’f(s) as

T(S): an HQZ( )

(n2 Os, 1/”1 + n2052

)1/2

Define the truncated variable, Z;(s) = Zi(s)1 {|Zn(s)| < 7|} — E [Zk(s)1 {|Zk(s)| < 70|},

and write

T(S): an 7‘L2z( )

(n2 Os, 1/”1 + noog 2)1/2

where 7,, = (C5 + 2) K, /Cy log(m V n), with Cj specified later. We see that,

T(s)—T(s) = i (S Zk(s)] > )] 24l E[Zi(s ){!Zk(2 ))!1/>2 Tu}]

1
(n2 Os 1/”1 + n20; 2) 2 (%%,1/”1 + 20y 5

For the second term, by n; =< ny < n, there exists some constants ¢y, ¢y, ¢, such that

ni+nz

maxn /2 Z E[1Zk(s)[1{1Z(s)| > mu}]

seSy

<con'?  max  maxE[|Zu(s)[1{|Zk(s)| > 7. }]

1<k<ni+ng s€eS
C3+2

<con*(m+n)"" 7 (JBaK Iglgg{EHZk( s)| exp {(C1/2K1)|Zk(s)|}] (51.22)
Ca+2
<ent?(m+n)” R 1<kr£1ax+ meax{E| C1/K1)Z(s)| } E [exp {(Cy/K1)|Zi(s )|}])1/2
ni—T+ng S
(S1.23)
<con'(m 4+ n)" %, (S1.24)
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where (S1.22)) comes from I{z > a} < e*/e%, (S1.23) by Cauchy-Schwartz inequality, and
(S1.24) from (C/K1)|Zk(s)| < C1|Yk.a(s) — Ba(s)| by Condition [(C10)| and the inequality
x? < e® for x > 0. Note that the term (ST.24) is o{(logm)~'/2}. Then there exists some

b = o{(logm)~'/2}, such that

Pr {max

sESy

T(s) — T(s)‘ > bm} < Pr {Eé%ﬁ(mﬂ%ﬁm | Zk(s)] > Tn}
< mnrré%xPr{|Zk(s)| > To}
< mnexp {—(C1/Kr)r} Eexp {(C1/ K1)\ Zi(s)}

= O(m~ ). (S1.25)

Similarly, define Vi (s) = (na/n1){Yi1(s)—pF1(s)} for1 < k < mny,and Vj(s) = x(s){Yi2(s)—
Ba(s)} for ny + 1 < k < ny + ny, where k(s) = (nq03,)/(n102 ;). Then,
B n1+n2 Vk(s)

U(s) = k=1 :
{n%o2,/ni + 712/%2(8)032}1/2

Define

Ty Soe™ Vi(s)

U(S) = ;
{n%og,l/nl + 712;@2(8)032}1/2

with the truncated variable Vi,(s) = Vi(s)1 {|Vi(s)| < 7|} —E [Vi(8)I {|Vi(s)| < 7n|}]. Then

we obtain that,

Pr {max

SESy

0(s) — U(s)( > bm} <Pr {maX max  [Vi(s)| > Tn}

SESy 1<k<ni+ns

= O(m~ ), (S1.26)

for some b,, = 0{(logm)~'/2}. Combining (ST.19), (S1.20), (ST.25), and (ST.26)), we obtain

that,

Pr {r%%x T(s) —T(s)‘ > bm} — O(m~%), (S1.27)
Pr{%é( [U(s) — pu(s)] — U(s)’ > bm} — O(m~%). (S1.28)




Step 3. Now we can apply normal approximation to {(7'(s),U(s)) : s € Sy}. Denote by
N = (N, Ny) a normal random vector with E(IN) = 0 and Cov (IN) = Cov(W},), where
Z Vi
Wi = (Wi, Wie) = ( k(o) k(s) }1/2) :
s 2

{ngasl/n1+082}1/ {ngasl/n1+/<:2

Then we have that,

Pr{(T(s)| = ,|0(s) | < e} =P {

ni+ng

n_1/2 Z Wk,2 — U S

ni+ng

—-1/2 Z sz )

where @ = u — p(s). By Theorem 1.1 in Zaitsev (1987), we have that,
Pr {|T(s>| > ¢, |U(s) — a| < (—:}
Hy

> t,

<Pr{|Ni| >t —e,(logm) ™2 [Ny — @] < € + €, (logm)~"/*}

1/2
=+ 1 exp {_—Cng(log ;)1/2 } )
and
Pr{|7(s)| > t.0(s) =il < ¢}
>Pr {[Ni| > t +en(logm) ™% [Nz — | < € — e, (logm) /% }
1/2 .
— c1 exp {—W} ,
where ¢; > 0 and c; > 0 are constants, and €,, — 0 is to be specified later. Similar to the proof

of Lemma|3] by Condition[(C10)]and an appropriate choice of 7,,, we have ||Cov(W},) —I||s =

o {(logm)~1}. Combined with (ST.27) and (ST.28)), we have that,
Pr{[T(s)] > 1,|U(s) —u| < ¢}
0

<{1+0(1)}G{t - en(logm) Y2 — b} -2 {e+ ex(logm) Y2 + by } #(us) (S1.29)
n'/2e, o
+01€Xp{—m} +O(m 0)7
and

Pr{lT(s)] 21, |U(s) —ul < €}

>{1+0o(1)}G {t + en(logm)™"* + by } - 2 {e — en(logm)™* = b} b(u2)  (s1.30)
nl/2¢

—_ _—n _O 703
e { o) 007
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where u; = arg max ¢(i) for i € [ii — € — e, (logm)™"/% — by, 1 + € + €, (logm) /2 + by,
and uy = argmin ¢(u) for @ € [0 — € + €,(logm)™Y2 + by, @ + € — €,(logm) Y2 — b,,].
Meanwhile, by Theorem 1.1 in[Zaitsev| (1987) and (ST.28)) again, we have that,

