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This supplement contains the proofs of all theoretical results in Section S1, the technical lem-

mas and their proofs in Section S2, and additional numerical results and discussions in Section

S3.

S1 Proofs

S1.1 Proof of Theorem 1

Proof. We show in this theorem that NAPA weight produces a better ranking of p-values than

LAWS weight. As such, NAPA yields a higher power than LAWS with an mFDR no larger

than LAWS. For any threshold t, we have that,

mFDR
(
δLAWS
t

)
=

E
[∑

s∈S I
{
θ(s) = 0, p(s) ≤ π(s)

1−π(s)
t
}]

E
[∑

s∈S I
{
p(s) ≤ π(s)

1−π(s)
t
}]

=

∑
s∈S

[
{1− π(s)} π(s)

1−π(s)
t
]

∑
s∈S

[
{1− π(s)} π(s)

1−π(s)
t
]
+
∑

s∈S

[
π(s)F1

{
π(s)

1−π(s)
t
∣∣∣ s}]

=

∑
s∈S π(s)t∑

s∈S π(s)t+
∑

s∈S

[
π(s)F1

{
π(s)

1−π(s)
t
∣∣∣ s}] .

In addition, we have,
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mFDR
(
δNAPA
t

)
=

E
[∑

s∈S I
{
θ(s) = 0, p(s) ≤ π(s,U(s))

1−π(s,U(s))
t
}]

E
[∑

s∈S I
{
p(s) ≤ π(s,U(s))

1−π(s,U(s))
t
}]

=

∑
s∈S E

(
E
[
I
{
θ(s) = 0, p(s) ≤ π(s,U(s))

1−π(s,U(s))
t
}
|U(s)

])
∑

s∈S E
(
E
[
I
{
p(s) ≤ π(s,U(s))

1−π(s,U(s))
t
}
|U(s)

])
=

∑
s∈S E [{1− π(s, U(s))}w(s, U(s))] t∑

s∈S E [{1− π(s, U(s))}w(s, U(s))] t+
∑

s∈S E [π(s, U(s))F1 {w(s, U(s))t|s}]

=
E
{∑

s∈S π(s, U(s))t
}

E
{∑

s∈S π(s, U(s))t
}
+ E

(∑
s∈S [π(s, U(s))F1 {w(s, U(s))t|s}]

)
=

∑
s∈S π(s)t∑

s∈S π(s)t+ E
(∑

s∈S [π(s, U(s))F1 {w(s, U(s))t|s}]
) .

Let t = tLAWS and note that gs(x) = xF1 {xtLAWS/(1− x)|s} is convex for x ≤ 1/(1+tLAWS).

Let event As = {U(s) : π(s, U(s)) ≤ 1/(1 + tLAWS)} and denote by Ac
s the complement of

As. Then we have that,

E [π(s, U(s))F1 {w(s, U(s))tLAWS|s}]

= E [π(s, U(s))F1 {w(s, U(s))tLAWS|s} I(As)] + E [π(s, U(s))F1 {w(s, U(s))tLAWS|s} I(Ac
s)]

≥ E {π(s, U(s))|As}F1

[
E {π(s, U(s))|As} tLAWS

1− E {π(s, U(s))|As}

∣∣∣∣ s]Pr(As) + E {π(s, U(s))|Ac
s}Pr(Ac

s).

Then, by the concavity and non-decreasing of F1, we have uniformly for s ∈ S that,

F1

{
π(s)tLAWS

1− π(s)

∣∣∣∣ s}− F1

[
E {π(s, U(s))|As} tLAWS

1− E {π(s, U(s))|As}

∣∣∣∣ s]
≤ F ′

1

[
E {π(s, U(s))|As} tLAWS

1− E {π(s, U(s))|As}

∣∣∣∣ s] [π(s)tLAWS

1− π(s)
− E {π(s, U(s))|As} tLAWS

1− E {π(s, U(s))|As}

]
.

Note that

π(s)tLAWS

1− π(s)
− E {π(s, U(s))|As} tLAWS

1− E {π(s, U(s))|As}
=

π(s)− E {π(s, U(s))|As}
{1− π(s)} [1− E {π(s, U(s))|As}]

tLAWS.

Then, we have that,
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π(s)F1

{
π(s)tLAWS
1−π(s)

∣∣∣ s}− E {π(s, U(s))|As}F1

[
E{π(s,U(s))|As}tLAWS
1−E{π(s,U(s))|As}

∣∣∣ s]Pr(A)
E {π(s, U(s))|Ac

s}Pr(Ac
s)

− 1

=
E {π(s, U(s))|As}Pr(As)

(
F1

{
π(s)tLAWS
1−π(s)

∣∣∣ s}− F1

[
E{π(s,U(s))|As}tLAWS
1−E{π(s,U(s))|As}

∣∣∣ s])
π(s)− E {π(s, U(s))|As}Pr(A)

− 1

+ F1

{
π(s)tLAWS

1− π(s)

∣∣∣∣ s}
≤ 1

1− π(s)

E {π(s, U(s))|As} tLAWS

1− E {π(s, U(s))|As}
F ′
1

[
E {π(s, U(s))|As} tLAWS

1− E {π(s, U(s))|As}

∣∣∣∣ s]− 1

+ F1

{
π(s)tLAWS

1− π(s)

∣∣∣∣ s}
≤ 1

1− π(s)

π(s)tLAWS

1− π(s)
F ′
1

[
π(s)tLAWS

1− π(s)

∣∣∣∣ s]− 1 + F1

{
π(s)tLAWS

1− π(s)

∣∣∣∣ s} (S1.1)

=
π(s)tLAWS

{1− π(s)}2
F ′
1

[
π(s)tLAWS

1− π(s)

∣∣∣∣ s]+ F1

{
π(s)tLAWS

1− π(s)

∣∣∣∣ s}− 1, (S1.2)

where (S1.1) is derived by the condition that yF ′
1(y|s) is non-decreasing in [0, 1]. Recall that

gs(x) = xF1{xtLAWS/(1− x)|s} and we take derivative with respect to x for the fixed tLAWS,

g′s(x) =
xtLAWS

(1− x)2
F ′
1

{
xtLAWS

1− x

∣∣∣∣ s}+ F1

{
xtLAWS

1− x

∣∣∣∣ s} .

Then we note that we can express (S1.2) = g′s(π(s)) − 1. By F1 and yF ′
1(y|s) are both

non-decreasing, we have g′s(x) is also non-decreasing on [0, 1]. Hence, we have

g′s(π(s)) ≤

{
g′s(1− ζ), if π(s) > 0.5,

g′s(0.5), otherwise,

by condition π(s) ∈ [ζ, 1 − ζ] for some small constants ζ > 0. Recall that π1 = Card({s ∈

S : π(s) > 0.5})/Card(S). Then, by π1 ≤ ϱ and {g′s(1−ζ)−g′s(0.5)}/{1−g′s(0.5)} ≤ 1/ϱ

for all s ∈ S, we have
∑

s∈S {g′s(π(s))− 1} ≤ 0, which yields

E

(∑
s∈S

[π(s, U(s))F1 {w(s, U(s))tLAWS|s}]

)
≥
∑
s∈S

[
π(s)F1

{
π(s)tLAWS

1− π(s)

∣∣∣∣ s}] .
Therefore, we have that,

mFDR
(
δNAPA
tLAWS

)
≤ mFDR

(
δLAWS
tLAWS

)
≤ α.
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It implies that, with the oracle threshold of LAWS, NAPA yields a smaller FDR level. There-

fore, we have tNAPA ≥ tLAWS. Recall that for a given group of weights v, the power of δv
t is

defined as

Ψ(δv
t ) = E

[∑
s∈S

I {θ(s) = 1, pv(s) ≤ t}

]

=
∑
s∈S

E (E [I {θ(s) = 1, pv(s) ≤ t}|U(s)]) = E

[∑
s∈S

π(s, U(s))F1{vt|s}

]
.

Therefore, we have,

Ψ
(
δNAPA
tNAPA

)
≥ Ψ

(
δNAPA
tLAWS

)
≥ Ψ

(
δLAWS
tLAWS

)
,

which completes the proof of Theorem 1.

S1.2 Proof of Theorem 2

Proof. Define the event

Λ1,s =

{
U(s) : Var{p(s′),U(s′)},s′∈S(

∑
s′∈S

[KH(s− s′, U(s)− U(s′))I{p(s′) > τ}] |U(s))

= O(
∑
s′∈S

Varp(s′),U(s′) [KH(s− s′, U(s)− U(s′))I{p(s′) > τ}|U(s)])

}
,

Λ2,s =

{
U(s) : VarU(s′),s′∈S(

∑
s′∈S

KH(s− s′, U(s)− U(s′))|U(s))

= O(
∑
s′∈S

VarU(s′) [KH(s− s′, U(s)− U(s′))|U(s)])

}
,

Under the conditions of Theorem 2, we have Pr(Λ1,s∩Λ2,s∩Λs) → 1 uniformly for all s ∈ S

as S → S. Hence, we will focus on the event Λ̃s = Λ1,s ∩ Λ2,s ∩ Λs in the following.

Recall that for each s and conresponding I(τ) = {s′ ∈ S : p(s′) > τ},

1− π̂τ (s, U(s)) =
1/m

∑
s′∈I(τ) vH{(s, U(s)), (s′, U(s′))}

(1− τ)/m
∑

s′∈S vH{(s, U(s)), (s′, U(s′))}

=
1/m

∑
s′∈I(τ) KH(s− s′, U(s)− U(s′))

(1− τ)/m
∑

s′∈S KH(s− s′, U(s)− U(s′))
. (S1.3)
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To show π̂τ (s, U(s)) converges to πτ (s, U(s)) in probability, we calculate the conditional

mean square errors of the numerator and denominator of (S1.3) under event Λ̃s respectively.

Step 1. First, we deal with the numerator of (S1.3).

Step 1.1 For the bias term, note that

E{p(s′),U(s′)},s′∈S

 ∑
s′∈I(τ)

KH(s− s′, U(s)− U(s′))|U(s)


=
∑
s′∈S

{
Ep(s′),U(s′) [KH(s− s′, U(s)− U(s′))I {p(s′) > τ}] |U(s)

}
=
∑
s′∈S

EU(s′)

{
Ep(s′) [KH(s− s′, U(s)− U(s′))I {p(s′) > τ} |U(s′), U(s)] |U(s)

}
=
∑
s′∈S

EU(s′) {[KH(s− s′, U(s)− U(s′)) Pr {p(s′) > τ |U(s′), U(s)}] |U(s)} .

By Condition (C2), with probability 1− O(m−1), the Hessian A has bounded eigenvalues at

(s′
T
, U(s′), U(s))T uniformly for all s′ ∈ S. This, together with Pr {p(s′) > τ |U(s′), U(s)} ∈

[0, 1], yields that, the first partial derivatives of Pr {p(s′) > τ |U(s′), U(s)} are bounded at

(s′
T
, U(s′), U(s))T uniformly for all s′ ∈ S. Because Pr {p(s′) > τ |U(s′), U(s)} has con-

tinuous first and second partial derivatives at (s′T , U(s′), U(s))T, by its Taylor expansion at

(sT, U(s), U(s))T, we have with probability 1−O(m−1),∑
s′∈S

[KH(s− s′, U(s)− U(s′)) Pr {p(s′) > τ |U(s′), U(s)}]

= Pr {p(s) > τ |U(s)}
∑
s′∈S

KH(s− s′, U(s)− U(s′))

+
∑
s′∈S

[(s′ − s)T, U(s′)− U(s), 0]υ ·KH(s− s′, U(s)− U(s′))

+ O

(∑
s′∈S

∥[(s′ − s)T, U(s′)− U(s), 0]T∥22KH(s− s′, U(s)− U(s′))

)
,

where υ = (υ1, . . . , υb+1, υb+2)
T satisfies υj = O(1) for j = 1, . . . , b+ 2. Recall the partition

of H into
[
HS a
aT h2

U

]
and that h̃ = h2

U − aTH−1
S a. Therefore, under the condition that HS

is nonsingular and h̃ ̸= 0, we have that,
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H−1 =

(
H−1

S +H−1
S ah̃−1aTH−1

S −H−1
S ah̃−1

−h̃−1aTH−1
S h̃−1

)
,L =

(
H

−1/2
S 0

h̃−1/2aTH−1
S −h̃−1/2

)
,

where LTL = H−1. Let H1/2 be the unique positive definite square root of H and Q =

H−1/2L−1. Then we have that QTQ = QQT = I and Q

[
x
yx

]
= H−1/2

[
s′ − s

U(s′)− U(s)

]
,

where
[
x
yx

]
= L

[
s′ − s

U(s′)− U(s)

]
. By the symmetry of K, we have that,∫

∥[(s′ − s)T, U(s′)− U(s), 0]T∥22KH(s− s′, U(s)− U(s′))ds′

= (|HS|/|H|)1/2
∫
(xT, yx)Q

THQ(xT, yx)
TK{Q(xT, yx)

T}dx.

