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This supplement contains theoretical and simulation results. In Section S1, we hypothesize the

theoretical MLE distribution when the covariates are from a multivariate t-distribution and

validate our conjecture through simulations. In Section S2, we provide additional detail on the

SLOE algorithm we use to estimate the signal strength parameter. Section S3–Section S6.4

includes additional simulation results.

S1 Distribution of the MLE under a MVT covariate

model

In this section we conjecture the distribution of a logistic MLE when the co-

variates follow a multivariate t-distribution (MVT). We begin by describing

the model setting (Section S1.1), then describe the conjectured MLE distri-

bution (Section S1.2) and compare with simulation results (Section S1.3).

In short, we show that the MLE distribution depends on the degrees of
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freedom ν and, therefore HDT, does not apply. For simplicity, we consider

models without an intercept in this section and we refer readers to (Zhao,

Sur and Candès , 2020, Section 7) for the theoretical MLE distribution

when the model includes an intercept term.

S1.1 Model assumptions

Suppose we have n i. i. d. observations (Xi, Yi), Xi ∈ Rp and Yi ∈ {±1}

where Xi are from MVT and Yi |Xi is sampled from a logistic model. In

detail,

Xi = ζiZi, Zi ∼ N (0,Σ), ζi =

√
ν − 2

χ2
ν

, (S1.1)

Compared to the definition of a MVT, we choose ν − 2 in the numerator

because it ensures that each Xj has unit variance. Suppose the model

coefficients are β ∈ Rp, then Yi ∈ {±1} and

P(Y = 1 |X) =
1

1 + exp(−X>β)
.

The maximum likelihood estimator is defined to be the minimizer of the

negative log-likelihood

β̂ = argmin
b∈Rp

n∑
i=1

f(yi, x
>
i b),

where f(y, η) denotes the loss function. For a logistic regression,

f(y, η) = log(1 + exp(−yη)).
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S1.2 A guess at the MLE distribution

We observe that because (Zhao, Sur and Candès , 2020, Proposition 2.1)

and (Zhao, Sur and Candès , 2020, Lemma 2.1) are results of the rotational

invariance of a multivariate Gaussian distribution, they continue to hold

with minor modification. We rehearse these two results for completeness.

Proposition 1. For any matrix L obeying Σ = LL>, consider the vectors

θ̂ = L>β̂, θ = L>β. (S1.2)

Then θ̂ is the MLE in a logistic model with regression coefficient θ and

covariates drawn i.i.d. from ζZ where Z ∼ N (0, I).

Lemma 1. Let θ̂ denote the MLE in a logistic model with regression vec-

tor θ and covariates drawn i.i.d. from ζiZi where Zi ∼ N (0, Ip) (ζi =√
(ν − 2)/χ2

ν). Define the random variables

α(n) =
〈θ̂, θ〉
‖θ‖2

, σ(n)2 = ‖Pθ⊥ θ̂‖2, (S1.3)

where Pθ⊥ is the projection onto θ⊥, which is the orthogonal complement of

θ. Then,

θ̂ − α(n)θ

σ(n)
(S1.4)

is uniformly distributed on a unit sphere lying in θ⊥.

Next, we conjecture that as n, p → ∞ in a constant ratio p/n → κ

and if ν is sufficiently large, then the parameters α(n) and σ(n) converges
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asymptotically to solutions to a system of nonlinear equations (See Eqn.

(S1.7)). Combining this conjecture with Lemma 1, we can apply the same

argument as in (Zhao, Sur and Candès , 2020, Theorem 3.1) to show that

when (κ, γ) is in the region where the MLE exists (see Tang and Ye (2020)

for a description of the region where the MLE exists), and if
√
nβjτj = O(1),

then β̂j is asymptotically Gaussian

√
p(β̂j − α?βj)
σ?/τj

d−→ N (0, 1) (S1.5)

where τ 2
j = Θ−1

jj (Θ = Σ−1). In the simulations, we indeed observe that

the MLE is approximately Gaussian. The scaling factor
√
p in the numer-

ator (S1.5) differs from the factor
√
n in (Zhao, Sur and Candès , 2020,

Theorem 3.1) because here we define σ? to be the limit of σ(n), whereas in

(Zhao, Sur and Candès , 2020, Lemma 3.1), we have σ(n)→
√
κσ?.

Conjecture S1.1. Suppose ν is sufficiently large (for example ν ≥ 15),

then

α(n)
P−→ α?, σ(n)

P−→ σ?, (S1.6)

where the set of parameters (α?, σ?, γ?) solves a system of three equations:

0 = E [f ′(Y,Proxζ2λf (Y, ζZ1αγ + σζZ2)ζZ1]

σ2κ
λ2

= E [f ′2(Y,Proxζ2λf (Y, ζZ1αγ + σζZ2))ζ2]

1− κ = E
[

1
1+λζ2f ′′(Y,Proxζ2λf (ζZ1αγ+ζZ2σ))

]
.

(S1.7)
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In Eqn.(S1.7), f ′ is the derivative of f w.r.t. the second argument, Z1 and

Z2 are i.i.d. standard Gaussian, ζ is defined as (S1.1), Y ∈ {±1} and

P(Y = 1 | ζ, Z1) =
1

1 + exp(−ζZ1γ)
.