Pr{|U(s) — ul < e} <2{1+0(1)} {e + enllogm) /% + by} o(us)

nl/2¢ (S1.31)
+ crexp {_—CQTn(log 7:1)1/2 } +0 (m™),
and
Eor{|U(s)—u| < e} >2{1+o(1)} {e — e, (logm) ™/ — b, } ¢(us)
1/2 (S1.32)

n

— _—6” _ —Cs
CleXp{ CQTn(IOgm>1/2} O(m )

Now let €, approach zero sufficiently slowly, such that both es/*(logm)~"/2 > b,,, and

1/2,

CW:EIOT)I/Q > logm hold. The latter means c; exp{ Wn’z;{:ﬁ} =0 (m*C> for any
constant C' > 0 under logm = o (n'/%). Let € = e;/*(logm)~'/2, by |a| = O{(logm)"/?},
we have |u; —ug| = O {evlﬂb/Q(log m)*1/2} which gives ¢(uy)/d(ug) = 14+0(1) by (SI.I8). Re-
call (ST.21)), and combine (ST.29), (ST.30), (ST.31)), and (S1.32). Then for t = O{(logm)'/?}

and |U(s)—pu(s)| = O{(logm)'/?}, for any constant Cy > 0, we choose Cj sufficiently large,

such that

Pr{|T(s)] = 1 U(s)}

< i L OONG{E = enlogm) 12 = b} - 2{e + enlogm) /2 + b} () + O (m~)
=0 2{1 + 0(1)} {6 — en(log m)71/2 _ bm} ¢(’LL2) —0 (m*CB)
={1 +o(1)}G(t) + O(m™),

and

Pr{|T(s)] = 1 U(s)}

< i LD llogm) 4 ) 2 e~ cullom) 7 b} o) ~O (=)

= =0 2{1 + o(1)} {e + e, (logm) =12 + by, } p(u1) + O (Mm=C3)
={1+0(1)}G(t) — O(m™).

Combining the upper and lower bounds completes the proof of Proposition I} [
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S2 Technical Lemmas

We collect the technical lemmas and provide their proofs in this section. Lemma [I] presents
the conditional independence between 7'(s) and U(s) under the null. Its proof is similar to
that of Proposition [T] and is thus omitted. Lemma [2] establishes the theoretical properties of
the scaled weighting procedure proposed in Algorithm Lemma (3|is needed for (52.19)

in the proof of Lemma 2]
Lemma 1. Suppose Condition|(C5) holds. Then we have

Pr{|T(s)| > t|U(s)} = {1+ o(1)}G(t) + O(m~?)
uniformly in 0 < t < (2logm)"/2,|U(s) — u(s)| < (2logm)? and all s € S,
Lemma 2. Suppose Conditions|[(C5}{C8)|hold. We have, for any € > 0,

éi__r%FDR (8,77) < amg/m,andéi_r%Pr {FDP (&) < amo/m + ¢} =1.

Proof. To deal with the dependency among the tests, we base our analysis on z-values z;(s) =
®~ 1 — pgz(s)/2} instead of the weighted p-values, where ®(-) is the CDF of a standard
normal random variable. Note that by Lemma 3 of Xia et al.| (2020), SWP is equivalent to
rejecting Hy(s) if |z;(s)| > t, forall s € S, where
_ mG(t)
t,=inf<¢t>0: <ayp, (S2.1)
t{ max {3 s H{I7a(8)] = 1, 1] }

and G(t) = 2{1 — ®(t)}. Define the events

By ={U(s) : 7, (s,U(8)) € [£,1 —¢] forall s €S},

B, = {{9(8),8 €S}timy= ZI{H(S) =0} =< m},

seS

and then we have Pr(B;) — 1 by Condition |(C7), Again by Condition |(C7), we have,
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1 — o(1) < Pr(By) = Pr(By|By) Pr(By) + Pr(Ba| BS) Pr(B2) < 1+ o(1),

which gives Pr(B;) — 1. It hence suffices to focus on event B and show, given {0(s) : s €
S}t D ses, 11za(s)| = t} is close to emG(t) for some 0 < ¢ < 1.

Defining B, = {U(s) : m.(s,U(s)) € [£,1 — €] and |U(s) — u(s)| < (2logm)*/?}
for s € Sy, we divide the following proof into three steps. First, we show that ¢, in (S2.1)
is obtained in the range [0,t,,], where t,, = (2logm — 2loglogm)*/2. Therefore it suf-
fices to show for ¢ € [0,%,,], > s [ {|za(8)| >t} is close to emG(t) for some 0 < ¢ <
1. Next, by Theorem 1 in |(Genovese et al.| (2006), we show the conditional expectation
> ses, Evee) [Pr{lza(s)| > t[0(s) = 0, B} |{0(s) : s € S}] is close to cmG(t) for some 0 <
¢ < 1. Finally, we prove the false discoveries » s 1{[za(s)| >t} is close to ) o Eu(s)
[Pr{|zz(s)| > t|6(s) = 0, B} |{0(s) : s € S}|, by showing that only the weakly correlated

tests play the dominant role.

Step 1. First, we show that ¢, in (S2.1) is attained in the range [0, ¢,,], where ¢,,, = (2log m —
21og logm)!/2. This is essential for the FDP control in (S2.21) and (52.22).

Note that by Condition|(C8)} we have |T'(s)| > (logm)/*+*/2 for those s € S, with prob-
ability tending to 1. Also note that under event By, 7-(s,U(s)) € [, 1 — &] for a sufficiently
small constant £ > 0, which gives ¢ < w (s,U(s)) < C for some 0 < ¢ < C' < co. Then,

{ZI{\Zw )| > (2logm) 1/2} {1/( 1/2 )+5}(logm)1/2}

sES

| \/

{Zl{\zw )| > (2logm)'/?} > {1/ (c¥/? )+£}(logm)1/2|B1}Pr(Bl)

seS

| \/

{ZI{|T )| > (logm)'/2/2} > L1/ (ci/? )—l—s}(logm)1/2|Bl}Pr(B1)

seS

= {ZI{\T ) > logm1/2+”/2}>{1/( 1/2 )+5}(logm)1/2}—0(1)

seS

=1-o(1).
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Recall that ¢, = (2log m — 2loglogm)'/?, and 1 — @ (t,,) ~ 1/ {(2¢x)"?t } exp (—t2,/2).
We have Pr (0 < ¢, <t,,) — 1. Then, we only need to prove uniformly for 0 < t < ¢,,, given

{0(s) : s € S}, there exists some 0 < ¢ < 1, such that

2ses, HIza(8)] = 1} — emoG(t)
emoG(t)

— 0, (52.2)
in probability.