By |H| = h̃|HS|, ∥H∥2 = O {tr(H)} and Condition (C2), there exists some constant c > 0,

lim
S→S

{
E{p(s′),U(s′)},s′∈S

[
m−1

∑
s′∈I(τ)

KH(s− s′, U(s)− U(s′))|U(s)
]

− Pr {p(s) > τ |U(s)}m−1
∑
s′∈S

EU(s′) [KH(s− s′, U(s)− U(s′))|U(s)]
}2

≤ c

[
lim
S→S

1

m

∑
s′∈S

EU(s′) ({[(s′ − s)T, U(s′)− U(s)]TKH(s− s′, U(s)− U(s′))} |U(s))

]2

+ c

[∫
(xT, yx)(x

T, yx)
TK{Q(xT, yx)

T}dx lim
S→S

h̃−1/2tr(H)

]2
+ c
[
lim
S→S

m−1|H|−1/2
]2
,

(S1.4)

uniformly in s ∈ S. Letting (x̃T, ỹ)T = Q(xT, yx)
T = (x̃1, · · · , x̃b, ỹ)

T, we have that,∫
(xT, yx)(x

T, yx)
TK{Q(xT, yx)

T}dx =

∫
(x̃T, ỹ)(x̃T, ỹ)TK(x̃, ỹ)dx.

Letting Q =

[
Q̃ e
vT z

]
, then

[
x̃
ỹ

]
=

[
Q̃ e
vT z

] [
x
yx

]
. Henceforth, if ỹ = 0, we have x̃ = (Q̃ −

evT/z)x. By |Q| = |Q̃|(z−vTQ̃−1e) = ±1, we have |Q̃−evT/z| = |Q̃|(1−vTQ̃−1e/z) =

±1/z. By QTQ = I , we have eTe + z2 = 1. This yields |z| ≤ 1. By Condition (C1) and the

unimodality of K, we have uniformly in i = 1, · · · , b that,∫
x̃2
iK(x̃, ỹ)dx ≤ |z|

∫
x̃2
iK(x̃, 0)dx̃

≤
∫
∥x̃∥2≤1

K(x̃, 0)dx̃+

∫
∥x̃∥2>1

x̃2
iK(x̃, 0)dx̃ < ∞.
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Meanwhile, by QTQ = QQT = I again, we have (Q̃− evT/z)−1 = Q̃T, and vTQ̃T + zeT =

(1, 0, · · · , 0). These together with eTe+ z2 = 1 give∥∥∥vT(Q̃− evT/z)−1z
∥∥∥
max

≤ z2
∥∥∥vTQ̃T

∥∥∥
2
≤ 1 + ∥zeT∥2 ≤ 2.

By Condition (C1), we have that,∫
ỹ2K(x̃, ỹ)dx =

∫
|vTx+ zyx|2K{Q(xT, yx)

T}dx

≤|z|
∫ ∣∣∣vT(Q̃− evT/z)−1x̃

∣∣∣2K(x̃, 0)dx̃+

∫
|zyx|2K{Q(xT, yx)

T}dx

≤4

∫
|1T

b x̃|2K(x̃, 0)dx̃+

∫
y2xK{Q(xT, yx)

T}dx < ∞.

Hence, we obtain uniformly in i = 1, · · · , b that,∣∣∣∣∫ x̃2
iK(x̃, ỹ)dx

∣∣∣∣ < ∞,

∣∣∣∣∫ ỹ2K(x̃, ỹ)dx

∣∣∣∣ < ∞.

These, together with Condition (C4), yield that the right-hand-side of (S1.4) goes to 0.

Step 1.2 We show that the variance term converges to zero. Under Condition (C3), we

have

Var{p(s′),U(s′)},s′∈S

 ∑
s′∈T (τ)

KH(s− s′, U(s)− U(s′))|U(s)


= Var{p(s′),U(s′)},s′∈S

(∑
s′∈S

[KH(s− s′, U(s)− U(s′))I {p (s′) > τ}] |U(s)

)

= O

(∑
s′∈S

Varp(s′),U(s′) [KH(s− s′, U(s)− U(s′))I {p(s′) > τ} |U(s)]

)

= O

(∑
s′∈S

Ep(s′),U(s′)

[
K2

H(s− s′, U(s)− U(s′))I {p(s′) > τ} |U(s)
])

= O

{∑
s′∈S

EU(s′)

[
K2

H (s− s′, U(s)− U(s′)) |U(s)
]}

.
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Note that ∫
K2

H(s− s′, U(s)− U(s′))ds′ = |HS|1/2|H|−1

∫
K2{Q(xT, yx)

T}dx,∣∣∣∣∫ K2{Q(xT, yx)
T}dx

∣∣∣∣ ≤ M |z|
∫
K(x̃, 0)dx̃

≤ M

∫
∥x̃∥2≤1

K(x̃, 0)dx̃+M

∫
∥x̃∥2>1

x̃Tx̃K(x̃, 0)dx̃ < ∞,

where |K(x̃, ỹ)| ≤ M < ∞. Therefore, there exist some constants c1, c2 > 0, such that

lim
S→S

Var{p(s′),U(s′)},s′∈S

 1

m

∑
s′∈T (τ)

KH(s− s′, U(s)− U(s′))|U(s)


≤ c1 lim

S→S

1

m2

∑
s′∈S

EU(s′)

[
K2

H (s− s′, U(s)− U(s′)) |U(s)
]

≤ c2

∫
K2{Q(xT, yx)

T}dx lim
S→S

m−1h̃−1/2|H|−1/2. (S1.5)

By m−1|H|−1/2 = o(h̃1/2), we have the right-hand-side of (S1.5) also goes to 0.

Combine (S1.4) and (S1.5), and then we have that

E{p(s′),U(s′)},s′∈S

 1

m

∑
s′∈I(τ)

KH(s− s′, U(s)− U(s′)) −

Pr {p(s) > τ |U(s)} 1

m

∑
s′∈S

EU(s′) [KH(s− s′, U(s)− U(s′))]

∣∣∣∣∣U(s)

}2

→ 0, (S1.6)

in probability as S → S.

Step 2. Next, we deal with the denominator of (S1.3).

Note that

E{U(s′),s′∈S}

{∑
s′∈S

KH(s− s′, U(s)− U(s′))|U(s)

}
=
∑
s′∈S

EU(s′) [KH(s− s′, U(s)− U(s′))|U(s)] ,

8



and that

Var{U(s′),s′∈S}

{∑
s′∈S

KH(s− s′, U(s)− U(s′))|U(s)

}

= O

{∑
s′∈S

EU(s′)

[
K2

H (s− s′, U(s)− U(s′)) |U(s)
]}

.

Then, we can similarly obtain

E{U(s′),s′∈S}

{
1

m

∑
s′∈S

KH(s− s′, U(s)− U(s′))−

1

m

∑
s′∈S

EU(s′) [KH(s− s′, U(s)− U(s′))]

∣∣∣∣∣U(s)

}2

→ 0, (S1.7)

in probability as S → S.

Step 3. By the continuous mapping theorem, combining the results of (S1.6) and (S1.7), we

complete the proof of Theorem 2.

S1.3 Proof of Theorem 3

Proof. Recall that

tw = sup
t

{
t :

∑
s∈S πτ (s, U(s))t

max
{∑

s∈S I {pw(s) ≤ t} , 1
} ≤ α

}
,

and we reject the null hypothesis H0(s) if pw(s) ≤ tw where pw(s) = p(s)/ πτ (s,U(s))
1−πτ (s,U(s))

.

Hence, to prove Theorem 3, it is sufficient to show that, uniformly for all t ≥ tw,∣∣∣∣∑s∈S I {pw(s) ≤ t, θ(s) = 0}
c
∑

s∈S πτ (s, U(s))t
− 1

∣∣∣∣→ 0, (S1.8)

in probability for some 0 < c ≤ 1, where the indicator I {pw(s) ≤ t, θ(s) = 0} incorporates

U(s) via the p-value weight.

By Genovese et al. (2006), the BH procedure controls FDR when it is applied to the

weighted p-values, when the weights sum to m and they are independent of the p-values.
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Algorithm S1.1 The scaled weighting procedure (SWP).

Step 1. Calculate the weights as w̃(s, U(s)) =
{∑

s∈S
πτ (s,U(s))

1−πτ (s,U(s))

}−1
mπτ (s,U(s))
1−πτ (s,U(s))

, and then
adjust p-values by pw̃(s) = p(s)/w̃(s, U(s)) for s ∈ S.

Step 2. Obtain the data-driven threshold

tw̃ = sup
t

{
0 ≤ t ≤ 1 :

mt

max
{∑

s∈S I {pw̃(s) ≤ t} , 1
} ≤ α

}
.

Step 3. Reject H0(s) if pw̃(s) ≤ tw̃ for all s ∈ S.

Therefore, we first propose a scaled weighting procedure (SWP) in Algorithm S1.1, and show

that it controls FDR and FDP asymptotically in Lemma 2. We then further prove (S1.8).

Recall that we aim to show the false rejections
∑

s∈S I {pw(s) ≤ t, θ(s) = 0} is close to

c
∑

s∈S πτ (s, U(s))t for some 0 < c ≤ 1. However, it is difficult to achieve this goal di-

rectly. Hence, we introduce two intermediate quantities as a bridge. Specifically, let Bs =

{U(s) : π(s, U(s)) ∈ [ξ, 1 − ξ] and |U(s) − µ(s)| ≤ (2 logm)1/2}, and then we divide the

proof into three steps. First, by Lemma 2 and comparing the p-value thresholds of NAPA and

SWP, we show that, given {θ(s) : s ∈ S}, the false rejection
∑

s∈S I {pw(s) ≤ t, θ(s) = 0}

is close to its expectation over {(p(s), U(s)) : s ∈ S},
∑

θ(s)=0 EU(s)

[
Pr{pw(s) ≤ t|θ(s) =

0, Bs}
∣∣{θ(s) : s ∈ S}

]
. Next, we further show that

∑
θ(s)=0 EU(s)

[
Pr{pw(s) ≤ t|θ(s) =

0, Bs}
∣∣{θ(s) : s ∈ S}

]
is close to its expectation over {(θ(s)) : s ∈ S},

∑
s∈S EU(s)[Pr{pw(s)

≤ t|θ(s) = 0, Bs}Pr{θ(s) = 0|U(s)}], by dealing with the randomness of {θ(s) : s ∈ S}.

Finally, we show that
∑

s∈S πτ (s, U(s))t can conservatively estimate
∑

s∈S EU(s)[Pr{pw(s) ≤

t|θ(s) = 0, Bs}Pr {θ(s) = 0|U(s)}]. By combining these steps, we establish the asymptotic

FDP and FDR control of the NAPA procedure.

Step 1. Firstly, we show that given {θ(s), s ∈ S},
∑

s∈S I {pw(s) ≤ t, θ(s) = 0} is close to∑
θ(s)=0 EU(s)

[
Pr{pw(s) ≤ t|θ(s) = 0, Bs}

∣∣{θ(s) : s ∈ S}
]

for all t ≥ tw.

10



Note that, by the proof of Lemma 2, we have uniformly for all t ≥ tw̃ that,∣∣∣∣∣
∑

s∈S I{pw̃(s) ≤ t, θ(s) = 0}∑
θ(s)=0 EU(s)

[
Pr{pw̃(s) ≤ t|θ(s) = 0, Bs}

∣∣{θ(s) : s ∈ S}
] − 1

∣∣∣∣∣→ 0, (S1.9)

in probability as S → S, where pw̃(s) = pw(s)m
−1
∑

s∈S
πτ (s,U(s))

1−πτ (s,U(s))
.