S1.3 Empirical results

We solve the system of equations defined in (S1.7) and compare with em-

pirical values of the two parameters α? and σ?. We consider the setting

when κ = 0.1 and ν = 8 or ν = 15 and plot the theoretical parameters

α? and σ? as the signal strength γ increases (Figure 1, solid line). We also

display the empirical α? and σ? in simulations (Figure 1, points). We sim-

ulate n = 4, 000 observations from a logistic model where the covariates Xi

are MVT with ν = 8 or ν = 15 degrees of freedom and Σ = I and Yi |Xi

and regression coefficients obey β1 = γ while β2 = . . . = βp = 0 . Based on

Eqn. (S1.3), we define the observed parameters as

α̂ = β̂1/γ, σ̂ =

√
‖β̂−1‖, (S1.8)

where β̂−1 = (β̂2, . . . , β̂p). We observe that the empirical parameters align

very well with the theoretical ones.

It is sufficient to consider Σ = I and θ = (1, 0, . . . , 0) because of Proposition 1 and Lemma 1.
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(a) The inflation parameter α?. (b) The parameter σ?.

Figure 1: Empirical observations (points) and solutions to the system of equations in

Eqn. S1.7 (lines) of the α? (Figure 1a) and σ? (Figure 1b) when ν = 8 (yellow) or

ν = 15 (cyan) and κ = 0.1. The empirical values are the average of observed α̂ and σ̂

in 500 repeated simulations where n = 4, 000. The black curve shows the theoretical

parameters when the covariates are from a multivariate Gaussian distribution.

S2 The SLOE estimator

The Signal Strength Leave-One-Out Estimator (SLOE) provides an analytic

expression for estimating η2 = limn→∞Var(Xnew
>β̂) where β̂ is the MLE

and Xnew is a new observation Yadlowsky et al. (2021). SLOE was de-

veloped to compute the asymptotic distribution of the logistic MLE, which

depends on κ = p/n and γ2 = Var(Xnew
>β) and can be reparametrized to

depend on κ and η. (Yadlowsky et al. , 2021, Proposition 2) proves that the

SLOE estimator consistently estimates η in the high-dimensional setting.

While SLOE was introduced for logistic regression, we generalize the

formula to other GLMs; we however do not prove consistency in this broader
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setting. Define wi = x>i H
−1xi, and ti = x>i β̂, i = 1, . . . , n, where H is the

Hessian of the negative log-likelihood evaluated at the MLE β̂. Let

Si = X>i β̂ + qif
′
yi

(ti),

where

qi =
wi

1− wif ′′yi(ti)
.

Above, fy(t) is the negative log-likelihood function when the linear predictor

is t and the response is y, In the case of logistic regression, fy(t) = log(1 +

e−yt) for y ∈ {±1}.

Then, we define the extended SLOE estimator to be

η̂2
SLOE =

1

n

∑
i

S2
i −

(
1

n

∑
i

Si

)2

. (S2.9)

Here, Si approximates x>i β̂(i), where β̂(i) is the MLE computed without

using the ith observation. Since xi is independent of β̂(i), the variance of Si

approximates Var(Xnew
>β̂).

S3 Additional Simulation Results

Section S3.1 reports the coverage proportion of a null variable when co-

variates are from a multivariate t-distribution in Section 4. Section S3.2

considers logistic models, where we vary the problem dimension κ, signal

strength γ, covariate distribution, and proportion of cases vs. controls in
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each class. Section S3.3 shows the coverage proportion when covariates

are from a modified ARCH model and the responses from a Probit model.

Section S3.4 considers a Poisson regression example.

S3.1 Coverage of a null variable

Table 1 reports the coverage proportion of a null variable when the covari-

ates follow a multivariate t-distribution (see Section 4.1 for the simulation

design). Coverage using either classical calculations or the standard boot-

strap is better than for a non-null, compare with Table 2. This is because

we observed that the MLE is unbiased when βj = 0.

S3.2 Other logistic regression examples

In this section we consider four examples of logistic regression models. The

number of observations in every simulation is n = 4000. We summarize

the simulation setting in Table 2. In particular, setting (4) considers the

situation when the two classes are imbalanced because the intercept is not

zero and because the distribution of non-null βj’s is not symmetric around

0. We report

1. The inflation, std.dev. of both a null and a non-null variable.

2. The coverage proportion of both a null and a non-null variable and
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Table 1: Coverage proportion of a single null variable (qj in Eqn. (4.10)) with stan-

dard deviation between parentheses. This example uses multivariate-t covariates. The

numbers closest to the empirical observation are highlighted in bold.

Theoretical CI Standard Bootstrap Resized Bootstrap

Nominal Known γ Estimated γ

coverage Classical High-Dim Parametric Pairs Boot-g Boot-t Boot-g Boot-t

95
93.1 93.6 93.4 95.1 95.5 95.0 95.6 95.1

(0.3) (0.2) (0.9) (0.7) (0.6) (0.7) (0.7) (0.7)

90
87.4 88.1 88.7 91.2 90.0 90.2 89.7 90.1

(0.3) (0.3) (1.1) (0.9) (0.9) (0.9) (1.0) (1.0)

80
76.7 77.9 78.0 82.7 78.7 79.4 80.4 80.4

(0.4) (0.4) (1.4) (1.1) (1.2) (1.2) (1.4) (1.4)

proportion of variables covered in a single-shot experiment.