Step 2. Next, we show that s) [Pr{|za(s)| > t|6(s) = 0, B} [{0(s) : s € S}] is

8630
close to cmG(t) for some 0 < ¢ < 1, by considering the independent setting. Following
Theorem 1 of Genovese et al.| (2006) and Lemma |1, we obtain that E[FDP(¢)[{0(s) : s €
S} < {1+ o(1)}amg/m + O(m~1). This, together with (S2.T)), gives that,

g P pe {126(8) > 1)
{za(8),U(s)},s€S maX{ZS€S|{’Z@(S>| > tz}71}

1{6(s) : s € S}| < {1+ o(1)}amg/m.

(52.3)
Note that, by Condition [(C5)] similar to the proof of Proposition (I} we can obtain that

P i U(s) — (o) 2 (2logm)2} = o(1).

s€oo

Let By = {U(s) : |[U(s) — u(s)| < (2logm)'/2 for all s € Sy }. Then, it gives
Pr(ByNB;) =1—Pr(BfUBS) >1—o0(1),

and further Pr(Bs) > Pr(B; N Bs) > 1 — o(1). Then, we have

Efzu(s),U(s)},s€5 [Z 1{|za(s)| > t}|{0(s) : s € S}

seSy

=Y Eeowue [Hlza(s)] =t} [{0(s) : s € S}]

seSy

= Eus) (Esps) [{lza(8)] > £} |[{0(s) : s € S}.U(s)] [{0(s) : s € S})

SESy

= Eus) [Pr{lza(s)| > t16(s) = 0, Bs} Pr(B,) + O (Pr({B,}))[{0(s) : s € S}]

SESy

={1+0(1)} Z Evs) [Pr{|zﬁ,(s)| > tl0(s) =0, Bs} |{9(3) 18 € 8}] .

SESy
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Also, following |Genovese et al.| (2006) again, when {z3(s),U(s)}’s are independent across
s € 8, by later (S2.10) and Lemmal[I] we have uniformly in 0 <t < ¢,,,,
Varg., (s).u(s)hses [Doscs, | {12a(8)] > t}[{0(s) : s € S}]
2
(ZSGSO Eus) [Pr{|z@(s)| > t|0(s) =0, Bs} {{0(3) 18 € S}])
-1
< <Z Eves) [Pr{|za(s)| > t|6(s) =0, B} |{6(s) : s € S}}) = o(1).

seSy

Therefore, we have

2 scs, H[7a(8)] > 1}
> wcsy Ev [P {7a(s)] = 110(s) = 0. B} [{#(s) : s € S}
in probability. Now we can estimate the threshold by

S acs, Evtey [Pr{lzals)| > tl6(s) = 0. B,} [{6(s) : s € S}] _ &}
max {35 {|2a(s)| > ¥}, 1} )

-1

— 0,

{° = inf {t >0:
(S2.4)

which gives that,

E U S 2 sesy | {lza(s)| = £}
{za(e).Ule)hses | 1 {Zses | {|Zw<3)| > to} ’ 1}

Comparing (S2.3) with (S2.5)), we see that (S2.1)) is asymptotically more conservative than

[{6(s): s € S}] - a. (S2.5)

(S2.4). Therefore, we have,

D sesy Eus) [Pr{lza(s)] = t0(s) = 0, Bs} [{0(s) : s € S}]

-1
emoG(t)

-0, (S2.6)

in probability for some 0 < ¢ < 1 uniformly in 0 < ¢ < ¢,,.
Step 3. Finally, it remains to show that, with dependent {(z(s),U(s)) : s € Sy}, uniformly
mno0 <t <t,,

acs, HI20(3)] = 1} B
Y acsn Evte) [Pr{Jza(s)] = t10(s) = 0, B} [{9(s) : s € S}]

in probability. We further divide the proof of this step into two sub-steps to handle the de-

-0, (S2.7)

pendency structure among {(zz(s), U(s)) : s € Sy}. First, we approximate {(7'(s),U(s)) :
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s € Sy} with some standardized sum of influence functions, {(V'(s),W(s)) : s € Sy}, for
further normal approximation. Then, we divide the null set into several subsets to calculate

the conditional mean squared error and show the highly correlated sets are negligible.

Step 3.1. Define

V(S) = E;C:L:1 Zk(s) o
Var {3 1_, Zk(s)}
W(s) = ey Zi(8) = 9(8) D i, 11 Zk(8)

ni n 1/2°
Var {Zk:l Z1(s) —J(s) Zk:nl—l-l Zk:(s)}
Then, under Condition we have for some constant Cy > 5,

Pr {rsréag)c T(s) —V(s)| > bm} = O(m™ ), (52.8)
P {max [U5) = (s)] = ()] = b } = O~ (52.9)

where b,,, = o0 {(logm)~'/?}. Note that under event B, where 7.(s,U(s)) € [¢,1 — &] for

some constant 0 < & < 1, we have

G™! [G {(al logm + as loglog m)l/z} w (s, U(s))} = (aylogm + asloglogm + as)"/?
(52.10)
for some constants a;, ay and az. Recall that z;(s) = G~ {p(s)/w(s,U(s))} and |T'(s)| =

G {p(s)}. Then T'(s) and z;(s) share the same order under event Bs. By (S2.8) and the

fact
G (t+o{(logm)~"?}) JG(t) = 1+ o(1), (S2.11)
uniformly in 0 < ¢ < ag(logm)'/? for any constant ay > 0, we have that,
G(IT(s)]) /w(s, U(s)) = {1+ o(1)}G([V(s)])/w(s, U(s)). (82.12)
Let Va(s) = GTHG(|V(s))/@(s, U(s))}. Recall z5(s) = G~ {G (|T(s)]) /i(s,U(s))}.
Then, by (S28), (SZ9), (S2.11) and (S2-12), and the proof of Proposition[T} we have that,