Letting t̃ =
{∑

s∈S
πτ (s,U(s))

1−πτ (s,U(s))

}−1

mt, then we have that,

mt

max
{∑

s∈S I {pw̃(s) ≤ t} , 1
} =

∑
s∈S

πτ (s,U(s))
1−πτ (s,U(s))

t̃

max
{∑

s∈S I
{
pw(s) ≤ t̃

}
, 1
} .

Thus, the corresponding threshold for pw(s) in SWP is

t̃w̃ = sup
t

{
0 ≤ t ≤ 1 :

∑
s∈S

πτ (s,U(s))
1−πτ (s,U(s))

t

max
{∑

s∈S I {pw(s) ≤ t} , 1
} ≤ α

}
.

We have that tw̃ = t̃w̃ ·m−1
∑

s∈S
πτ (s,U(s))

1−πτ (s,U(s))
, which implies that (S1.9) holds for t > t̃w̃ with

pw. Recall that

tw = sup
t

{
0 ≤ t ≤ 1 :

∑
s∈S πτ (s, U(s))t

max
{∑

s∈S I {pw(s) ≤ t} , 1
} ≤ α

}
.

Comparing the definition of tw and t̃w̃, we see that t̃w̃ ≤ tw. Then by (S1.9), we have uniformly

for all t ≥ tw,∣∣∣∣∣
∑

s∈S I {pw(s) ≤ t, θ(s) = 0}∑
θ(s)=0 EU(s)

[
Pr{pw(s) ≤ t|θ(s) = 0, Bs}

∣∣{θ(s) : s ∈ S}
] − 1

∣∣∣∣∣→ 0, (S1.10)

in probability as S → S.

Step 2. Next, we show that
∑

θ(s)=0 EU(s)

[
Pr{pw(s) ≤ t|θ(s) = 0, Bs}

∣∣{θ(s) : s ∈ S}
]

is

close to
∑

s∈S EU(s) [Pr{pw(s) ≤ t|θ(s) = 0, Bs}Pr {θ(s) = 0|U(s)}].

More specifically, by Lemma 1, we have

Eθ(s),s∈S
∑

θ(s)=0

EU(s)

[
Pr{pw(s) ≤ t|θ(s) = 0, Bs}

∣∣{θ(s) : s ∈ S}
]

=
∑
s∈S

Eθ(s),U(s) [I{θ(s) = 0}Pr{pw(s) ≤ t|θ(s) = 0, Bs}]

= {1 + o(1)}
∑
s∈S

EU(s) [Pr{pw(s) ≤ t|θ(s) = 0, Bs}Pr {θ(s) = 0|U(s)}] ,

11



where the o(1) is in the limit of S → S.

Also note that, by Condition (C7) and the proof of Lemma 2,

Varθ(s),s∈S
∑

θ(s)=0 EU(s)

[
Pr{pw(s) ≤ t|θ(s) = 0, Bs}

∣∣{θ(s) : s ∈ S}
](

Eθ(s),s∈S
∑

θ(s)=0 EU(s)

[
Pr{pw(s) ≤ t|θ(s) = 0, Bs}

∣∣{θ(s) : s ∈ S}
])2

=
Varθ(s),s∈S

∑
s∈S
(
EU(s)

[
Pr{pw(s) ≤ t|θ(s) = 0, Bs}

∣∣{θ(s) : s ∈ S}
]
I{θ(s) = 0}

){
Eθ(s),s∈S

∑
s∈S
(
EU(s)

[
Pr{pw(s) ≤ t|θ(s) = 0, Bs}

∣∣{θ(s) : s ∈ S}
]
I{θ(s) = 0}

)}2
= O

(
Varθ(s),s∈S

∑
s∈S
(
EU(s)

[
w(s, U(s))

∣∣{θ(s) : s ∈ S}
]
I {θ(s) = 0}

)
m2

)
= o(1).

Therefore, we have∣∣∣∣∣
∑

θ(s)=0 EU(s)

[
Pr{pw(s) ≤ t|θ(s) = 0, Bs}

∣∣{θ(s) : s ∈ S}
]∑

s∈S EU(s) [Pr{pw(s) ≤ t|θ(s) = 0, Bs}Pr {θ(s) = 0|U(s)}]
− 1

∣∣∣∣∣→ 0, (S1.11)

in probability.

Step 3. Finally, we show that
∑

s∈S EU(s) [Pr{pw(s) ≤ t|θ(s) = 0, Bs}Pr {θ(s) = 0|U(s)}]

can be further conservatively estimated by
∑

s∈S πτ (s, U(s))t.

By the proof of Lemma 2, under event Bs, the thresholds for {pw(s), U(s)} is in the

corresponding range of {T (s), U(s)} where Lemma 1 holds. Then we have uniformly for all

t ≥ tw,

∑
s∈S

EU(s) [Pr{pw(s) ≤ t|θ(s) = 0, Bs}Pr {θ(s) = 0|U(s)}]

=
∑
s∈S

EU(s)

{[
{1 + o(1)} πτ (s, U(s))

1− πτ (s, U(s))
t+O(m−2)

]
{1− π(s, U(s))}

}
(S1.12)

≤
∑
s∈S

EU(s)

[
{1 + o(1)} πτ (s, U(s))

1− πτ (s, U(s))
t{1− πτ (s, U(s))}+O(m−2)

]
={1 + o(1)}

∑
s∈S

EU(s)πτ (s, U(s))t+O(m−1)

={1 + o(1)}EU(s),s∈S
∑
s∈S

πτ (s, U(s))t,

where o(1) is in the limit of S → S, and (S1.12) is obtained by Lemma 1.

12



Also, by Condition (C7), πτ (s, U(s)) has bounded first derivatives and is hence continuous

in U(s). By the proof of Proposition 1, we have {U(s), s ∈ S} → N({µ(s), s ∈ S},Σ) in

distribution, where Σ = (σs,l), σs,l = (rs,l;1+{ϑ(s)ϑ(l)}1/2rs,l;2)/({1+ϑ(s)}{1+ϑ(l)})1/2.

Let g({U(s), s ∈ S}) =
∑

s∈S πτ (s, U(s)). By delta method, we have g({U(s), s ∈ S}) →

N(g({µ(s), s ∈ S}), σ2
g) in distribution with

σ2
g = ∇g({µ(s), s ∈ S})TΣ∇g({µ(s), s ∈ S}) = O (max{λ1(R1), λ1(R2)}m) .

Then, under Condition (C6), we have

VarU(s),s∈S
∑
s∈S

{πτ (s, U(s))t} = o

(
E2
U(s),s∈S

∑
s∈S

πτ (s, U(s))t

)
.

Hence, we have∣∣∣∣ c
∑

s∈S πτ (s, U(s))t∑
s∈S EU(s) [Pr{pw(s) ≤ t|θ(s) = 0, Bs}Pr {θ(s) = 0|U(s)}]

− 1

∣∣∣∣→ 0, (S1.13)

in probability for some 0 < c ≤ 1.

Finally, by combining (S1.10), (S1.11) and (S1.13), (S1.8) is proved, which completes the

proof of Theorem 3.

S1.4 Proof of Theorem 4

Proof. Note that, to show Theorem 4, it suffices to show,∣∣∣∣∑s∈S I {pŵ(s) ≤ t, θ(s) = 0}
c
∑

s∈S π̂τ (s, U(s))t
− 1

∣∣∣∣→ 0, (S1.14)

in probability for some 0 < c ≤ 1.

First, define the events B̂s = Bs ∩ {U(s) : π̂τ (s, U(s)) = {1 + o(1)}πτ (s, U(s))} for

all s ∈ S . Then, under Theorem 3 and Condition (C7), we have Pr(B̂s) → 1 for all s ∈ S .

Hence, it is easy to see that Lemma 2 still holds with estimated weights {π̂τ (s, U(s)) : s ∈ S}.

Therefore, similar to the proof of Theorem 3, we have, uniformly for all t ≥ tŵ,∣∣∣∣∣∣
∑

s∈S I {pŵ(s) ≤ t, θ(s) = 0}∑
θ(s)=0 EU(s)

[
Pr{pŵ(s) ≤ t|θ(s) = 0, B̂s}

∣∣{θ(s) : s ∈ S}
] − 1

∣∣∣∣∣∣→ 0, (S1.15)
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in probability as S → S.

Then, by Condition (C7), Lemma 2 and Theorem 2, we can similarly obtain that,∣∣∣∣∣∣
∑

θ(s)=0 EU(s)

[
Pr{pŵ(s) ≤ t|θ(s) = 0, B̂s}

∣∣{θ(s) : s ∈ S}
]

∑
s∈S EU(s)

[
Pr{pŵ(s) ≤ t|θ(s) = 0, B̂s}Pr {θ(s) = 0|U(s)}

] − 1

∣∣∣∣∣∣→ 0, (S1.16)

in probability.

Finally, by Lemma 1 and Theorem 2, we have uniformly for all t ≥ tŵ that,

∑
s∈S

EU(s)

[
Pr{pw(s) ≤ t|θ(s) = 0, B̂s}Pr {θ(s) = 0|U(s)}

]
=
∑
s∈S

EU(s)

[
{1 + o(1)}2 πτ (s, U(s))

1− πτ (s, U(s))
t{1− π(s, U(s))}+O(m−2)

]
≤
∑
s∈S

EU(s)

[
{1 + o(1)} πτ (s, U(s))

1− πτ (s, U(s))
t{1− πτ (s, U(s))}+O(m−2)

]
= {1 + o(1)}

∑
s∈S

EU(s)[πτ (s, U(s))]t+O(m−1)

={1 + o(1)}EU(s),s∈S
∑
s∈S

π̂τ (s, U(s))t,

where o(1) is in the limit of S → S. Similarly, we also obtain

VarU(s),s∈S
∑
s∈S

{π̂τ (s, U(s))t} = o

(
E2
U(s),s∈S

∑
s∈S

π̂τ (s, U(s))t

)
.

Then we have∣∣∣∣∣∣ c
∑

s∈S π̂τ (s, U(s))t∑
s∈S EU(s)

[
Pr{pw(s) ≤ t|θ(s) = 0, B̂s}Pr {θ(s) = 0|U(s)}

] − 1

∣∣∣∣∣∣→ 0, (S1.17)

for some 0 < c ≤ 1.

By combining (S1.15), (S1.16) and (S1.17), (S1.14) is proved and we complete the proof

of Theorem 4.
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S1.5 Proof of Proposition 1

Proof. We aim to verify the asymptotic normality of T (s) and U(s) and show the asymptotic

independence between T (s) and U(s), under the null. Recall the fact

G
(
t+ o{(logm)−1/2}

)
G(t)

= 1 + o(1),
ϕ
(
t+ o{(logm)−1/2}

)
ϕ(t)

= 1 + o(1), (S1.18)

uniformly in 0 ≤ t ≤ c0(logm)1/2 for any constant c0 > 0, where ϕ(·) is the probability den-

sity function of a standard normal variable. Then we can use normal variables to approximate

T (s) and U(s) simultaneously. Without loss of generality, we assume that σ2
s,1 ≍ σ2

s,2 ≍ 1,

for all s ∈ S and d = 1, 2, throughout.

We divide the proof into three steps. First, we replace the estimated variances with the truth

and obtain {T̃ (s), Ũ(s)} with zero mean and unit variance. Next, we truncate {T̃ (s), Ũ(s)}

to {T̂ (s), Û(s)}, and show the difference is negligible. Finally, we use normal variables to

approximate {T̂ (s), Û(s)}, and derive the asymptotic results.

Step 1. Following the proof of Lemma 2 of Cai and Liu (2011), for any constant C > 0, there

exists a constant C0 > 0, such that

Pr

{
max
s∈S

∣∣σ̂2
s,d − σ2

s,d

∣∣ ≥ C0

√
logm/nd

}
= O(m−C),

for d = 1, 2. We then replace the estimators with the true variances, and define

T̃ (s) =
Ȳ1(s)− Ȳ2(s){

σ2
s,1/n1 + σ2

s,2/n2

}1/2 ,
Ũ(s) =

Ȳ1(s)− β1(s) + κ(s){Ȳ2(s)− β2(s)}{
σ2
s,1/n1 + κ2(s)σ2

s,2/n2

}1/2 ,

where κ(s) = (n2σ
2
s,1)/(n1σ

2
s,2). Recall the condition that logm = o(n1/5), we have, for any

constant C > 0, there exists bm = o{(logm)−1/2}, such that

Pr

{
max
s∈S0

∣∣∣T (s)− T̃ (s)
∣∣∣ ≥ bm

}
= O(m−C), (S1.19)

Pr

{
max
s∈S0

∣∣∣[U(s)− µ(s)]− Ũ(s)
∣∣∣ ≥ bm

}
= O(m−C), (S1.20)
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where µ(s) = (1 + o{(logm)−1})E{U(s)}. This establishes the asymptotic normality of

T (s) and U(s). It remains to show the asymptotic independence, for which it suffices to show

lim
ϵ→0

Pr {|T (s)| ≥ t, |U(s)− u| ≤ ϵ}
Pr {|U(s)− u| ≤ ϵ}

= {1 + o(1)}G(t) +O(m−C4), (S1.21)

uniformly in t = O{(logm)1/2}, |U(s)− µ(s)| = O{(logm)1/2}, and all s ∈ S0.