We summarize below the covariate distributions we consider in this

section:

• “MVT” is the setting of Section 4.1.

• The “Modified ARCH” model corresponds to the situation where the

covariates follow a modified ARCH model X = ζε, where ζ is the

inverse of a χ variable, which is distributed as the square root of a

chi-squared variable, with ν = 8 degrees of freedom and ε is from
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an Autoregressive Conditional Heteroskedasticity (ARCH) model (see

(Shumway and Stoffer , 2017, Section 5.4) for a definition of ARCH

models). Here, starting with X0 ∼ N (0, α0/(1− α1)), we sequentially

sample variables so that Xj = σjεj, where σ2
j = α0 + α1X

2
j−1 and

εj ∼ N (0, 1). We work with α0 = 0.6 and α1 = 0.4. Although

uncorrelated, the covariates are not independent of each other.

• The “Correlated Pareto” model denotes the setting when Xi = UiΣ
1/2,

where Ui are i.i.d. sampled from a heavy-tailed Pareto distribution,

with density f(x) = αMα/xα+1, x ≥M , where α is the shape param-

eter and M is the scale parameter. We set α = 5 and M = 1. Σ is a

circulant matrix as defined in Section 4.1 in the paper.

• The “Gaussian Interaction” is the setting from Section 5 in the paper.

Results

Tables 3 – 10 report the inflation, std.dev. of the logistic MLE of both a null

and a non-null variable. We generate 1, 000 bootstrap samples to compute

the resized bootstrap estimates. We also report the coverage proportion of

a single variable and the proportion of variables in a single shot experiment.

The resized bootstrap typically provides the most accurate estimate of the

inflation and std.dev. and the relative error of the coverage proportion
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Table 2: Simulation design in Section S3.2. The column κ reports the problem dimension

κ = p/n; column γ reports the signal strength γ = Var(X>β)1/2; column β0 reports

the intercept; column “Sparsity” refers to the proportion of non-null variables; column

“Covariate” shows the distribution of the covariates.

Setting κ γ β0 Sparsity Distribution of non-null βj Covariate

(1) 0.1 3.7 0 0.25 0.5N (8, 2) + 0.5N (−8, 2) MVT

(2) 0.3 1.76 0 0.25 0.5N (3, 2) + 0.5N (−3, 2) Modified ARCH

(3) 0.1 4.6 0 0.25 N (0, 4) Gaussian Interaction

(4) 0.2 2.26 1.5 0.1 0.8N (6, 2) + 0.2N (−6, 2) Correlated Pareto

Table 3: Estimated inflation and std. dev. of the logistic MLE in Setting (1). This

example is repeated B = 1, 000 times. We highlight the number closest to the empirical

observation in bold.

inflation Standard Deviation

High-dim Resized Bootstrap Empirical Classical High-dim Resized Bootstrap Empirical

Theory Known-γ Estimated-γ inflation Theory Theory Known-γ Estimated-γ Std. dev.

β = 0 - - - - 1.70 1.83 1.86 1.87 1.88

β = −8.16 1.26 1.24 1.24 1.25 1.73 1.83 1.90 1.91 1.94

compared to target coverage is typically within 3%.

S3.3 A Probit regression example

We now apply the resized bootstrap to construct CIs for model coefficients

in a Probit regression models when the covariates follow our modified ARCH
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model. In all cases, we set n = 4000, and p = 400. In probit regressions, we

sample model coefficients by first picking 50 non-null variables, and sample

the corressponding coefficients to be from an equal mixture of N (3, 1) and

N (−3, 1). The high-dimensional theory also applies to Probit regressions,

or a general loss function, with the slight modification of the set of nonlinear

equations that the parameters (α?, σ?, λ?) must obey. The set of equations

are the same as in Eqn. (S1.7) except that now we set ζ = 1 and P(Y =

1 |Z1) = P(Y = 1 |X>β = Z1). As in previous sections, we observe that

the resized bootstrap method provides the most accurate estimate of the

std. dev. (Table 11) and the corresponding confidence intervals provide most

accurate coverage (Table 12).

S3.4 A Poisson regression example

We now consider an example with Poisson regression with log link function,

i. e., Y |X ∼ Poisson(µ(X)) and log(µ(X)) = X>β (Weisberg , 2014,

Chapter 12). We use the same simulation design as in Section S3.2. We

report the inflation and std. dev. of both a null and a non-null variable

in Table 13. We only use the classical theory and the resized bootstrap

to estimate the std. dev., since HDT is unavailable for Poisson regression.

Table 13 shows that the MLE is nearly unbiased. The estimated std. dev.
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using the classical theory and the resized bootstrap are close to each other

and slightly underestimates the std. dev. of the MLE. Therefore, we expect

that both approaches would produce CI with similar coverage. Indeed,

the coverage proportion using both the classical theory and the resized

bootstrap method both tend to undercover the true coefficient, and the

average coverage proportions are typically within three standard deviations

away from the nominal coverage (see Table 14). In sum, both the classical

theory and the resized bootstrap yield reasonably accurate CI in case of a

Poisson regression.

S4 An example where the sample size is small

We study an example with a small sample size, and set n = 400 and p = 40.