Z Pr{|zz(s)| > t|0(s) =0, Bs} ={1 +0o(1)} Z Pr{|Va(s)| > t|0(s) = 0, B,},

s€Sp s€So

(S2.13)
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where B, = {U(s) : m,(s,U(s)) € [£,1 — €] }n{W(s) : [W(s)| < (2logm)'/?}. By the
delta method, V'(s) and Vj;(s) share the same correlation structures. Then, it remains to show

that, uniformly in 0 <t <t,,,

sup > ses, {IVa(s)| =t}

— -1} —= 0, (S2.14)
0Sit | 3 e, Ewio) |Pr{IVia(s)| > t16(s) = 0, B} {6(s) : 5 € S}

in probability.

Step 3.2. To show (S2.14), we first discretize the range [0, ¢,,], then divide the pairs of the null
sets into several subsets: the pairs that share the same indices Sy, the set of highly correlated
pairs Sp2, and the set of weakly correlated pairs Sp3. We prove by showing the first
two subsets are negligible, and Sy3 plays the dominant role.

More specifically, we divide the range [0, ¢,,] into ¢ sections with length no larger than

U = 1/y/logmloglogm. Let 0 =ty < t; < ... < t;, = &, such that ¢, — ¢, 1 =
Uy for 1 < ¢ < ¢g—1, and ¢, — t,1 < vy, which gives ¢ ~ t,,/v,. Let T4(t) =

Ews) |Pr{|Va(s)| > t|6(s) = 0, Bs}}{e(s), s € S}|. By Proposition we have
Yo(t) = {1+ o(1)}G(2). (S2.15)

For any ¢ such that t, ; <t < t,, we have, for any s € S,

2oses, WWVa(s)l 2t} _ > lses, HIVals)l = tioa} 2 ses, Ts (i)
> ses, Ls(t) - > sesy Ls (tim1) Decsy Ts ()

2osesy WVa()l 2t} D ses, HIVals) =t} D ses, Ts (1)
ZseSO TS t) N Zseso TS ( L) ZSGSO TS (thl)‘

(
By (S2.15), we have T, (¢,) /Y5 (t,—1) = 1 4+ o(1). Thus, we only need to prove that,

max ZSESO [|{|Vw(3)| > tt} - Ts (tb)] =0 (S2.l6)

O=t=q Zse&) Ts (tb>

in probability.

Note that
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ZSESO [I{|Vﬁ/(3)| > tb} - Ts (tL)]
> sesy Ls (t)

pr{
g w\S)| Z L, _Ts L
Szpr{ e, [u{|£<s>|T> 2) (t) 26‘{0(3),868}}

1 Dses, {Va(s)| =t} — T (2]
Sa { : ZseSOT (tL)

Dses, HIVa(s)| = 1.} — T (1))
i Z { ZSES{)T (tb)

Then it remains to show that, for any constant ¢ > 0,

"y {[EasnH0012 0= Yot
> ses, Ls(t)

{‘Zseso [{[Va(s)| =t} — Ts(2)]
> sesy Ls(t)

By conditional Markov’s inequality, we have that, for any constant € > 0,

{‘ZS% (EVEDR m)‘ > {0(s), 5 € 5}}

SGSO s

> e|{6(s),s € 5}}

> €|{0(s),s € S}} dt,

> €|{0(s),s € S}} .

1=q—1

‘ > €|{6(s),s € S}} dt = o(vp),  (S2.17)

sup Pr ‘ > €|{0(s),s € S}} =o(1). (S52.18)

0<t<tm

Dses, {Va(s)| = £} — T
ZSGSOT (t)

< Eqvas),W(s)},seS0 {

where

, S € S}} /€,
| > ¢t Ts(
Rt NUCRLE
s 1e0 Evato)wis) vaw.ww [H{IVa(s)| = tH{|Va(D)] = t}[{0(s), s € S}]
{Pees, T (t)}Q
- sies Homsi Evamy v [{IVa(b)] > t}[{0(s), s € S}]
{Zseso )
S wares, Ewravin [Pr{IVa(s)| = £ Va0 = 16(s) = 0.6(1) = 0, Bu, B} |{6(s), s € 5)

E{vi(s),W(s)},se80 {

{ZSGSO TS <t> }2
 Eievesilomsi Ewe [Pr{rvm<b>| > t0(b) = 0, By }[{0(s), s € 8}}
{Fpes, Ts(t)}
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Recall Ts(y) = {l:1 € S,|rspal > (logm)™27 ford = 1 or 2}. We divide the null in-
dices into three subsets: Sp1 = {(s,1) : 8,1 € Sy, 8 =1}, Sp2 = {(s,1) : 8,1 € Sy, 8 €
Fl(’7>, orl € FS(’)/)}, and 803 = {(S,l) : S,l < 80}\(801 U 802).

Note that for Sy;, by the proof of Proposition[I], we have that, for some constant C,
. L N2
S epesn Eurte | (PrVa(o)] = 16(6) = 0. Bub + Pr{IVi(o)] = t6(s) = 0. Bu})[{0(0), < 5)]
2
{ZSESO TS (t) }

< 2 < ¢
" Ties, Tal) = mG(R)’

where the last inequality comes from (S2.13).