Step 2. Next, we reconstruct T̃ (s) and Ũ(s). Let n2/n1 ≤ K1 with K1 ≥ 1, and define

Zk(s) = (n2/n1){Yk,1(s) − β1(s)} for 1 ≤ k ≤ n1, Zk(s) = −{Yk−n1,2(s) − β2(s)} for

n1 + 1 ≤ k ≤ n1 + n2. We can rewrite T̃ (s) as,

T̃ (s) =

∑n1+n2

k=1 Zk(s)(
n2
2σ

2
s,1/n1 + n2σ2

s,2

)1/2 .
Define the truncated variable, Ẑk(s) = Zk(s)I {|Zk(s)| ≤ τn|} − E [Zk(s)I {|Zk(s)| ≤ τn|}],

and write

T̂ (s) =

∑n1+n2

k=1 Ẑk(s)(
n2
2σ

2
s,1/n1 + n2σ2

s,2

)1/2 ,
where τn = (C3 + 2)K1/C1 log(m ∨ n), with C3 specified later. We see that,

T̃ (s)− T̂ (s) =

∑n1+n2

k=1 [Zk(s)I{|Zk(s)| > τn}](
n2
2σ

2
s,1/n1 + n2σ2

s,2

)1/2 −
∑n1+n2

k=1 E [Zk(s)I{|Zk(s)| > τn}](
n2
2σ

2
s,1/n1 + n2σ2

s,2

)1/2 .

For the second term, by n1 ≍ n2 ≍ n, there exists some constants c0, c1, c2, such that

max
s∈S0

n−1/2

n1+n2∑
k=1

E [|Zk(s)|I {|Zk(s)| > τn}]

≤c0n
1/2 max

1≤k≤n1+n2

max
s∈S

E [|Zk(s)|I {|Zk(s)| > τn}]

≤c0n
1/2(m+ n)−

C3+2
2 max

1≤k≤n1+n2

max
s∈S

E [|Zk(s)| exp {(C1/2K1)|Zk(s)|}] (S1.22)

≤c1n
1/2(m+ n)−

C3+2
2 max

1≤k≤n1+n2

max
s∈S

{
E|(C1/K1)Zk(s)|2

}1/2
(E [exp {(C1/K1)|Zk(s)|}])1/2

(S1.23)

≤c2n
1/2(m+ n)−

C3+2
2 , (S1.24)
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where (S1.22) comes from I{x ≥ a} ≤ ex/ea, (S1.23) by Cauchy-Schwartz inequality, and

(S1.24) from (C1/K1)|Zk(s)| ≤ C1|Yk,d(s) − βd(s)| by Condition (C10), and the inequality

x2 ≤ ex for x > 0. Note that the term (S1.24) is o{(logm)−1/2}. Then there exists some

bm = o{(logm)−1/2}, such that

Pr

{
max
s∈S0

∣∣∣T̃ (s)− T̂ (s)
∣∣∣ ≥ bm

}
≤ Pr

{
max
s∈S0

max
1≤k≤n1+n2

|Zk(s)| > τn

}
≤ mnmax

s∈S0

Pr {|Zk(s)| > τn}

≤ mn exp {−(C1/K1)τn}E exp {(C1/K1)|Zk(s)|}

= O(m−C3). (S1.25)

Similarly, define Vk(s) = (n2/n1){Yk,1(s)−β1(s)} for 1 ≤ k ≤ n1, and Vk(s) = κ(s){Yk,2(s)−

β2(s)} for n1 + 1 ≤ k ≤ n1 + n2, where κ(s) = (n2σ
2
s,1)/(n1σ

2
s,2). Then,

Ũ(s) =

∑n1+n2

k=1 Vk(s){
n2
2σ

2
s,1/n1 + n2κ2(s)σ2

s,2

}1/2 .
Define

Û(s) =

∑n1+n2

k=1 V̂k(s){
n2
2σ

2
s,1/n1 + n2κ2(s)σ2

s,2

}1/2 ,
with the truncated variable V̂k(s) = Vk(s)I {|Vk(s)| ≤ τn|}−E [Vk(s)I {|Vk(s)| ≤ τn|}]. Then

we obtain that,

Pr

{
max
s∈S0

∣∣∣Ũ(s)− Û(s)
∣∣∣ ≥ bm

}
≤ Pr

{
max
s∈S0

max
1≤k≤n1+n2

|Vk(s)| ≥ τn

}
= O(m−C3), (S1.26)

for some bm = o{(logm)−1/2}. Combining (S1.19), (S1.20), (S1.25), and (S1.26), we obtain

that,

Pr

{
max
s∈S0

∣∣∣T (s)− T̂ (s)
∣∣∣ ≥ bm

}
= O(m−C3), (S1.27)

Pr

{
max
s∈S0

∣∣∣[U(s)− µ(s)]− Û(s)
∣∣∣ ≥ bm

}
= O(m−C3). (S1.28)
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Step 3. Now we can apply normal approximation to {(T̂ (s), Û(s)) : s ∈ S0}. Denote by

N = (N1, N2) a normal random vector with E(N ) = 0 and Cov (N ) = Cov(Wk), where

Wk = (Wk,1,Wk,2) =

(
Ẑk(s){

n2σ2
s,1/n1 + σ2

s,2

}1/2 , V̂k(s){
n2σ2

s,1/n1 + κ2(s)σ2
s,2

}1/2
)
.

Then we have that,

Pr
H0

{
|T̂ (s)| ≥ t, |Û(s)− ũ| ≤ ϵ

}
= Pr

{∣∣∣∣∣n−1/2
2

n1+n2∑
k=1

Wk,1

∣∣∣∣∣ ≥ t,

∣∣∣∣∣n−1/2
2

n1+n2∑
k=1

Wk,2 − ũ

∣∣∣∣∣ ≤ ϵ

}
,

where ũ = u− µ(s). By Theorem 1.1 in Zaitsev (1987), we have that,

Pr
H0

{
|T̂ (s)| ≥ t, |Û(s)− ũ| ≤ ϵ

}
≤Pr

{
|N1| ≥ t− ϵn(logm)−1/2, |N2 − ũ| ≤ ϵ+ ϵn(logm)−1/2

}
+ c1 exp

{
− n1/2ϵn
c2τn(logm)1/2

}
,

and

Pr
H0

{
|T̂ (s)| ≥ t, |Û(s)− ũ| ≤ ϵ

}
≥Pr

{
|N1| ≥ t+ ϵn(logm)−1/2, |N2 − ũ| ≤ ϵ− ϵn(logm)−1/2

}
− c1 exp

{
− n1/2ϵn
c2τn(logm)1/2

}
,

where c1 > 0 and c2 > 0 are constants, and ϵn → 0 is to be specified later. Similar to the proof

of Lemma 3, by Condition (C10) and an appropriate choice of τn, we have ∥Cov(Wk)−I∥2 =

o {(logm)−1}. Combined with (S1.27) and (S1.28), we have that,

Pr
H0

{|T (s)| ≥ t, |U(s)− u| ≤ ϵ}

≤{1 + o(1)}G
{
t− ϵn(logm)−1/2 − bm

}
· 2
{
ϵ+ ϵn(logm)−1/2 + bm

}
ϕ(u1)

+ c1 exp

{
− n1/2ϵn
c2τn(logm)1/2

}
+O

(
m−C3

)
,

(S1.29)

and
Pr
H0

{|T (s)| ≥ t, |U(s)− u| ≤ ϵ}

≥{1 + o(1)}G
{
t+ ϵn(logm)−1/2 + bm

}
· 2
{
ϵ− ϵn(logm)−1/2 − bm

}
ϕ(u2)

− c1 exp

{
− n1/2ϵn
c2τn(logm)1/2

}
−O

(
m−C3

)
,

(S1.30)
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where u1 = argmaxϕ(ǔ) for ǔ ∈ [ũ− ϵ− ϵn(logm)−1/2 − bm, ũ+ ϵ+ ϵn(logm)−1/2 + bm]

and u2 = argminϕ(ǔ) for ǔ ∈ [ũ − ϵ + ϵn(logm)−1/2 + bm, ũ + ϵ − ϵn(logm)−1/2 − bm].

Meanwhile, by Theorem 1.1 in Zaitsev (1987) and (S1.28) again, we have that,

Pr
H0

{|U(s)− u| ≤ ϵ} ≤2{1 + o(1)}
{
ϵ+ ϵn(logm)−1/2 + bm

}
ϕ(u1)

+ c1 exp

{
− n1/2ϵn
c2τn(logm)1/2

}
+O

(
m−C3

)
,

(S1.31)

and

Pr
H0

{|U(s)− u| ≤ ϵ} ≥2{1 + o(1)}
{
ϵ− ϵn(logm)−1/2 − bm

}
ϕ(u2)

− c1 exp

{
− n1/2ϵn
c2τn(logm)1/2

}
−O

(
m−C3

)
.

(S1.32)

Now let ϵn approach zero sufficiently slowly, such that both ϵ
1/2
n (logm)−1/2 ≫ bm, and

n1/2ϵn
c2τn(logm)1/2

≫ logm hold. The latter means c1 exp
{
− n1/2ϵn

c2τn(logm)1/2

}
= O

(
m−C

)
for any

constant C > 0 under logm = o
(
n1/5

)
. Let ϵ = ϵ

1/2
n (logm)−1/2, by |ũ| = O{(logm)1/2},

we have |u1−u2| = O
{
ϵ
1/2
n (logm)−1/2

}
which gives ϕ(u1)/ϕ(u2) = 1+o(1) by (S1.18). Re-

call (S1.21), and combine (S1.29), (S1.30), (S1.31), and (S1.32). Then for t = O{(logm)1/2}

and |U(s)−µ(s)| = O{(logm)1/2}, for any constant C4 > 0, we choose C3 sufficiently large,

such that

Pr
H0

{|T (s)| ≥ t|U(s)}

≤ lim
ϵ→0

{1 + o(1)}G
{
t− ϵn(logm)−1/2 − bm

}
· 2
{
ϵ+ ϵn(logm)−1/2 + bm

}
ϕ(u1) +O

(
m−C3

)
2{1 + o(1)} {ϵ− ϵn(logm)−1/2 − bm}ϕ(u2)−O (m−C3)

={1 + o(1)}G(t) +O(m−C4),

and

Pr
H0

{|T (s)| ≥ t|U(s)}

≥ lim
ϵ→0

{1 + o(1)}G
{
t+ ϵn(logm)−1/2 + bm

}
· 2
{
ϵ− ϵn(logm)−1/2 − bm

}
ϕ(u2)−O

(
m−C3

)
2{1 + o(1)} {ϵ+ ϵn(logm)−1/2 + bm}ϕ(u1) +O (m−C3)

={1 + o(1)}G(t)−O(m−C4).

Combining the upper and lower bounds completes the proof of Proposition 1.
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S2 Technical Lemmas

We collect the technical lemmas and provide their proofs in this section. Lemma 1 presents

the conditional independence between T (s) and U(s) under the null. Its proof is similar to

that of Proposition 1 and is thus omitted. Lemma 2 establishes the theoretical properties of

the scaled weighting procedure proposed in Algorithm S1.1. Lemma 3 is needed for (S2.19)

in the proof of Lemma 2.

Lemma 1. Suppose Condition (C5) holds. Then we have

Pr
{
|T (s)| ≥ t

∣∣U(s)
}
= {1 + o(1)}G(t) +O(m−2),

uniformly in 0 ≤ t ≤ (2 logm)1/2, |U(s)− µ(s)| ≤ (2 logm)1/2 and all s ∈ S0.