We sample covariates independently from a Pareto distribution (see Section

S3.2, here we set Σ = I) and sample responses from a logistic model where

half of the variables are non-nulls and sampled from an equal mixture of

N (4, 1) and N (−4, 1).

When the covariates are i. i. d., the MLE may be asymptotically Gaus-

sian, however, the normal approximation is inaccurate when n is small. To
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see this, we can express β̂j as

β̂j =
λ

κ
√
n

n∑
i=1

xij(yi − ρ′(x>i,−jβ̂[−j])) + oP (1), (S4.10)

where β̂[−j] refers to MLE computed when leaving out the jth variable and

ρ(t) = log(1 + et) (Sur and Candès , 2019, Appendix C). Although Eqn.

(S4.10) assumes that the Xij are standard Gaussian, we expect that it holds

for other i. i. d. covariates. Since β̂j is approximately a weighted average

of the observed xi,j, β̂j approaches a Gaussian random variable as n → ∞

by the central limit theorem. Since the rate of convergence depends on the

third moment of Xij as a result of the Berry-Esseen theorem, we expect that

the distribution of the MLE deviates from a Gaussian distribution when n

is small. Indeed, the normal quantile plot of β̂j (Figure 3, Left) confirms

that the MLE is skewed and thus not Gaussian. In comparison, the normal

quantile plot when n = 4000 and p = 400 (Figure 2) indicates that the

MLE is well-approximated by a Gaussian distribution when n is large.

While the MLE is not Gaussian, a Q-Q plot of the standardized β̂bj

(standardized by estimated inflation and std. dev. ) versus the standard-

ized β̂j (standardized by the true inflation and std. dev. ) shows that the

bootstrap MLE approximates the sampling distribution very well (Figure 3,

Right). We thus expect that the resized bootstrap provides correct cover-

age. This is confirmed in Table 15, which shows that the bootstrap CIs are
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Figure 2: Normal quantile plot of a non-null MLE coordinate. The covariates are i. i. d.

from a Pareto distribution. Here, n = 4000 and p = 400.

Figure 3: (Left) Normal quantile plot of a single MLE coordinate where β = 4.5 and

n = 400, p = 40 and the covariates are i. i. d. from a Pareto distribution. (Right) Q-Q

plot of the MLE standardized by the true inflation and std. dev. versus the bootstrap

MLE standardized by the estimated inflation and std. dev. in a single experiment. The

red line is the 45 degree line.

reasonably accurate for both a single variable and a single-shot experiment

across all of the confidence levels examined.
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Our results in this example suggest that the bootstrap CIs produce

reasonable coverage when the sample size is small and the normal approx-

imation is far from valid. This in contrast to methods based on high-

dimensional theory since we can see that the corresponding CI’s undercover.

S5 A simulated example when the coefficients are

sparse

To study the accuracy of our method for large coefficients, we use a simu-

lated example where there are only 10 non-null variables whose coefficients

have equal magnitudes, which equals to 10, and ±1 signs with equal prob-

ability. Here, τj|βj|/γ ≈ 0.32 (in this case, τ 2
j = Var(Xj|X−j) = 1/p =

0.025).

We first examine the inflation and variance of the MLE (Table 16). We

report the average inflation of all of the non-null variables in N = 10, 000

repeated experiments (Column Empirical) and the estimated inflation us-

ing high-dimensional theory (Column High-Dim Theory) and the bootstrap

(Column Resized Bootstrap). We observe that the high-dimensional theory

slightly under-estimates the inflation, with a relative error of about 1%,

whereas the bootstrap estimates are more accurate. We then study the
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std. dev. of the MLE and report the average std. dev. of all of the null vari-

ables (Table 16, Row std. dev. (null)) and the non-null variables (Table 16,

Row std. dev. (non-null)). As in Table 1, the variance of the non-null vari-

ables are higher than that of the null variables. On the other hand, unlike

Table 1, the high-dimensional theory underestimates the variance of both

the null and nonnull variables (recall that the covariates are not Gaussian).

Lastly, the resized bootstrap method using either a known or estimated

γ, also slightly underestimates the variance of the non-null variables. It

is however more accurate than HDT with a relative error below 1%. This

shows that the bootstrap is reasonably accurate for large coefficients.

We next study the coverage probability of confidence intervals by com-

puting the average coverage proportion of the null and non-null variables.

Unsurprisingly, the HDT (Table 17, Column High-Dim Theory) undercov-

ers both for the null and non-null variables, and the coverage proportions

are less accurate for non-null variables. The resized bootstrap using the cor-

rect γ (Table 17, Column Known γ) slighty undercovers but the coverage

is closer to the nominal coverage. Interestingly, the resized bootstrap with

an estimated γ̂ nearly achieves nominal coverage for both null and non-null

variables at every considered significance level. In contrast, classical theory

CI significantly undercovers the true coefficient because the classical theory
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does not account for the inflation of the MLE.

Our findings here agree with our hypothesis that the resized bootstrap

is less accurate when the coefficient is large. At the same time, our results

are reassuring because they suggest that the resized bootstrap is reasonably

accurate for relatively large coefficients.