For Sz, by the condition max,es, Card (I's(7)) =< 1 under Condition[(C6)} we have that,
> e EWtonavay [PrilVa(s)| = & Va(0)] = 10(s) = 0,0(1) = 0, By, Bi}|{6(s), s € S}
{Tes, To0)}
> e Tlomed Ewn [Pr{Va(®)] = 10(b) = 0, By} {0(s). s € S}
(T, Tal0)}
_ Stanes Eto | (PrilVals)| 2 10(s) = 0, B} + Pr{|Va(s)] 2 16(s) = 0. B,}) [{0(5).5 € S}
B (T, TaD)}

C

- mG(t)
For Sy3, by Lemma 3] that we prove after this lemma, we have that,

2 (s.)eS0s EW ()W 1) [Pr{\Vw(S)\ > t,|Va(1)] > t0(s) = 0,0(1) = 0, Bs, Bi} [{0(s), s € S}

{Fues, 1o}
 Coesulloas Ew [Pr{{Va(®)] > 10(b) = 0.B,}|{9(s). 5 € 5}
{Taes, Ts0}

0 {(logm) ™} S o yess [ooss Ewer [Pr{\Vw(b)] > 110(b) = 0, By} |{0(s), s € 5}]
Y tes, oai Ewesy [PrVa(B)] > H0(5) = 0, B} {8(s). 5 € S)]

(S2.19)
= O {(logm)™ """},
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where v, = min(vy, 1/2).

Note that
tm
/ C(logm) ™" /édt = Ct,,(logm) 1" /e® = o(vy). (S2.20)
0

Also, by 1 — @ (t) >t/ {(2¢c;)"?(1 + 1)} exp (—t?/2) for ¢ > 0 and monotonicity of G(t),

we have
tm, 2 1 v tm (14 t2/2
/ Ol 4 < gdt—i-/ Cte
o mG(t) o m 1 m
/ / tm / /
— g + g 22l = g g ( "o 61/2) = o(Um), (82.21)
m m 1 m  m \logm

for any constant ¢ > 0. Combining (S2.20) and (S2.21)) proves (S2.17). Note that
C

ey 2 _
C(logm)™" /2 = o(1), ZmG() o(1), (S2.22)

which proves (S2.18). By combining (S2.17) and (S2.18)), we prove (S2.16).
This completes the proof of Lemma 2] [

Lemma 3. Under the conditions of Lemma[2] letting v1 = min(y, 1/2), we have that,

. Ewiewo) [Pr{|Vu~,(s)| > t, [Vis(1)] > t6(s) = 0,0(1) = 0, By, Bi}|{0(s), s € 5}}

= [1+0{(logm) " }] T Ewe [Pr{|Vad)| > 110(6) = 0, Bu}| {0(s), 5 € S}

uniformly for 0 <t < (2logm)'/2.

Proof. We first note that it suffices to show

_ Pryg {[Va(s)| = ¢, [Va(l)| = ¢, [W(s) — us| <, [W()
EW(s),W(l) hm

— | <€} s),s
0 Pra, {{W(s) — is] < €, [W(l) — @ < €} {0(s), s € S}}

=140 {(ogm) )] T Ewoy |Px (1600 = AW (01} [{0(0). < 5)]

uniformly for 0 <t < (2logm)Y/2, [W(s)| < (2logm)'/?, and (s,1) € Sps.
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Toward that end, we first truncate the statistics similarly as in the proof of Proposition ]

Define
V(s) = —imBlo)
Var {22:1 Zk(s)}
Wi(s) = " Zi(s) = 0(8) i, o Zils)

Var {00, Zu(s) — 0(8) S Zels)}

where Zi(s) = Zu(s)1{|Zx(s)| < 7} — E[Zi(8)1{]| Zk(s)| < 7.}] and 7, = C'log(m V n)
for some constnat C' > 0.

Let Vi(s) = G HG(|V(s)|)/w(s,U(s))}. By the fact G (t + O{(logm)~2}) /G(t) =
140 {(log m)~%/3} uniformly in 0 < ¢ < ag(logm)'/? for any constant ag > 0. Then, similar

to the proof of Proposition|[I| we can choose 7,,, such that for some constant C'5 specified later,

Pr {rré%x Va(s) — Vw(s)‘ > (log m)_2} = O(m™%), (52.23)
Pr {né%x W(s) — W(s)) > (log m)_2} = O(m™), (S2.24)

and that for any (s,1) € Sy3 defined in Lemma[2]

| CovlVi(s), V(). W (s), W)} ~ Cov{Via(s), Vill), W (s), W (1))

2

=0 {(logm) >} . (S2.25)

Following the proof of Proposition |1} let N = (N7, Ny, N3, N;) be a multivariate nor-
mal vector with mean zero and covariance matrix X = Cov{Vy(s), Viz(1), W (s), W ()} for

(s,1) € Sp3. Then by Theorem 1.1 in|Zaitsev| (1987), we have that,

Pr{[Va(s)| = £, [ValD)] = t,[W(s) = @] < & W (1) — ] < e}
0

1/2
< Pr{min (|Ny|,|Nz|) >t — €, max (| N3 — @ig|, | Ns — @|) < € + €,} + c1exp {n En} ;
CoTp,
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and

Pr{[Va(s)| > Va0 = 4,1W(s) — @] < e W) — @l < e}
0

1/2
> Pr{min (| V1|, | N2|) > t + €, max (| N3 — ts|, [Ny — W) < €—€,} —c1exp {” En} ;
CoTp

where ¢y, co are positive constants, and ¢,¢, — 0 are to be specified later. Let A = {N :
min(|Ny|, [ N2|) > ¢, max(|N3 — Gs|, [Ny — @|) < to} for any ¢1,f, € R. Furthermore,

by (S2.25) and Conditions |(C5)| and [(C6), we have ||X — I|j; = O{(logm)~*"7}. Since
Pr(||N||2 > Clogm) < 4Pr(N? > C'logm/4), for any constant C' > 0, we have that,

1 1
/ exp (——NTZIN> dN §C1/ exp (——Nf) dN,
A|IN|2>Clogm 2 N2>Clogm/4 2

<cy(logm) ™2 exp (—C'logm/8)
=0 {(log m)_l/Qm_C/S} : (S2.26)

for some constants ¢y, ¢y > 0. Then by |71 — Il < [|[Z7Y,||X — Il = O {(logm) 27"}

and the fact that " Az < || A||2||x||3, we have that,

1
/ exp (——NTE_1N> dN
A,HNH%SClogm 2
1 1
:/ exp{—-NT(zl DN - -HNHg}dN
AIN|2<Clogm 2 2

= [1+ O{(logm)~'7}] / exp (—%HNH%) AN

A N|3<Clogm

— 1+ O{(logm) ] /Aexp (—%HNH%) AN

~ [1+ O{(logm) Y] oxp (-5 INIE) N

A||N||2>Clogm

= [14 O{(logm)~""}] / exp (—%HNH%) dN + O {(log m)_l/Qm_C/S} . (S2.27)
A

Combining (S2.26) and (S2.27), by |=| = (1 + O {(log m)~2-7})*|I|, with the density func-

tion of multivariate normal variable, we can let C' be sufficiently large, such that
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Pr{min (|Ny|, |N2|) > t;, max (| N3 — ts|, [Ny — @) < t2}
= [1 + O{(log m)flfv}} G2(t1) {P(as + to) — (s — t2)} {P(Uy + t2) — P(ay —t2)}.