Lemma 2. Suppose Conditions (C5)-(C8) hold. We have, for any ϵ > 0,

lim
S→S

FDR
(
δSWP
tw̃

)
≤ αm0/m, and lim

S→S
Pr
{
FDP

(
δSWP
tw̃

)
≤ αm0/m+ ϵ

}
= 1.

Proof. To deal with the dependency among the tests, we base our analysis on z-values zw̃(s) =

Φ−1{1 − pw̃(s)/2} instead of the weighted p-values, where Φ(·) is the CDF of a standard

normal random variable. Note that by Lemma 3 of Xia et al. (2020), SWP is equivalent to

rejecting H0(s) if |zw̃(s)| ≥ tz for all s ∈ S, where

tz = inf
t

{
t ≥ 0 :

mG(t)

max
{∑

s∈S I {|zw̃(s)| ≥ t}, 1
} ≤ α

}
, (S2.1)

and G(t) = 2{1− Φ(t)}. Define the events

B1 = {U(s) : πτ (s, U(s)) ∈ [ξ, 1− ξ] for all s ∈ S} ,

B2 =

{
{θ(s), s ∈ S} : m0 =

∑
s∈S

I{θ(s) = 0} ≍ m

}
,

and then we have Pr(B1) → 1 by Condition (C7). Again by Condition (C7), we have,
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1− o(1) ≤ Pr(B2) = Pr(B2|B1) Pr(B1) + Pr(B2|Bc
1) Pr(B

c
1) ≤ 1 + o(1),

which gives Pr(B2) → 1. It hence suffices to focus on event B2 and show, given {θ(s) : s ∈

S},
∑

s∈S0
I {|zw̃(s)| ≥ t} is close to cmG(t) for some 0 < c ≤ 1.

Defining Bs = {U(s) : πτ (s, U(s)) ∈ [ξ, 1 − ξ] and |U(s) − µ(s)| ≤ (2 logm)1/2}

for s ∈ S0, we divide the following proof into three steps. First, we show that tz in (S2.1)

is obtained in the range [0, tm], where tm = (2 logm − 2 log logm)1/2. Therefore it suf-

fices to show for t ∈ [0, tm],
∑

s∈S0
I {|zw̃(s)| ≥ t} is close to cmG(t) for some 0 < c ≤

1. Next, by Theorem 1 in Genovese et al. (2006), we show the conditional expectation∑
s∈S0

EU(s)

[
Pr{|zw̃(s)| ≥ t|θ(s) = 0, Bs}

∣∣{θ(s) : s ∈ S}
]

is close to cmG(t) for some 0 <

c ≤ 1. Finally, we prove the false discoveries
∑

s∈S0
I {|zw̃(s)| ≥ t} is close to

∑
s∈S0

EU(s)[
Pr{|zw̃(s)| ≥ t|θ(s) = 0, Bs}

∣∣{θ(s) : s ∈ S}
]
, by showing that only the weakly correlated

tests play the dominant role.

Step 1. First, we show that tz in (S2.1) is attained in the range [0, tm], where tm = (2 logm−

2 log logm)1/2. This is essential for the FDP control in (S2.21) and (S2.22).

Note that by Condition (C8), we have |T (s)| ≥ (logm)1/2+ν/2 for those s ∈ Sν with prob-

ability tending to 1. Also note that under event B1, πτ (s, U(s)) ∈ [ξ, 1 − ξ] for a sufficiently

small constant ξ > 0, which gives c ≤ w̃ (s, U(s)) ≤ C for some 0 < c < C < ∞. Then,

Pr

{∑
s∈S

I
{
|zw̃(s)| ≥ (2 logm)1/2

}
≥
{
1/
(
c1/2π α

)
+ ε
}
(logm)1/2

}

≥ Pr

{∑
s∈S

I
{
|zw̃(s)| ≥ (2 logm)1/2

}
≥
{
1/
(
c1/2π α

)
+ ε
}
(logm)1/2

∣∣B1

}
Pr(B1)

≥ Pr

{∑
s∈S

I
{
|T (s)| ≥ (logm)1/2+ν/2

}
≥
{
1/
(
c1/2π α

)
+ ε
}
(logm)1/2

∣∣B1

}
Pr(B1)

= Pr

{∑
s∈S

I
{
|T (s)| ≥ (logm)1/2+ν/2

}
≥
{
1/
(
c1/2π α

)
+ ε
}
(logm)1/2

}
− o(1)

= 1− o(1).
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Recall that tm = (2 logm− 2 log logm)1/2, and 1−Φ (tm) ∼ 1/
{
(2cπ)

1/2tm
}
exp (−t2m/2).

We have Pr (0 ≤ tz ≤ tm) → 1. Then, we only need to prove uniformly for 0 ≤ t ≤ tm, given

{θ(s) : s ∈ S}, there exists some 0 < c ≤ 1, such that∣∣∣∣
∑

s∈S0
I {|zw̃(s)| ≥ t} − cm0G(t)

cm0G(t)

∣∣∣∣→ 0, (S2.2)

in probability.

Step 2. Next, we show that
∑

s∈S0
EU(s)

[
Pr{|zw̃(s)| ≥ t|θ(s) = 0, Bs}

∣∣{θ(s) : s ∈ S}
]

is

close to cm0G(t) for some 0 < c ≤ 1, by considering the independent setting. Following

Theorem 1 of Genovese et al. (2006) and Lemma 1, we obtain that E[FDP(t)|{θ(s) : s ∈

S}] ≤ {1 + o(1)}αm0/m+O(m−1). This, together with (S2.1), gives that,

E{zw̃(s),U(s)},s∈S

[ ∑
s∈S0

I {|zw̃(s)| ≥ tz}
max

{∑
s∈S I {|zw̃(s)| ≥ tz} , 1

}∣∣{θ(s) : s ∈ S}

]
≤ {1 + o(1)}αm0/m.

(S2.3)

Note that, by Condition (C5), similar to the proof of Proposition 1, we can obtain that

Pr

{
max
s∈S0

|U(s)− µ(s)| ≥ (2 logm)1/2
}

= o(1).

Let B3 =
{
U(s) : |U(s)− µ(s)| ≤ (2 logm)1/2 for all s ∈ S0

}
. Then, it gives

Pr(B1 ∩B3) = 1− Pr(Bc
1 ∪Bc

3) ≥ 1− o(1),

and further Pr(Bs) ≥ Pr(B1 ∩B3) ≥ 1− o(1). Then, we have

E{zw̃(s),U(s)},s∈S

[∑
s∈S0

I {|zw̃(s)| ≥ t}
∣∣{θ(s) : s ∈ S}

]
=
∑
s∈S0

Ezw̃(s),U(s)

[
I {|zw̃(s)| ≥ t}

∣∣{θ(s) : s ∈ S}
]

=
∑
s∈S0

EU(s)

(
Ezw̃(s)

[
I {|zw̃(s)| ≥ t}

∣∣{θ(s) : s ∈ S}, U(s)
] ∣∣{θ(s) : s ∈ S}

)
=
∑
s∈S0

EU(s)

[
Pr {|zw̃(s)| ≥ t|θ(s) = 0, Bs}Pr(Bs) +O (Pr({Bs}c))

∣∣{θ(s) : s ∈ S}
]

={1 + o(1)}
∑
s∈S0

EU(s)

[
Pr {|zw̃(s)| ≥ t|θ(s) = 0, Bs}

∣∣{θ(s) : s ∈ S}
]
.
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Also, following Genovese et al. (2006) again, when {zw̃(s), U(s)}’s are independent across

s ∈ S, by later (S2.10) and Lemma 1, we have uniformly in 0 ≤ t ≤ tm,

Var{zw̃(s),U(s)},s∈S
[∑

s∈S0
I {|zw̃(s)| ≥ t}

∣∣{θ(s) : s ∈ S}
](∑

s∈S0
EU(s)

[
Pr {|zw̃(s)| ≥ t|θ(s) = 0, Bs}

∣∣{θ(s) : s ∈ S}
])2

≤

(∑
s∈S0

EU(s)

[
Pr {|zw̃(s)| ≥ t|θ(s) = 0, Bs}

∣∣{θ(s) : s ∈ S}
])−1

= o(1).

Therefore, we have∣∣∣∣∣
∑

s∈S0
I {|zw̃(s)| ≥ t}∑

s∈S0
EU(s)

[
Pr {|zw̃(s)| ≥ t|θ(s) = 0, Bs}

∣∣{θ(s) : s ∈ S}
] − 1

∣∣∣∣∣→ 0,

in probability. Now we can estimate the threshold by

t̂o = inf

{
t ≥ 0 :

∑
s∈S0

EU(s)

[
Pr {|zw̃(s)| ≥ t|θ(s) = 0, Bs}

∣∣{θ(s) : s ∈ S}
]

max
{∑

s∈S I
{
|zw̃(s)| ≥ t̂o

}
, 1
} ≤ α

}
,

(S2.4)

which gives that,

E{zw̃(s),U(s)},s∈S

[ ∑
s∈S0

I
{
|zw̃(s)| ≥ t̂o

}
max

{∑
s∈S I

{
|zw̃(s)| ≥ t̂o

}
, 1
}∣∣{θ(s) : s ∈ S}

]
→ α. (S2.5)

Comparing (S2.3) with (S2.5), we see that (S2.1) is asymptotically more conservative than

(S2.4). Therefore, we have,∣∣∣∣∣
∑

s∈S0
EU(s)

[
Pr {|zw̃(s)| ≥ t|θ(s) = 0, Bs}

∣∣{θ(s) : s ∈ S}
]

cm0G(t)
− 1

∣∣∣∣∣→ 0, (S2.6)

in probability for some 0 < c ≤ 1 uniformly in 0 ≤ t ≤ tm.

Step 3. Finally, it remains to show that, with dependent {(zw̃(s), U(s)) : s ∈ S0}, uniformly

in 0 ≤ t ≤ tm,∣∣∣∣∣
∑

s∈S0
I {|zw̃(s)| ≥ t}∑

s∈S0
EU(s)

[
Pr {|zw̃(s)| ≥ t|θ(s) = 0, Bs}

∣∣{θ(s) : s ∈ S}
] − 1

∣∣∣∣∣→ 0, (S2.7)

in probability. We further divide the proof of this step into two sub-steps to handle the de-

pendency structure among {(zw̃(s), U(s)) : s ∈ S0}. First, we approximate {(T (s), U(s)) :
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s ∈ S0} with some standardized sum of influence functions, {(V (s),W (s)) : s ∈ S0}, for

further normal approximation. Then, we divide the null set into several subsets to calculate

the conditional mean squared error and show the highly correlated sets are negligible.

Step 3.1. Define
V (s) =

∑n
k=1 Zk(s)

Var {
∑n

k=1 Zk(s)}1/2
,

W (s) =

∑n1

k=1 Zk(s)− ϑ(s)
∑n

k=n1+1 Zk(s)

Var
{∑n1

k=1 Zk(s)− ϑ(s)
∑n

k=n1+1 Zk(s)
}1/2 .

Then, under Condition (C5), we have for some constant C2 > 5,

Pr

{
max
s∈S0

|T (s)− V (s)| ≥ bm

}
= O(m−C2), (S2.8)

Pr

{
max
s∈S0

|[U(s)− µ(s)]−W (s)| ≥ bm

}
= O(m−C2), (S2.9)

where bm = o
{
(logm)−1/2

}
. Note that under event Bs where πτ (s, U(s)) ∈ [ξ, 1 − ξ] for

some constant 0 < ξ < 1, we have

G−1
[
G
{
(a1 logm+ a2 log logm)1/2

}
w̃ (s, U(s))

]
= (a1 logm+ a2 log logm+ a3)

1/2 ,

(S2.10)

for some constants a1, a2 and a3. Recall that zw̃(s) = G−1 {p(s)/w̃(s, U(s))} and |T (s)| =

G−1 {p(s)}. Then T (s) and zw̃(s) share the same order under event Bs. By (S2.8) and the

fact

G
(
t+ o

{
(logm)−1/2

})
/G(t) = 1 + o(1), (S2.11)

uniformly in 0 ≤ t ≤ a0(logm)1/2 for any constant a0 > 0, we have that,

G (|T (s)|) /w̃(s, U(s)) = {1 + o(1)}G(|V (s)|)/w̃(s, U(s)). (S2.12)

Let Vw̃(s) = G−1{G(|V (s)|)/w̃(s, U(s))}. Recall zw̃(s) = G−1 {G (|T (s)|) /w̃(s, U(s))}.