S6 General loss functions and M-estimators

Our discussion thus far concerned the maximum likelihood estimate in a

generalized linear model. In this section, we step beyond the MLE and

consider M-estimators associated with a general loss function, which may

not be the negative log-likelihood. As a running example, we consider the

situation where we fit a logistic regression when the true likelihood is given

by the probit model. In detail, we are given n i.i.d. observations (Xi, Yi),

i = 1, . . . , n, where Y |X ∼ Binomial(µ) and µ = Φ(X>β), where Φ is the

cumulative distribution of a standard Gaussian. We fit a logistic regression

and obtain β̂. Suppose we repeat the sampling process multiple times, what

would the distribution of β̂ be?

If X follows a multivariate Gaussian distribution, then HDT provides

the theoretical distribution of the M-estimator, see Section S1 and Section

S3.3 for a discussion. However, when the covariates are not Gaussian,
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then HDT does not apply and, yet, we can still use the resized bootstrap

method. Because Y |X follow a probit regression model, we should likewise

sample new responses Y from a probit model in Algorithm 2 (Line 6) and

Algorithm 1 (Line 3). We note that sticking to the sampling distribution of

Y |X is important because the estimated distribution will be far from the

true one otherwise.

We illustrate HDT and the resized bootstrap through a simulated ex-

ample where the covariates are either multivariate Gaussian or interaction

between these Gaussian variables. An example where the covariates are

from a multivariate t-distribution is provided in Section S6.4.

S6.1 Simulation design

We sample covariates as follows: we sample the first half of the covari-

ates from N (0,Σp/2) where Σ is the circulant matrix from Section 4.2;

then, we sample the second half of the variables as products between two

variables from the first half, i.e., Xj = Xj1 × Xj2 (1 ≤ j1, j2 ≤ p/2) if

j = p/2 + 1, . . . , p. We standardize Xj to have variance equal to 1/p. In

terms of the model coefficients, we randomly sample 25% of the variables,

including interaction terms, to be non-nulls, and sample the non-null co-

efficients βj ∼ N (0, 5), which leads to a signal strength γ = 2.71. The
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number of observations is n = 4000 and the number of covariates is p = 400

(κ = p/n = 0.1) in this example.

S6.2 Estimating the signal strength

While the theoretical relationship between η = Var(X>newβ̂)1/2 and γ is not

available, we empirically observe that η increases monotonically as γ in-

creases (Figure 4). We plot the estimated η̂(γs) for a range of γs, which is

obtained by re-scaling the MLE (Figure 4, black points), which are centered

around the empirical curve shown in orange, indicating that the estimated

relationship between η and γ is reasonably accurate. As a result, intersect-

ing the estimated curve, which we do not show because it overlaps with the

empirical curve, with the observed η̃ = 6.33, yields γ̂ = 2.56, which is also

close to the true γ = 2.71.

S6.3 Results

We now report the estimated inflation, std.dev. of the M-estimator and the

coverage proportion of the confidence intervals.

Estimated inflation and standard deviation

We plot the averaged estimates versus model coefficients in Figure 5 (Left),

where we observe that the inflation is the same for every coordinate. Figure
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Figure 4: An illustration of using η = sd(Xnew
>β̂) to estimate the signal strength

γ = sd(Xnew
>β) in case of a general loss function. The orange curve shows the empirical

η versus γ (see Figure 3 in the paper for details). The black points show the estimated

η̂(γs) for a range of γs by using a single dataset. The dashed line shows the estimated

η̃ using the SLOE estimator evaluated at the MLE. The estimated γ̂ = 2.56 is close to

γ = 2.71.

5 (Right) shows the average bootstrap estimates versus the resized boot-

strap coefficient. Because the points align, the M-estimates in the boot-

strap samples are also inflated with the same factor, which also happens to

be close to the empirical inflation. We report the estimated inflation and

std.dev. of both a null and non-null variable using HDT and the resized

bootstrap in Table 18. In this example, the HDT estimate of the std.dev.

is the most accurate, and the estimated inflation using the resized boot-

strap is the most accurate. While the resized bootstrap underestimates the
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Figure 5: (Left) The average of the M-estimators versus the true model coefficient for

βj 6= 0. The red line has intercept 0 and slop equal to 2.41. (Right) The average of the

M-estimators in the bootstrap samples using one data set versus the resized coefficients

β?. The red line has intercept 0 and slop equal to 2.44. In this example, the M-estimators

are the logistic regression estimates while the true model is probit.

std.dev., the relative error is within 15%.

Coverage proportion

We report both the proportion of times a single variable is covered (qj) and

the proportion of variables covered in a single shot experiment q̄ (Table

19). In this example, we sample 1, 000 bootstrap samples to compute both

confidence intervals using the Gaussian approximation (Boot-g) and using

the bootstrap MLE (Boot-t). As we have observed before, the classical

theory significantly undercovers the true coefficients, while both the HDT

and the resized bootstrap provide reasonably correct coverage probability of

the model coefficients. For example, while the resized bootstrap undercovers
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model coefficients on average, the relative error is within 3%.