Then, combined with (S2.23)) and (S2.24)), we obtain that,

PrilVa(s)l 2 6, [Va()] 2 1, [W(s) — s < &, [W(I) — ] < ¢}

1/2

< [1+ O{(logm) Y] G* {t — en} - 2 {e + en}? Blutar)(un) + 1 exp {” } +O(m),

CoTn,

and

PrilVa(s)l 2t [Va(D)] 21, [W(s) — ts| < €, [W(I) — @l < €}

1/2¢

> [14 O0{(logm) "} G* {t + €.} - 2{e — €n )} (us2)p(u2) — €1 exp {n

CoTp,

}+ O(m~),

where up; = argmax ¢(u) for @ € [Up — € — €,,Up + € + €,], and upy = arg min ¢(), for

U € [Up — € + €, Up + € — €,], for b = s, 1 respectively. Similarly, we obtain that,

Pri{W(s) —ts| < ¢, [W(l) — @l < e}

< [1+0{0ogm) N 2 {e e} un o) + esxp { L2 )+ 0=,
and
PV (3) — il < o [W(I) — ] < )
> [1+ Of(logm)™~}] 2 {e — €0} Blus2) () — 1 exp {”/} + O(m=5).

Letting € = ¢, = (logm)~2, then under logm = o(n'/%), by |up; — upz| = O {(logm)~2} for

b = s, 1, we can let Cj sufficiently large such that,

Pr{[Va(s) = 1, [Va(D)] = 1]W(5), W (1)}

<lim [14+ O{(logm) 7} G*{t — &,} - 2{e + €.} d(us1)p(un) + O(m=)
-0 2{e — €.} O(us2)p(wz) + O(m=C5)
= [1+ O{(logm) """} G*(t),
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and

PrilVa(s)l = &, [Va()] = t{W(s), W(D)}

o [ Of(logm) Y Gt + 6} -2 — 6} Olu) () + O
= 3{e+ 60} o)) + O
= [14 O{(logm)~"""}] G*(¢),

uniformly for 0 < ¢ < (21logm)'/2, where 7; = min(v, 1/2). Hence we have

Eweave |BrilVa(s)l = ¢, [Va()] = tW(s), W(1)} [{6(s) : s € S}

= [1+ O{(log m)_l_“}] G2(t),

uniformly for 0 < t < (2logm)/? and (s,1) € Sos.

Meanwhile, we have
H Ew(s)w {E§{|Vw(b)| > ¢{W(b)} [{0(s) : s € S} = [1+ O {(logm)™*?}|G*(¢).
b=s,l

Then the desired result follows, which completes the proof of Lemma [3] [

S3 Additional Numerical Results and Discussions

S3.1 Additional 1D example

We consider an additional simulation with a 1D setting where there is no clear spatial pattern.
More specifically, we consider s = 1,---,5000, set m(s) = 0.7 at 800 randomly sampled
locations, and set 7(s) = 0.05 for the rest of the locations. We first evaluate the accuracy of
recovering 7(s,U(s)). Figure |S1|reports the result based on a single data replication. For
this example, since there is no spatial pattern, LAWS performs very poorly. By contrast,
the NAPA method performs much better. Next, we evaluate the empirical FDR and power.
Figure [S2] reports the empirical FDR and power of various testing methods based on 200 data

replications. It is seen that LAWS suffers from some FDR inflation under this random signal
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Figure S1: Estimation of the posterior non-null probability 7 (s, U(s)) for the additional 1D
example. From top to bottom: the true probability, the estimated probability by NAPA, and
the estimated probability by LAWS.
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Figure S2: Empirical FDR and power for the additional 1D example. Top panels: varying
Ag in scenario 1, and bottom panels: varying 7 in scenario 2. Five methods are compared:
the proposed method (NAPA), the GAP method (Xia et al., 2020), the LAWS method (Cai
et al., 2022), the simple combination of GAP and LAWS, and the BH method (Benjamini and
Hochberg, [1995)).
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setting, and has little improvement over the BH procedure in most of the cases. Besides,
the simple combination of GAP and LAWS has no apparent power advantage over GAP. By
contrast, the proposed NAPA method enjoys the best power performance while having the
FDR under control.

S3.2 Sensitivity analysis for bandwidth selection

We carry out a sensitivity analysis in the selection of the bandwidth matrix H in (5.8)). There
are three parameters involved in H, i.e., hs, hy and p. Let ﬁs, hy and p denote the selected
parameters following the approach described in Section [5.I] We then vary one parameter
while fixing the other two. For instance, we vary hg as khs, with k = {0.6,0.7,...,1.1,1.2},
while fixing hy and p at hy and p. Figure [S3| reports the estimation result of the posterior
non-null probability for a single data replication for the 2D example in Section[5.1] Figure[S4]

reports the empirical FDR and power of our testing method for the 1D example in Section[5.2]
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Figure S3: Sensitivity analysis: estimation of the posterior non-null probability for the 2D
example. From top to bottom: we vary hy = khs, hy = kh, and p = kp. From left to right:
k =0.6,0.8,1.0,1.2, and the last column shows the true probability.
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Figure S4: Sensitivity analysis: empirical FDR and power for the 1D example. We vary hs, hy
and p respectively for NAPA, while vary hg for LAWS and GAP+LAWS.
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Figure S5: Sensitivity analysis: discoveries for the 1D DTI real data example.