Then, by (S2.8), (S2.9), (S2.11) and (S2.12), and the proof of Proposition 1, we have that,∑
s∈S0

Pr {|zw̃(s)| ≥ t|θ(s) = 0, Bs} ={1 + o(1)}
∑
s∈S0

Pr{|Vw̃(s)| ≥ t|θ(s) = 0, B̃s},

(S2.13)
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where B̃s = {U(s) : πτ (s, U(s)) ∈ [ξ, 1 − ξ] } ∩ {W (s) : |W (s)| ≤ (2 logm)1/2}. By the

delta method, V (s) and Vw̃(s) share the same correlation structures. Then, it remains to show

that, uniformly in 0 ≤ t ≤ tm,

sup
0≤t≤tm

∣∣∣∣∣∣
∑

s∈S0
I{|Vw̃(s)| ≥ t}∑

s∈S0
EW (s)

[
Pr{|Vw̃(s)| ≥ t|θ(s) = 0, B̃s}

∣∣{θ(s) : s ∈ S}
] − 1

∣∣∣∣∣∣→ 0, (S2.14)

in probability.

Step 3.2. To show (S2.14), we first discretize the range [0, tm], then divide the pairs of the null

sets into several subsets: the pairs that share the same indices S01, the set of highly correlated

pairs S02, and the set of weakly correlated pairs S03. We prove (S2.14) by showing the first

two subsets are negligible, and S03 plays the dominant role.

More specifically, we divide the range [0, tm] into q sections with length no larger than

υm = 1/
√
logm log logm. Let 0 = t0 < t1 < . . . < tq = tm, such that tι − tι−1 =

υm for 1 ≤ ι ≤ q − 1, and tq − tq−1 ≤ υm, which gives q ∼ tm/υm. Let Υs(t) =

EW (s)

[
Pr{|Vw̃(s)| ≥ t|θ(s) = 0, B̃s}

∣∣{θ(s), s ∈ S}
]
. By Proposition 1, we have

Υs(t) = {1 + o(1)}G(t). (S2.15)

For any t such that tι−1 ≤ t ≤ tι, we have, for any s ∈ S0,∑
s∈S0

I{|Vw̃(s)| ≥ t}∑
s∈S0

Υs(t)
≤
∑

s∈S0
I{|Vw̃(s)| ≥ tι−1}∑
s∈S0

Υs (tι−1)

∑
s∈S0

Υs (tι−1)∑
s∈S0

Υs (tι)
,∑

s∈S0
I{|Vw̃(s)| ≥ t}∑
s∈S0

Υs(t)
≥
∑

s∈S0
I{|Vw̃(s)| ≥ tι}∑
s∈S0

Υs (tι)

∑
s∈S0

Υs (tι)∑
s∈S0

Υs (tι−1)
.

By (S2.15), we have Υs (tι) /Υs (tι−1) = 1 + o(1). Thus, we only need to prove that,

max
0≤ι≤q

∣∣∣∣
∑

s∈S0
[I{|Vw̃(s)| ≥ tι} −Υs (tι)]∑

s∈S0
Υs (tι)

∣∣∣∣→ 0, (S2.16)

in probability.

Note that
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Pr

{
max
0≤ι≤q

∣∣∣∣
∑

s∈S0
[I{|Vw̃(s)| ≥ tι} −Υs (tι)]∑

s∈S0
Υs (tι)

∣∣∣∣ ≥ ϵ
∣∣{θ(s), s ∈ S}

}
≤

q∑
ι=0

Pr

{∣∣∣∣
∑

s∈S0
[I{|Vw̃(s)| ≥ tι} −Υs (tι)]∑

s∈S0
Υs (tι)

∣∣∣∣ ≥ ϵ
∣∣{θ(s), s ∈ S}

}
≤ 1

υm

∫ tm

0

Pr

{∣∣∣∣
∑

s∈S0
[I{|Vw̃(s)| ≥ tι} −Υs (tι)]∑

s∈S0
Υs (tι)

∣∣∣∣ ≥ ϵ
∣∣{θ(s), s ∈ S}

}
dtι

+

q∑
ι=q−1

Pr

{∣∣∣∣
∑

s∈S0
[I{|Vw̃(s)| ≥ tι} −Υs (tι)]∑

s∈S0
Υs (tι)

∣∣∣∣ ≥ ϵ
∣∣{θ(s), s ∈ S}

}
.

Then it remains to show that, for any constant ϵ > 0,∫ tm

0

Pr

{∣∣∣∣
∑

s∈S0
[I{|Vw̃(s)| ≥ t} −Υs(t)]∑

s∈S0
Υs(t)

∣∣∣∣ ≥ ϵ
∣∣{θ(s), s ∈ S}

}
dt = o(υm), (S2.17)

sup
0≤t≤tm

Pr

{∣∣∣∣
∑

s∈S0
[I{|Vw̃(s)| ≥ t} −Υs(t)]∑

s∈S0
Υs(t)

∣∣∣∣ ≥ ϵ
∣∣{θ(s), s ∈ S}

}
= o(1). (S2.18)

By conditional Markov’s inequality, we have that, for any constant ϵ > 0,

Pr

{∣∣∣∣
∑

s∈S0
I{|Vw̃(s)| ≥ t} −Υs(t)∑

s∈S0
Υs(t)

∣∣∣∣ ≥ ϵ
∣∣{θ(s), s ∈ S}

}
≤ E{Vw̃(s),W (s)},s∈S0

{∣∣∣∣
∑

s∈S0
I{|Vw̃(s)| ≥ t} −Υs(t)∑

s∈S0
Υs(t)

∣∣∣∣2 ∣∣{θ(s), s ∈ S}

}
/ϵ2,

where

E{Vw̃(s),W (s)},s∈S0

{∣∣∣∣
∑

s∈S0
I{|Vw̃(s)| ≥ t} −Υs(t)∑

s∈S0
Υs(t)

∣∣∣∣2 ∣∣{θ(s), s ∈ S}

}

=

∑
s,l∈S0

EVw̃(s),W (s),Vw̃(l),W (l)

[
I{|Vw̃(s)| ≥ t}I{|Vw̃(l)| ≥ t}

∣∣{θ(s), s ∈ S}
]{∑

s∈S0
Υs(t)

}2
−
∑

s,l∈S0

∏
b=s,l EVw̃(b),W (b)

[
I{|Vw̃(b)| ≥ t}

∣∣{θ(s), s ∈ S}
]{∑

s∈S0
Υs(t)

}2
=

∑
(s,l)∈S0

EW (s),W (l)

[
Pr{|Vw̃(s)| ≥ t, |Vw̃(l)| ≥ t|θ(s) = 0, θ(l) = 0, B̃s, B̃l}

∣∣{θ(s), s ∈ S}
]

{∑
s∈S0

Υs(t)
}2

−

∑
(s,l)∈S0

∏
b=s,l EW (b)

[
Pr{|Vw̃(b)| ≥ t|θ(b) = 0, B̃b}

∣∣{θ(s), s ∈ S}
]

{∑
s∈S0

Υs(t)
}2
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Recall Γs(γ) = {l : l ∈ S, |rs,l;d| ≥ (logm)−2−γ for d = 1 or 2}. We divide the null in-

dices into three subsets: S01 = {(s, l) : s, l ∈ S0, s = l}, S02 = {(s, l) : s, l ∈ S0, s ∈

Γl(γ), or l ∈ Γs(γ)}, and S03 = {(s, l) : s, l ∈ S0}\(S01 ∪ S02).

Note that for S01, by the proof of Proposition 1, we have that, for some constant C,∑
(s,l)∈S01

EW (s)

[(
Pr{|Vw̃(s)| ≥ t|θ(s) = 0, B̃s}+ Pr{|Vw̃(s)| ≥ t|θ(s) = 0, B̃s}

)2 ∣∣{θ(s), s ∈ S}
]

{∑
s∈S0

Υs(t)
}2

≤ 2∑
s∈S0

Υs(t)
≤ C

mG(t)
,

where the last inequality comes from (S2.15).

For S02, by the condition maxs∈S0 Card (Γs(γ)) ≍ 1 under Condition (C6), we have that,∑
(s,l)∈S02

EW (s),W (l)

[
Pr{|Vw̃(s)| ≥ t, |Vw̃(l)| ≥ t|θ(s) = 0, θ(l) = 0, B̃s, B̃l}

∣∣{θ(s), s ∈ S}
]

{∑
s∈S0

Υs(t)
}2

−

∑
(s,l)∈S02

∏
b=s,l EW (b)

[
Pr{|Vw̃(b)| ≥ t|θ(b) = 0, B̃b}

∣∣{θ(s), s ∈ S}
]

{∑
s∈S0

Υs(t)
}2

≤

∑
(s,l)∈S02

EW (s)

[(
Pr{|Vw̃(s)| ≥ t|θ(s) = 0, B̃s}+ Pr2{|Vw̃(s)| ≥ t|θ(s) = 0, B̃s}

) ∣∣{θ(s), s ∈ S}
]

{∑
s∈S0

Υs(t)
}2

≤ C

mG(t)
.

For S03, by Lemma 3 that we prove after this lemma, we have that,∑
(s,l)∈S03

EW (s),W (l)

[
Pr{|Vw̃(s)| ≥ t, |Vw̃(l)| ≥ t|θ(s) = 0, θ(l) = 0, B̃s, B̃l}

∣∣{θ(s), s ∈ S}
]

{∑
s∈S0

Υs(t)
}2

−

∑
(s,l)∈S03

∏
b=s,l EW (b)

[
Pr{|Vw̃(b)| ≥ t|θ(b) = 0, B̃b}

∣∣{θ(s), s ∈ S}
]

{∑
s∈S0

Υs(t)
}2

=
O {(logm)−1−γ1}

∑
(s,l)∈S03

∏
b=s,l EW (b)

[
Pr{|Vw̃(b)| ≥ t|θ(b) = 0, B̃b}

∣∣{θ(s), s ∈ S}
]

∑
s,l∈S0

∏
b=s,l EW (b)

[
Pr{|Vw̃(b)| ≥ t|θ(b) = 0, B̃b}

∣∣{θ(s), s ∈ S}
]

(S2.19)

= O
{
(logm)−1−γ1

}
,
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where γ1 = min(γ, 1/2).

Note that ∫ tm

0

C(logm)−1−γ1/ϵ2dt = Ctm(logm)−1−γ1/ϵ2 = o(υm). (S2.20)

Also, by 1 − Φ (t) > t/
{
(2cπ)

1/2(1 + t2)
}
exp (−t2/2) for t > 0 and monotonicity of G(t),

we have∫ tm

0

C/ϵ2

mG(t)
dt ≤

∫ 1

0

C ′

m
dt+

∫ tm

1

C ′tet
2/2

m
dt

=
C ′

m
+

C ′

m
et

2/2
∣∣∣tm
1

=
C ′

m
+

C ′

m

(
m

logm
− e1/2

)
= o(υm), (S2.21)

for any constant ϵ > 0. Combining (S2.20) and (S2.21) proves (S2.17). Note that

C(logm)−1−γ1/ϵ2 = o(1),
C

ϵ2mG(t)
= o(1), (S2.22)

which proves (S2.18). By combining (S2.17) and (S2.18), we prove (S2.16).

This completes the proof of Lemma 2.

Lemma 3. Under the conditions of Lemma 2, letting γ1 = min(γ, 1/2), we have that,

max
(s,l)∈S03

EW (s),W (l)

[
Pr{|Vw̃(s)| ≥ t, |Vw̃(l)| ≥ t|θ(s) = 0, θ(l) = 0, B̃s, B̃l}

∣∣{θ(s), s ∈ S}
]

=
[
1 +O

{
(logm)−1−γ1

}] ∏
b=s,l

EW (b)

[
Pr{|Vw̃(b)| ≥ t|θ(b) = 0, B̃b}

∣∣{θ(s), s ∈ S}
]
,

uniformly for 0 ≤ t ≤ (2 logm)1/2.