S6.4 An example of MVT covariates

In this section we report simulation results when the covariates are sampled

from a multivariate t-distribution as in Section 4.1; again, we fit β̂ via a

logistic regression while Y |X is sampled from a probit model. In this

example, we set n = 4, 000, p = 800 and we randomly sample 25% of

the variables to be non-nulls and their magnitudes are i.i.d. from an equal

mixture of N (3, 1) and N (−3, 1). We report the inflation and std.dev. of

the M-estimators (Table 20) and the coverage proportion (Table 21). The

high-dimensional theory is more accurate compared to the resized bootstrap

method, and in both cases the relative error is within 3%.
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Table 4: Coverage proportion of a single null variable, single non-null variable, and

in a single-shot experiment with standard deviation between the parentheses. Here

we compute the logistic MLE from Setting (1). We use both Gaussian approximation

(Column Boot-g) and distribution of the bootstrap MLE (Column Boot-t) to construct

the CI. We highlight the number closest to the target coverage in bold.

Theoretical CI Resized Bootstrap

Nominal Known γ Estimated γ

coverage Classical High-Dim Boot-g Boot-t Boot-g Boot-t

Single Null

95
92.1 94.5 94.9 94.5 95.2 94.9

(0.9) (0.7) (0.7) (0.7) (0.7) (0.7)

90
85.4 88.1 88.9 88.5 89.2 89.2

(1.1) (1.0) (1.0) (1.0) (1.0) (1.0)

80
74.4 77.2 78.0 77.8 78.7 78.5

(1.3) (1.3) (1.3) (1.3) (1.3) (1.3)

Single Non-null

95
76.2 93.2 94.2 94.3 94.3 93.8

(1.4) (0.8) (0.7) (0.7) (0.7) (0.7)

90
65.4 87.6 88.7 89.0 89.2 89.2

(1.5) (1.0) (1.0) (1.0) (1.0) (1.0)

80
51.9 77.5 79.8 78.9 79.9 79.3

(1.6) (1.3) (1.3) (1.3) (1.3) (1.3)

Single Experiment

95
88.7 94.2 94.8 94.6 94.9 94.8

(0.08) (0.05) (0.05) (0.05) (0.04) (0.04)

90
81.7 88.9 89.6 89.4 89.9 89.6

(0.1) (0.07) (0.07) (0.07) (0.06) (0.06)

80
70.2 78.5 79.5 79.0 79.7 79.3

(0.2) (0.09) (0.1) (0.1) (0.1) (0.1)
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Table 5: Estimated inflation and std. dev. of the logistic MLE in Setting (2). This

example is repeated B = 832 times.

inflation Standard Deviation

High-dim Resized Bootstrap Empirical Classical High-dim Resized Bootstrap Empirical

Theory Known-γ Estimated-γ inflation Theory Theory Known-γ Estimated-γ Std. dev.

β = 0 - - - - 2.80 3.78 3.44 3.82 3.94

β = −3.56 2.11 1.92 2.02 2.11 2.81 3.78 3.46 3.84 3.77



REFERENCES

Table 6: Coverage proportion of a single null variable, single non-null variable, and in a

single-shot experiment with standard deviation between parentheses. Here we compute

the logistic MLE from Setting (2).

Theoretical CI Resized Bootstrap

Nominal Known γ Estimated γ

coverage Classical High-Dim Boot-g Boot-t Boot-g Boot-t

Single Null

95
84.4 93.4 91.2 91.2 93.9 93.6

(1.2) (0.9) (1.0) (1.1) (0.8) (1.0)

90
76.7 88.8 86.5 85.0 89.2 89.5

(1.5) (1.1) (1.2) (1.4) (1.1) (1.2)

80
64.3 78.9 74.9 74.3 79.5 79.2

(1.7) (1.4) (1.5) (1.7) (1.4) (1.6)

Single Non-null

95
67.2 95.0 92.6 92.1 95.4 96.0

(1.6) (0.8) (0.9) (1.0) (0.7) (0.8)

90
56.9 90.0 85.9 85.2 90.5 90.3

(1.7) (1.0) (1.2) (1.4) (1.0) (1.1)

80
44.5 80.2 75.0 74.2 80.3 80.5

(1.7) (1.4) (1.5) (1.7) (1.3) (1.5)

Single Experiment

95
80.0 94.0 91.5 91.0 94.6 94.4

(0.08) (0.07) (0.09) (0.1) (0.03) (0.04)

90
71.9 88.8 85.2 84.5 89.4 89.0

(0.09) (0.10) (0.10) (0.20) (0.04) (0.06)

80
60.0 78.5 74.1 73.2 79.1 78.4

(0.09) (0.13) (0.14) (0.2) (0.06) (0.08)
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Table 7: Estimated inflation and std. dev. of the logistic MLE in Setting (3). This

example is repeated B = 800 times.

inflation Standard Deviation

High-dim Resized Bootstrap Empirical Classical High-dim Resized Bootstrap Empirical

Theory Known-γ Estimated-γ inflation Theory Theory Known-γ Estimated-γ Std. dev.

β = 0 - - - - 1.00 1.13 1.08 1.08 1.07

β = 6.76 1.17 1.17 1.17 1.18 1.10 1.05 1.13 1.13 1.14
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Table 8: Coverage proportion of a single null variable, single non-null variable, and

in a single-shot experiment with standard deviation between the parentheses. Here we

compute the logistic MLE from Setting (3).