We vary hg, hyy and p respectively for NAPA, while vary hs for LAWS and GAP+LAWS. All
results are based on 200 data replications. Moreover, Figure [S5| shows the discoveries of the
1D DTI real data example in Section by NAPA, LAWS and GAP+LAWS, under varying
bandwidth parameters. In all these plots, it is seen that our method achieves a relatively stable

performance across a range of values of those parameters.

S3.3 Irregular domain and irregular lattice

Our method is generally applicable to spatial data with spatial smoothness, but usually regard-
less of the shape of the domain, or the specific lattice of the sampling observations. Next we

consider some simulations examples with irregular domain and irregular lattice.
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Figure S7: Irregular domain: empirical FDR and power.

First, we simulate a 2D setting where the signals have donut shapes located on a plane
with an absence of a triangle, as shown in Figure [S6| We set {s = (s1, $2)} to be grid points
on a 100 x 60 plane, with 0.4s; + s < 60 for s; = 1,2,...,50, and 0.4s; — s9 > —20 for
s; = 51,52,...,100. We set m(s) = 0.8 for the left donut where dist{(sy, s2), (30,20)} €
[5,15], set w(s8) = 0.6 for the right donut where dist{(s1, s2), (70,20)} € [5,15], and dist(-, -)
is the Euclidean distance. Figure [S6|shows the accuracy of recovering the posterior non-null
probability based on a single data replication, and Figure |[S7| reports the empirical FDR and
power of various testing methods based on 200 replications for the two scenarios in Section

[5.2] It is seen that our method continues to perform well in this irregular domain setting.
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Figure S8: Irregular lattice: estimation of the posterior non-null probability.

o
= —— BH —— NAPA N
—a— LAWS GAP+LAWS i
—— GAP B
w —_
r oS- o w |
0 S |4 o A — A A — —A — — A 5 o
o |
i Pvomppme - ey e ————r————n
- Ih o
[ e, Sl oot ot =7
o | ® - —
S —
T T T T T o T T
0.45 0.50 0.55 0.60 0.65 0.45 0.50 0.55 0.60 0.65
Ap Ag
S *
= —e— BH —— NAPA = UV Ch o
—&— LAWS GAP+LAWS o et Lol
— e A
o= -
g < e
2 o I .o B -+
T8 i ke R *
(=] ”
g - :/’0/0_—-—"/
= — o
T T T T T T S T T T T T
0.4 0.5 0.6 0.7 0.8 0.9 0.4 0.5 0.6 0.7 0.8 0.9
kg T

Figure SO: Irregular lattice: empirical FDR and power.

Next, we simulate a 2D setting where the signals have rough donut shapes and the lattice
is irregular with a few diagonal strips missing, as shown in Figure We set {s = (514, $24) }
to be grid points on a 103 x 53 plane, where sy, = s}, + Ca, S2q = 55, + ¢, fora =1, ...,5000,
s, =1,2,...,100, s, =1,2,...,50,and (cy, ..., cs00) is @ vector that repeatedly replicates
(0,1,2,3,2,1,0). We set m(s) = 0.8 for the left donut where dist{(s],, s5,), (30,20)} €
[5,15], and set 7(s) = 0.6 for the right donut where dist{(s},, 5,), (70,20)} € [5, 15]. Figure
[S§| and Figure [S9| report the results. It is seen again that our method performs well in this

irregular lattice setting.
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S3.4 Heavy-tailed distribution

In Section 5] we simulate the data from the normal distribution. We next consider an example

that the data {Y;1(s)}}, and {Y; 2(s)};?, are generated from the heavy-tailed ¢ distribution,

Yia(s) [ 0(s) ~ {1 = 0(s)} t(v) + 6(s) {Hi(s) +t()},
Yia(s) [0(s) ~ {1 = 0(s)} 4t(v) + 0(s) {Bi(s) + Ap + 4t(v)},

where 6(s) ~ Bernoulli(1,7(s)), f1(s) = 1/v/20, Az = 3/v/20 and t(v) denotes a t distri-
bution with the degree of freedom v. We consider v = {3, 4, 5} for the 2D example in Section
[5.1] Figure[ST0|reports the estimation, and Figure [STI|reports the testing results with varying

Ag. It is seen that our method performs well under the heavy-tailed distribution.
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Figure S10: Heavy-tailed distribution: estimation of the posterior non-null probability. From
top to bottom: v = 3,4, 5.
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Figure S11: Heavy-tailed distribution: empirical FDR and power. From top to bottom: v =
3,4, 5.

S3.5 Discussion of the conditions in Theorem (1]

We give more discussion of the conditions in Theorem [I]

First, we assume U(s) and 7(s) are independent under the alternative. In our oracle
setting, we have U(s) and T'(s) being independent under the null. Meanwhile, in our con-
struction, it is relatively mild to obtain the asymptotic independence under the alternative too.
More specifically, following (SI.19) and (S1.20) in the proof of Proposition [I} we can obtain

that, for any constant C' > 0, there exists some b,, = o{ (logm)~'/2}, such that

Pr {Is%%i( [T(s) — pr(s)] — T(S)‘ > bm} = O(m™9),
Pr {rs%%}f U(s) — py(s)] — [7(3)‘ > bm} = O(m™),

for |T'(s) — pr(s)| = O{(logm)'/?},|U(s) — pu(s)] = O{(logm)"/?}, where pr(s) =

[1 4 o{(logm) Y E{T(s)}, pu(s) = [1+ of(logm) '} E{U(s)}, and (T'(s),U(s)) are a
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Figure S12: Verification of the four distributional conditions in Theorem

pair of asymptotically independent normal variables. It then yields that
Cov (T'(s),U(s)) ~ Cov (T(s) + up(s),U(s) + uU(s)) ~ 0,

which indicates the asymptotic independence between T'(s) and U(s) under the alternative.