Proof. We first note that it suffices to show

EW (s),W (l)

[
lim
ϵ→0

PrH0 {|Vw̃(s)| ≥ t, |Vw̃(l)| ≥ t, |W (s)− ũs| ≤ ϵ, |W (l)− ũl| ≤ ϵ}
PrH0 {|W (s)− ũs| ≤ ϵ, |W (l)− ũl| ≤ ϵ}

∣∣{θ(s), s ∈ S}
]

=
[
1 +O

{
(logm)−1−γ1

}] ∏
b=s,l

EW (b)

[
Pr
H0

{|Vw̃(b)| ≥ t|W (b)}
∣∣{θ(s), s ∈ S}

]
,

uniformly for 0 ≤ t ≤ (2 logm)1/2, |W (s)| ≤ (2 logm)1/2, and (s, l) ∈ S03.
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Toward that end, we first truncate the statistics similarly as in the proof of Proposition 1.

Define

V̂ (s) =

∑n
k=1 Ẑk(s)

Var
{∑n

k=1 Ẑk(s)
}1/2

,

Ŵ (s) =

∑n1

k=1 Ẑk(s)− ϑ(s)
∑n

k=n1+1 Ẑk(s)

Var
{∑n1

k=1 Ẑk(s)− ϑ(s)
∑n

k=n1+1 Ẑk(s)
}1/2

,

where Ẑk(s) = Zk(s)I {|Zk(s)| ≤ τn} − E [Zk(s)I {|Zk(s)| ≤ τn}] and τn = C log(m ∨ n)

for some constnat C > 0.

Let V̂w̃(s) = G−1{G(|V̂ (s)|)/w̃(s, U(s))}. By the fact G (t+O{(logm)−2}) /G(t) =

1+O
{
(logm)−2/3

}
uniformly in 0 ≤ t ≤ a0(logm)1/2 for any constant a0 > 0. Then, similar

to the proof of Proposition 1, we can choose τn, such that for some constant C5 specified later,

Pr

{
max
s∈S0

∣∣∣Vw̃(s)− V̂w̃(s)
∣∣∣ ≥ (logm)−2

}
= O(m−C5), (S2.23)

Pr

{
max
s∈S0

∣∣∣W (s)− Ŵ (s)
∣∣∣ ≥ (logm)−2

}
= O(m−C5), (S2.24)

and that for any (s, l) ∈ S03 defined in Lemma 2,∥∥∥Cov{V̂w̃(s), V̂w̃(l), Ŵ (s), Ŵ (l)} − Cov{Vw̃(s), Vw̃(l),W (s),W (l)}
∥∥∥
2

= O
{
(logm)−2−γ} . (S2.25)

Following the proof of Proposition 1, let N = (N1, N2, N3, N4) be a multivariate nor-

mal vector with mean zero and covariance matrix Σ = Cov{V̂w̃(s), V̂w̃(l), Ŵ (s), Ŵ (l)} for

(s, l) ∈ S03. Then by Theorem 1.1 in Zaitsev (1987), we have that,

Pr
H0

{
|V̂w̃(s)| ≥ t, |V̂w̃(l)| ≥ t, |Ŵ (s)− ũs| ≤ ϵ, |Ŵ (l)− ũl| ≤ ϵ

}
≤Pr {min (|N1|, |N2|) ≥ t− ϵn,max (|N3 − ũs|, |N4 − ũl|) ≤ ϵ+ ϵn}+ c1 exp

{
n1/2ϵn
c2τn

}
,
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and

Pr
H0

{
|V̂w̃(s)| ≥ t, |V̂w̃(l)| ≥ t, |Ŵ (s)− ũs| ≤ ϵ, |Ŵ (l)− ũl| ≤ ϵ

}
≥Pr {min (|N1|, |N2|) ≥ t+ ϵn,max (|N3 − ũs|, |N4 − ũl|) ≤ ϵ− ϵn} − c1 exp

{
n1/2ϵn
c2τn

}
,

where c1, c2 are positive constants, and ϵ, ϵn → 0 are to be specified later. Let A = {N :

min(|N1|, |N2|) ≥ t1,max(|N3 − ũs|, |N4 − ũl|) ≤ t2} for any t1, t2 ∈ R. Furthermore,

by (S2.25) and Conditions (C5) and (C6), we have ∥Σ − I∥2 = O{(logm)−2−γ}. Since

Pr (∥N∥22 > C logm) ≤ 4Pr (N2
1 > C logm/4), for any constant C > 0, we have that,∫

A,∥N∥22>C logm

exp

(
−1

2
N TΣ−1N

)
dN ≤c1

∫
N2

1>C logm/4

exp

(
−1

2
N2

1

)
dN1

≤c2(logm)−1/2 exp (−C logm/8)

=O
{
(logm)−1/2m−C/8

}
, (S2.26)

for some constants c1, c2 > 0. Then by ∥Σ−1 − I∥2 ≤ ∥Σ−1∥2∥Σ− I∥2 = O {(logm)−2−γ}

and the fact that xTAx ≤ ∥A∥2∥x∥22, we have that,∫
A,∥N∥22≤C logm

exp

(
−1

2
N TΣ−1N

)
dN

=

∫
A,∥N∥22≤C logm

exp

{
−1

2
N T(Σ−1 − I)N − 1

2
∥N∥22

}
dN

=
[
1 +O{(logm)−1−γ}

] ∫
A,∥N∥22≤C logm

exp

(
−1

2
∥N∥22

)
dN

=
[
1 +O{(logm)−1−γ}

] ∫
A
exp

(
−1

2
∥N∥22

)
dN

−
[
1 +O{(logm)−1−γ}

] ∫
A,∥N∥22>C logm

exp

(
−1

2
∥N∥22

)
dN

=
[
1 +O{(logm)−1−γ}

] ∫
A
exp

(
−1

2
∥N∥22

)
dN +O

{
(logm)−1/2m−C/8

}
. (S2.27)

Combining (S2.26) and (S2.27), by |Σ| = (1 +O {(logm)−2−γ})4 |I|, with the density func-

tion of multivariate normal variable, we can let C be sufficiently large, such that
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Pr {min (|N1|, |N2|) ≥ t1,max (|N3 − ũs|, |N4 − ũl|) ≤ t2}

=
[
1 +O{(logm)−1−γ}

]
G2(t1) {Φ(ũs + t2)− Φ(ũs − t2)} {Φ(ũl + t2)− Φ(ũl − t2)} .

Then, combined with (S2.23) and (S2.24), we obtain that,

Pr
H0

{|Vw̃(s)| ≥ t, |Vw̃(l)| ≥ t, |W (s)− ũs| ≤ ϵ, |W (l)− ũl| ≤ ϵ}

≤
[
1 +O{(logm)−1−γ}

]
G2 {t− ϵn} · 2 {ϵ+ ϵn}2 ϕ(us1)ϕ(ul1) + c1 exp

{
n1/2ϵn
c2τn

}
+O(m−C5),

and

Pr
H0

{|Vw̃(s)| ≥ t, |Vw̃(l)| ≥ t, |W (s)− ũs| ≤ ϵ, |W (l)− ũl| ≤ ϵ}

≥
[
1 +O{(logm)−1−γ}

]
G2 {t+ ϵn} · 2 {ϵ− ϵn}2 ϕ(us2)ϕ(ul2)− c1 exp

{
n1/2ϵn
c2τn

}
+O(m−C5),

where ub1 = argmaxϕ(ǔ) for ǔ ∈ [ũb − ϵ − ϵn, ũb + ϵ + ϵn], and ub2 = argminϕ(ǔ), for

ǔ ∈ [ũb − ϵ+ ϵn, ũb + ϵ− ϵn], for b = s, l respectively. Similarly, we obtain that,

Pr
H0

{|W (s)− ũs| ≤ ϵ, |W (l)− ũl| ≤ ϵ}

≤
[
1 +O{(logm)−1−γ}

]
2 {ϵ+ ϵn}2 ϕ(us1)ϕ(ul1) + c1 exp

{
n1/2ϵn
c2τn

}
+O(m−C5),

and

Pr
H0

{|W (s)− ũs| ≤ ϵ, |W (l)− ũl| ≤ ϵ}

≥
[
1 +O{(logm)−1−γ}

]
2 {ϵ− ϵn}2 ϕ(us2)ϕ(ul2)− c1 exp

{
n1/2ϵn
c2τn

}
+O(m−C5).

Letting ϵ = ϵn = (logm)−2, then under logm = o(n1/8), by |ub1 − ub2| = O {(logm)−2} for

b = s, l, we can let C5 sufficiently large such that,

Pr
H0

{|Vw̃(s)| ≥ t, |Vw̃(l)| ≥ t|W (s),W (l)}

≤ lim
ϵ→0

[1 +O{(logm)−1−γ}]G2 {t− ϵn} · 2 {ϵ+ ϵn}2 ϕ(us1)ϕ(ul1) +O(m−C5)

2 {ϵ− ϵn}2 ϕ(us2)ϕ(ul2) +O(m−C5)

=
[
1 +O{(logm)−1−γ1}

]
G2(t),

31



and

Pr
H0

{|Vw̃(s)| ≥ t, |Vw̃(l)| ≥ t|W (s),W (l)}

≥ lim
ϵ→0

[1 +O{(logm)−1−γ}]G2 {t+ ϵn} · 2 {ϵ− ϵn}2 ϕ(us2)ϕ(ul2) +O(m−C5)

2 {ϵ+ ϵn}2 ϕ(us1)ϕ(ul1) +O(m−C5)

=
[
1 +O{(logm)−1−γ1}

]
G2(t),

uniformly for 0 ≤ t ≤ (2 logm)1/2, where γ1 = min(γ, 1/2). Hence we have

EW (s),W (l)

[
Pr
H0

{|Vw̃(s)| ≥ t, |Vw̃(l)| ≥ t|W (s),W (l)}
∣∣{θ(s) : s ∈ S}

]
=
[
1 +O{(logm)−1−γ1}

]
G2(t),

uniformly for 0 ≤ t ≤ (2 logm)1/2 and (s, l) ∈ S03.

Meanwhile, we have

∏
b=s,l

EW (s),W (l)

[
Pr
H0

{|Vw̃(b)| ≥ t|W (b)}
∣∣{θ(s) : s ∈ S}

]
=
[
1 +O

{
(logm)−3/2

}]
G2(t).

Then the desired result follows, which completes the proof of Lemma 3.

S3 Additional Numerical Results and Discussions

S3.1 Additional 1D example

We consider an additional simulation with a 1D setting where there is no clear spatial pattern.

More specifically, we consider s = 1, · · · , 5000, set π(s) = 0.7 at 800 randomly sampled

locations, and set π(s) = 0.05 for the rest of the locations. We first evaluate the accuracy of

recovering π(s, U(s)). Figure S1 reports the result based on a single data replication. For

this example, since there is no spatial pattern, LAWS performs very poorly. By contrast,

the NAPA method performs much better. Next, we evaluate the empirical FDR and power.

Figure S2 reports the empirical FDR and power of various testing methods based on 200 data

replications. It is seen that LAWS suffers from some FDR inflation under this random signal
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Figure S1: Estimation of the posterior non-null probability π(s, U(s)) for the additional 1D
example. From top to bottom: the true probability, the estimated probability by NAPA, and
the estimated probability by LAWS.

Figure S2: Empirical FDR and power for the additional 1D example. Top panels: varying
∆β in scenario 1, and bottom panels: varying π in scenario 2. Five methods are compared:
the proposed method (NAPA), the GAP method (Xia et al., 2020), the LAWS method (Cai
et al., 2022), the simple combination of GAP and LAWS, and the BH method (Benjamini and
Hochberg, 1995).
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setting, and has little improvement over the BH procedure in most of the cases. Besides,

the simple combination of GAP and LAWS has no apparent power advantage over GAP. By

contrast, the proposed NAPA method enjoys the best power performance while having the

FDR under control.
S3.2 Sensitivity analysis for bandwidth selection

We carry out a sensitivity analysis in the selection of the bandwidth matrix H in (5.8). There

are three parameters involved in H , i.e., hs, hU and ρ. Let ĥs, ĥU and ρ̂ denote the selected

parameters following the approach described in Section 5.1. We then vary one parameter

while fixing the other two. For instance, we vary hs as kĥs, with k = {0.6, 0.7, . . . , 1.1, 1.2},

while fixing hU and ρ at ĥU and ρ̂. Figure S3 reports the estimation result of the posterior

non-null probability for a single data replication for the 2D example in Section 5.1. Figure S4

reports the empirical FDR and power of our testing method for the 1D example in Section 5.2.
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Figure S3: Sensitivity analysis: estimation of the posterior non-null probability for the 2D
example. From top to bottom: we vary hs = kĥs, hU = kĥ, and ρ = kρ̂. From left to right:
k = 0.6, 0.8, 1.0, 1.2, and the last column shows the true probability.
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Figure S4: Sensitivity analysis: empirical FDR and power for the 1D example. We vary hs, hU

and ρ respectively for NAPA, while vary hs for LAWS and GAP+LAWS.
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Figure S5: Sensitivity analysis: discoveries for the 1D DTI real data example.