Theoretical CI Resized Bootstrap

Nominal Known γ Estimated γ

coverage Classical High-Dim Boot-g Boot-t Boot-g Boot-t

Single Null

95
93.5 96.3 95.3 95.3 95.4 95.5

(0.9) (0.7) (0.8) (0.8) (0.7) (0.7)

90
87.1 91.9 89.9 90.0 90.5 90.6

(1.2) (1.0) (1.1) (1.1) (1.0) (1.0)

80
76.8 82.1 79.5 79.1 79.8 79.1

(1.5) (1.4) (1.4) (1.4) (1.4) (1.4)

Single Non-null

95
77.0 94.5 94.6 94.8 94.6 94.6

(1.5) (0.8) (0.8) (0.8) (0.8) (0.8)

90
67.1 88.8 90.0 89.4 91.0 90.5

(1.7) (1.1) (1.1) (1.1) (1.0) (1.0)

80
52.6 77.6 78.6 77.8 79.0 78.9

(1.8) (1.5) (1.5) (1.5) (1.4) (1.4)

Single Experiment

95
91.6 95.3 94.8 94.7 94.9 94.8

(0.06) (0.05) (0.05) (0.05) (0.04) (0.04)

90
85.4 90.6 89.8 89.6 89.9 89.8

(0.08) (0.07) (0.07) (0.07) (0.06) (0.06)

80
74.4 80.7 79.7 79.5 79.9 79.7

(0.10) (0.09) (0.09) (0.09) (0.08) (0.08)
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Table 9: Estimated inflation and std. dev. of the logistic MLE in Setting (4). This

example is repeated B = 1, 300 times.

inflation Standard Deviation

High-dim Resized Bootstrap Empirical Classical High-dim Resized Bootstrap Empirical

Theory Known-γ Estimated-γ inflation Theory Theory Known-γ Estimated-γ Std. dev.

β = 0 - - - - 3.36 2.49 2.86 3.03 3.06

β = 9.35 1.66 1.52 1.58 1.60 3.36 2.88 3.19 3.41 3.62
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Table 10: Coverage proportion of a single null variable, single non-null variable, and

in a single-shot experiment with standard deviation between the parentheses. Here we

compute the logistic MLE from Setting (4).

Theoretical CI Resized Bootstrap

Nominal Known γ Estimated γ

coverage Classical High-Dim Boot-g Boot-t Boot-g Boot-t

Single Null

95
88.5 96.5 92.6 91.2 94.4 93.6

(0.9) (0.5) (0.7) (1.1) (0.6) (1.0)

90
81.8 92.5 86.5 85.0 88.9 89.5

(1.1) (0.7) (0.9) (1.4) (0.9) (1.2)

80
70.8 83.2 77 74.4 79.9 79.2

(1.3) (1.0) (1.2) (1.7) (1.1) (1.6)

Single Non-null

95
49.4 92.4 91.6 92.1 93.8 96.0

(1.4) (0.7) (0.8) (1.0) (0.7) (0.8)

90
38.3 87.5 85.2 85.3 88.8 90.3

(1.4) (0.9) (1.0) (1.4) (0.9) (1.2)

80
27.3 77.2 73.3 74.2 77.7 80.5

(1.2) (1.2) (1.1) (1.7) (1.2) (1.5)

Single Experiment

95
85.8 95.6 92.2 91.0 94.1 94.4

(0.06) (0.04) (0.07) (0.14) (0.03) (0.03)

90
78.3 91.1 86.2 84.5 88.7 89.0

(0.06) (0.06) (0.09) (0.2) (0.04) (0.06)

80
66.6 81.7 75.3 73.2 78.4 78.4

(0.07) (0.09) (0.11) (0.2) (0.08) (0.08)
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Table 11: Estimated inflation and std. dev. of the MLE from a Probit regression when

the covariates are from a modified ARCH model. This example is repeated B = 798

times.

inflation Standard Deviation

High-dim Resized Bootstrap Empirical Classical High-dim Resized Bootstrap Empirical

Theory Known-γ Estimated-γ inflation Theory Theory Known-γ Estimated-γ Std. dev.

β = 0 - - - - 0.548 0.564 0.590 0.592 0.594

β = −2.76 1.135 1.146 1.147 1.139 0.556 0.564 0.597 0.598 0.614
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Table 12: Coverage proportion of a single null variable, single non-null variable, and in a

single-shot experiment with standard deviation between the parentheses. This example

uses modified ARCH covariates and a Probit model.

Theoretical CI Resized bootstrap

Nominal Known γ Estimated γ

coverage Classical High-Dim Boot-g Boot-t Boot-g Boot-t

Single Null

95
93.5 94.0 95.1 94.9 94.7 94.5

(0.9) (0.9) (0.8) (0.8) (0.8) (0.8)

90
86.8 87.8 90.1 89.0 90.4 89.7

(1.2) (1.2) (1.1) (1.1) (1.1) (1.1)

80
76.2 77.2 79.7 79.2 80.0 78.8

(1.5) (1.5) (1.4) (1.4) (1.4) (1.5)

Single Non-null

95
86.7 93.1 94.0 93.6 94.0 94.5

(1.2) (0.9) (0.8) (0.9) (0.8) (0.8)

90
79.5 86.8 88.9 89.6 89.2 89.4

(1.43) (1.20) (1.10) (0.06) (1.1) (1.1)

80
65.8 77.6 79.2 78.7 79.2 78.8

(1.7) (1.5) (1.4) (1.5) (1.4) (1.5)

Single Experiment

95
92.2 93.7 94.9 94.7 95.0 94.8

(0.06) (0.05) (0.04) (0.05) (0.04) (0.04)

90
86.0 88.0 89.8 89.7 89.9 89.7

(0.07) (0.07) (0.06) (0.06) (0.06) (0.06)

80
75.1 77.6 79.9 79.6 80.0 79.8

(0.09) (0.08) (0.09) (0.09) (0.76) (0.08)
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Table 13: Estimated inflation and std. dev. of the MLE from a Poisson regression when

the covariates are from a modified ARCH model. This example is repeated B = 800

times.

inflation Standard Deviation

Resized Bootstrap Empirical Classical Resized Bootstrap Empirical

Known-γ Estimated-γ inflation Theory Known-γ Estimated-γ Std. dev.