Next, we numerically verify the four distributional conditions in Theorem [I] Recall that,
we require that F(y|s) is concave in y; gs(z) is convex in x for z < 1/(1 + tpaws); yF] (y|s)
is non-decreasing in y; and {g%(1 — ) — ¢4(0.5)} /{1 — ¢4(0.5)} < 1/p, forsome 0 < p < 1.
We generate the alternative p-values from a Beta distribution, Beta(¢,1). Such a p-value
distribution is widely adopted in the literature; see for example, Sellke et al.| (2001); Held and
Ott (2018); Zhang and Chen (2022). We vary £ = {2/3,1/2,1/3}. Figure shows the
results. The upper left panel shows the concavity of F}(y|s), the upper right panel shows the
convexity of gs(z) at taws = 0.04, the bottom left panel shows the non-decreasing pattern of
yF] (y|s), and the bottom right panel verifies that {¢.(1 — () — ¢5(0.5)} /{1 —¢4(0.5)} < 1/o
for ¢ € (0,0.2) and p = 0.02.
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S3.6 Discussion of Condition

We further discuss Condition from three aspects. First, we present a sufficient condition
for|(C3)}, and discuss how it can be relaxed when modifying the bandwidth matrix condition in
[(C4)| Next, we verify that[(C3)|holds for some common spatial structures. Finally, we consider
an example where may not hold, but our method still maintains a good performance.
We first note that, by our construction of 7'(s) and U(s), the correlation structure among

T'(s) and U(s) can be characterized by the correlation matrices of the influence functions,

Rl = COFF(Zk) = (7"571;1) 1 < k S ny,

mxXm’

R, = COFF(Zk) = (7’371;2) ny+1<k<n;+ne.

mxm ’

Consider a simple case where U(s) is normally distributed, Var(Zy)’s are of the same order,
and cym of the location-wise conditional variances in share the same order of magnitude
for some 0 < ¢y < 1. Then a sufficient condition for is that both R, and R, are s-
sparse, i.e., there are at most s nonzero entries in each row, where s is of a constant order.
We can further relax this sufficient condition. For instance, if we set the bandwidth matrix in
Condition so that it satisfies | H| > (miz)_l, then the order of s can be relaxed from a
constant order to the order of O(m!/?).

Next, we note that the above sufficient condition (where s is of a constant order) cov-
ers some common spatial structures, including the banded structure, where there are a fixed
number of off-diagonal bands along the diagonal, the hub structure, where the nodes are par-
titioned into disjoint groups with a fixed number of nodes in each group, and the random
structure, where the probability for the off-diagonal entries to be nonzero is of order O(m ™).

Finally, we consider an example with a Toeplitz covariance structure, for which Condition
[(C3)|may not hold. Specifically, we simulate the data {Y;;(s)}!2; and {Y;»(s)}2, from

Y1 |6 ~ (1—6)Normal(0,%) + 6 Normal(53;1,,,%),

Yi> |6 ~ (1 —60) Normal(0,4%) + 6 Normal((5; + Ag)l,,,4%),
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Figure S13: Robustness to Condition [(C3); estimation of the posterior non-null probability
under the Toeplitz structure. From top to bottom: p = 0.4, 0.6, 0.8.

where ¥ = (0;;),0:; = pl"™,1 < 4,5 < m, and 1,, is a length-m vector with all ones.
We vary p = {0.4,0.6,0.8}, and set 8, = 1//20, Az = 3/+/20. Figurereports the
estimation result of the posterior non-null probability for a single data replication. It is seen
that our NAPA method still outperforms LAWS and recovers the true posterior probability

well.

S3.7 Discussion of Condition

We further discuss Condition from three aspects. First, we explain why this condition is
important for our setting. Next, we verify that[(C6)|holds for some common spatial structures.
Finally, we revisit the example in Section[S3.6] where does not hold, but our method still
maintains a good performance.

We first note that, existing theory of multiple testing under dependency mainly considers

the setting with one sequence of p-values, whereas NAPA needs to deal with two sequences.
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Figure S14: Robustness to Condition |(C6); empirical FDR and power under the Toeplitz
structure. From top to bottom: p = 0.4,0.6,0.8.

A key challenge in our theoretical analysis is to mitigate the effects of highly correlated pairs.
Therefore, it requires a weak dependency condition that is stronger than those for the one
sequence scenario. Specifically, for two pairs (V;(s), W(s)) and (V3 (1), W (1)) that are highly
correlated, where (V(s), V(1)) are the weighted approximations of the primary statistics
(T'(s),T(l)),and (W (s), W (1)) are the approximations of the auxiliary statistics (U(s), U(l))
as defined in Step 3.1 in the proof of Lemma[2] we need to show that

S wpresen Ewmnavay [Pr, {[Va(s)] > £, [Va(D)] > 112 (W(s)) . Q (WD)}

{3 ses, Ewes) Pra {[Via(s)| = {2 (W (s))}]}
 Daneso Uo—at Ewe) [Pray{[Va ()| > #|2 (W(zb))}] — 0 ((logm) ).
{Sses, Ewes [Pr{|Va(s)| > tQ (W(s))}]}

for each realization of {0(s) : s € S}, where 2 (W (s)) is some event relevant to W (s),

71 is as defined in Step 3.2 in the proof of Lemma 2} and Spo = {(s,1) : s,l € Sy, s €
[y(7), orl € I's(y)}. We should emphasize that, even if 7(s) and U(s) are independent,
the pairs (7'(s),U(l)), (T'(s), T(l)) and (U(s),U(l)) can still be highly dependent. This
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is significantly different from the existing literature where one only needs to deal with the
correlations between one sequence of p-values.

Next, we note that Condition [(C6)| covers some common spatial structures, including the
banded structure, the hub structure, and the random structure, similarly as for Condition [(C3)

Finally, we revisit the example in Section [S3.6] For this example, the Toeplitz covariance
structure is exponentially decaying, and thus Condition[(C6)|does not hold. Figure[S14]reports
the empirical FDR and power of various testing methods based on 200 data replications. It is
seen that our method still performs well, partly because Condition [(C6)|is sufficient but not

necessary.
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