We vary hs, hU and ρ respectively for NAPA, while vary hs for LAWS and GAP+LAWS. All

results are based on 200 data replications. Moreover, Figure S5 shows the discoveries of the

1D DTI real data example in Section 6.1 by NAPA, LAWS and GAP+LAWS, under varying

bandwidth parameters. In all these plots, it is seen that our method achieves a relatively stable

performance across a range of values of those parameters.

S3.3 Irregular domain and irregular lattice

Our method is generally applicable to spatial data with spatial smoothness, but usually regard-

less of the shape of the domain, or the specific lattice of the sampling observations. Next we

consider some simulations examples with irregular domain and irregular lattice.
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Figure S6: Irregular domain: estimation of the posterior non-null probability.

Figure S7: Irregular domain: empirical FDR and power.

First, we simulate a 2D setting where the signals have donut shapes located on a plane

with an absence of a triangle, as shown in Figure S6. We set {s = (s1, s2)} to be grid points

on a 100 × 60 plane, with 0.4s1 + s2 ≤ 60 for s1 = 1, 2, . . . , 50, and 0.4s1 − s2 ≥ −20 for

s1 = 51, 52, . . . , 100. We set π(s) = 0.8 for the left donut where dist{(s1, s2), (30, 20)} ∈

[5, 15], set π(s) = 0.6 for the right donut where dist{(s1, s2), (70, 20)} ∈ [5, 15], and dist(·, ·)

is the Euclidean distance. Figure S6 shows the accuracy of recovering the posterior non-null

probability based on a single data replication, and Figure S7 reports the empirical FDR and

power of various testing methods based on 200 replications for the two scenarios in Section

5.2. It is seen that our method continues to perform well in this irregular domain setting.
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Figure S8: Irregular lattice: estimation of the posterior non-null probability.

Figure S9: Irregular lattice: empirical FDR and power.

Next, we simulate a 2D setting where the signals have rough donut shapes and the lattice

is irregular with a few diagonal strips missing, as shown in Figure S8. We set {s = (s1a, s2a)}

to be grid points on a 103×53 plane, where s1a = s′1a+ca, s2a = s′2a+ca for a = 1, . . . , 5000,

s′1a = 1, 2, . . . , 100, s′2a = 1, 2, . . . , 50, and (c1, . . . , c5000) is a vector that repeatedly replicates

(0, 1, 2, 3, 2, 1, 0). We set π(s) = 0.8 for the left donut where dist{(s′1a, s′2a), (30, 20)} ∈

[5, 15], and set π(s) = 0.6 for the right donut where dist{(s′1a, s′2a), (70, 20)} ∈ [5, 15]. Figure

S8 and Figure S9 report the results. It is seen again that our method performs well in this

irregular lattice setting.
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S3.4 Heavy-tailed distribution

In Section 5, we simulate the data from the normal distribution. We next consider an example

that the data {Yi,1(s)}n1
i=1 and {Yi,2(s)}n2

i=1 are generated from the heavy-tailed t distribution,

Yi,1(s) | θ(s) ∼ {1− θ(s)} t(ν) + θ(s) {β1(s) + t(ν)},

Yi,2(s) | θ(s) ∼ {1− θ(s)} 4t(ν) + θ(s) {β1(s) + ∆β + 4t(ν)},

where θ(s) ∼ Bernoulli(1, π(s)), β1(s) = 1/
√
20,∆β = 3/

√
20 and t(ν) denotes a t distri-

bution with the degree of freedom ν. We consider ν = {3, 4, 5} for the 2D example in Section

5.1. Figure S10 reports the estimation, and Figure S11 reports the testing results with varying

∆β . It is seen that our method performs well under the heavy-tailed distribution.
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Figure S10: Heavy-tailed distribution: estimation of the posterior non-null probability. From
top to bottom: ν = 3, 4, 5.
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Figure S11: Heavy-tailed distribution: empirical FDR and power. From top to bottom: ν =
3, 4, 5.

S3.5 Discussion of the conditions in Theorem 1

We give more discussion of the conditions in Theorem 1.

First, we assume U(s) and T (s) are independent under the alternative. In our oracle

setting, we have U(s) and T (s) being independent under the null. Meanwhile, in our con-

struction, it is relatively mild to obtain the asymptotic independence under the alternative too.

More specifically, following (S1.19) and (S1.20) in the proof of Proposition 1, we can obtain

that, for any constant C > 0, there exists some bm = o{(logm)−1/2}, such that

Pr

{
max
s∈S1

∣∣∣[T (s)− µT (s)]− T̃ (s)
∣∣∣ ≥ bm

}
= O(m−C),

Pr

{
max
s∈S1

∣∣∣[U(s)− µU(s)]− Ũ(s)
∣∣∣ ≥ bm

}
= O(m−C),

for |T (s) − µT (s)| = O{(logm)1/2}, |U(s) − µU(s)| = O{(logm)1/2}, where µT (s) =

[1 + o{(logm)−1}]E{T (s)}, µU(s) = [1 + o{(logm)−1}]E{U(s)}, and (T̃ (s), Ũ(s)) are a
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Figure S12: Verification of the four distributional conditions in Theorem 1.

pair of asymptotically independent normal variables. It then yields that

Cov (T (s), U(s)) ≈ Cov
(
T̃ (s) + µT (s), Ũ(s) + µU(s)

)
≈ 0,

which indicates the asymptotic independence between T (s) and U(s) under the alternative.

Next, we numerically verify the four distributional conditions in Theorem 1. Recall that,

we require that F1(y|s) is concave in y; gs(x) is convex in x for x ≤ 1/(1+ tLAWS); yF ′
1 (y|s)

is non-decreasing in y; and {g′s(1− ζ)− g′s(0.5)}/{1− g′s(0.5)} ≤ 1/ϱ, for some 0 < ϱ ≤ 1.

We generate the alternative p-values from a Beta distribution, Beta(ξ, 1). Such a p-value

distribution is widely adopted in the literature; see for example, Sellke et al. (2001); Held and

Ott (2018); Zhang and Chen (2022). We vary ξ = {2/3, 1/2, 1/3}. Figure S12 shows the

results. The upper left panel shows the concavity of F1(y|s), the upper right panel shows the

convexity of gs(x) at tLAWS = 0.04, the bottom left panel shows the non-decreasing pattern of

yF ′
1 (y|s), and the bottom right panel verifies that {g′s(1− ζ)− g′s(0.5)}/{1− g′s(0.5)} ≤ 1/ϱ

for ζ ∈ (0, 0.2) and ϱ = 0.02.
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S3.6 Discussion of Condition (C3)

We further discuss Condition (C3) from three aspects. First, we present a sufficient condition

for (C3), and discuss how it can be relaxed when modifying the bandwidth matrix condition in

(C4). Next, we verify that (C3) holds for some common spatial structures. Finally, we consider

an example where (C3) may not hold, but our method still maintains a good performance.

We first note that, by our construction of T (s) and U(s), the correlation structure among

T (s) and U(s) can be characterized by the correlation matrices of the influence functions,

R1 = Corr(Zk) = (rs,l;1)m×m , 1 ≤ k ≤ n1,

R2 = Corr(Zk) = (rs,l;2)m×m , n1 + 1 < k ≤ n1 + n2.

Consider a simple case where U(s) is normally distributed, Var(Zk)’s are of the same order,

and c0m of the location-wise conditional variances in (C3) share the same order of magnitude

for some 0 < c0 ≤ 1. Then a sufficient condition for (C3) is that both R1 and R2 are s-

sparse, i.e., there are at most s nonzero entries in each row, where s is of a constant order.

We can further relax this sufficient condition. For instance, if we set the bandwidth matrix in

Condition (C4) so that it satisfies |H| ≫ (mh̃)−1, then the order of s can be relaxed from a

constant order to the order of O(m1/2).

Next, we note that the above sufficient condition (where s is of a constant order) cov-

ers some common spatial structures, including the banded structure, where there are a fixed

number of off-diagonal bands along the diagonal, the hub structure, where the nodes are par-

titioned into disjoint groups with a fixed number of nodes in each group, and the random

structure, where the probability for the off-diagonal entries to be nonzero is of order O(m−1).

Finally, we consider an example with a Toeplitz covariance structure, for which Condition

(C3) may not hold. Specifically, we simulate the data {Yi,1(s)}n1
i=1 and {Yi,2(s)}n2

i=1 from

Yi,1 | θ ∼ (1− θ) Normal(0,Σ) + θ Normal
(
β11m,Σ

)
,

Yi,2 | θ ∼ (1− θ) Normal(0, 4Σ) + θ Normal
(
(β1 +∆β)1m, 4Σ

)
,
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Figure S13: Robustness to Condition (C3): estimation of the posterior non-null probability
under the Toeplitz structure. From top to bottom: ρ = 0.4, 0.6, 0.8.

where Σ = (σi,j), σi,j = ρ|i−j|, 1 ≤ i, j ≤ m, and 1m is a length-m vector with all ones.

We vary ρ = {0.4, 0.6, 0.8}, and set β1 = 1/
√
20, ∆β = 3/

√
20. Figure S13 reports the

estimation result of the posterior non-null probability for a single data replication. It is seen

that our NAPA method still outperforms LAWS and recovers the true posterior probability

well.

S3.7 Discussion of Condition (C6)

We further discuss Condition (C6) from three aspects. First, we explain why this condition is

important for our setting. Next, we verify that (C6) holds for some common spatial structures.

Finally, we revisit the example in Section S3.6, where (C6) does not hold, but our method still

maintains a good performance.

We first note that, existing theory of multiple testing under dependency mainly considers

the setting with one sequence of p-values, whereas NAPA needs to deal with two sequences.
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Figure S14: Robustness to Condition (C6): empirical FDR and power under the Toeplitz
structure. From top to bottom: ρ = 0.4, 0.6, 0.8.

A key challenge in our theoretical analysis is to mitigate the effects of highly correlated pairs.

Therefore, it requires a weak dependency condition that is stronger than those for the one

sequence scenario. Specifically, for two pairs (Vw̃(s),W (s)) and (Vw̃(l),W (l)) that are highly

correlated, where (Vw̃(s), Vw̃(l)) are the weighted approximations of the primary statistics

(T (s), T (l)), and (W (s),W (l)) are the approximations of the auxiliary statistics (U(s), U(l))

as defined in Step 3.1 in the proof of Lemma 2, we need to show that∑
(s,l)∈S02

EW (s),W (l) [PrH0{|Vw̃(s)| ≥ t, |Vw̃(l)| ≥ t|Ω (W (s)) ,Ω (W (l))}]{∑
s∈S0

EW (s) [PrH0{|Vw̃(s)| ≥ t|Ω (W (s))}]
}2

−
∑

(s,l)∈S02

∏
b=s,l EW (b) [PrH0{|Vw̃(b)| ≥ t|Ω (W (b))}]{∑

s∈S0
EW (s) [Pr{|Vw̃(s)| ≥ t|Ω (W (s))}]

}2 = O
(
(logm)−1−γ1

)
,

for each realization of {θ(s) : s ∈ S}, where Ω (W (s)) is some event relevant to W (s),

γ1 is as defined in Step 3.2 in the proof of Lemma 2, and S02 = {(s, l) : s, l ∈ S0, s ∈

Γl(γ), or l ∈ Γs(γ)}. We should emphasize that, even if T (s) and U(s) are independent,

the pairs (T (s), U(l)), (T (s), T (l)) and (U(s), U(l)) can still be highly dependent. This
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is significantly different from the existing literature where one only needs to deal with the

correlations between one sequence of p-values.

Next, we note that Condition (C6) covers some common spatial structures, including the

banded structure, the hub structure, and the random structure, similarly as for Condition (C3).

Finally, we revisit the example in Section S3.6. For this example, the Toeplitz covariance

structure is exponentially decaying, and thus Condition (C6) does not hold. Figure S14 reports

the empirical FDR and power of various testing methods based on 200 data replications. It is

seen that our method still performs well, partly because Condition (C6) is sufficient but not

necessary.
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