β = 0 - - - 0.269 0.268 0.268 0.278

β = 5.15 0.990 0.990 0.994 0.266 0.265 0.265 0.273
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Table 14: Coverage proportion of a single null variable, single non-null variable, and in a

single-shot experiment with standard deviation between the parentheses. This example

uses modified ARCH covariates and a Poisson regression.

Resized Bootstrap

Nominal Classical Known γ Estimated γ

coverage Theory Boot-g Boot-t Boot-g Boot-t

Single Null

95
94.0 93.9 93.9 94.1 94.5

(0.8) (0.9) (0.9) (0.8) (0.8)

90
89.1 89.0 88.3 89.1 88.4

(1.1) (1.1) (1.1) (1.1) (1.1)

80
77.6 77.4 77.4 77.8 77.3

(1.2) (1.5) (1.5) (1.5) (1.5)

Single Non-null

95
92.9 93.4 93.1 93.4 92.9

(0.9) (0.90) (0.90) (0.90) (0.90)

90
88.4 88.4 87.8 88.0 88.0

(1.1) (1.1) (1.2) (1.2) (1.2)

80
80.6 79.0 79.3 78.8 79.0

(1.4) (1.4) (1.4) (1.5) (1.4)

Single Experiment

95
95.2 95.0 94.8 95.0 94.8

(0.04) (0.04) (0.04) (0.04) (0.04)

90
90.3 90.1 89.8 90.0 89.8

(0.06) (0.06) (0.06) (0.05) (0.06)

80
80.2 80.0 79.7 80.0 79.7

(0.08) (0.07) (0.08) (0.08) (0.07)
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Table 15: Coverage proportion of a single non-null variable (Column I) and of all of

the variables (Column II) in 1,000 repeated experiments with n = 400 and p = 40. We

use the resized bootstrap method with known or estimated parameters. The standard

deviations are reported between parentheses.

I. Single variable II. Single Experiment

Nominal High-dim Resized Bootstrap High-dim Resized Bootstrap

Coverage Theory boot-g boot-t Theory boot-g boot-t

95 87.7 (1.0) 96.5 (0.6) 95.8 (0.6) 92.0 (0.2) 95.7 (0.1) 95.7 (0.1)

90 81.2 (1.2) 92.2 (0.9) 92.1 (0.9) 86.5 (0.2) 91.0 (0.2) 90.8 (0.2)

80 67.2 (1.5) 81.0 (1.2) 79.9 (1.3) 76.4 (0.3) 81.2 (0.2) 80.5 (0.2)

Table 16: The average inflation and variance of the MLE when the coefficients are large

(τjβj/γ ≈ 0.32). The second and third row report average std. dev. for a single null or

non-null variable. In this simulation, the covariates are from a modified ARCH and the

responses are from a logistic regression. The resized bootstrap estimates are averaged in

N = 1, 000 simulations.

Classical High-Dim Resized Bootstrap

Empirical Theory Theory Known γ Estimated γ

inflation 1.15 - 1.14 1.15 1.15

Std. dev. (null) 0.98 0.92 0.93 0.98 0.98

Std. dev. (non-null) 1.05 0.97 0.93 1.02 1.03
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Table 17: Average coverage proportion of a single null or nonnull variable. The std. dev.

is reported inside the parentheses. We use bootstrap-t confidence intervals in this exam-

ple.

Nominal Classical High-Dim Resized Bootstrap

Variable Coverage Theory Theory Known γ Unknown γ

Null

95
93.4 93.5 95.2 95.6

(0.2) (0.3) (0.6) (0.6)

90
87.9 88.0 88.9 89.6

(0.3) (0.3) (0.9) (0.9)

80
77.1 77.3 78.8 78.8

(0.4) (0.4) (1.2) (1.2)

Non-null

95
64.0 91.4 94.4 94.7

(0.5) (0.3) (0.7) (0.6)

90
52.0 84.9 88.8 89.0

(0.5) (0.4) (0.9) (0.9)

80
38.0 73.8 78.6 78.8

(0.5) (0.4) (1.2) (1.2)
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Table 18: Estimated inflation and std.dev. of the M-estimator of logistic regression when

the true model is probit. The example is repeated B = 800 times. The resized bootstrap

estimates are computed by using an estimated signal strength γ. The values closest to

the empirical observations are highlighted in bold.

Inflation Standard Deviation

High-dim Resized Empirical Classical High-dim Resized Empirical

Theory Bootstrap Bias Theory Theory Bootstrap Std.dev.

β = 0 - - - 1.53 1.85 1.75 1.85

β = 3.66 2.46 2.40 2.39 1.96 2.39 2.25 2.60
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Table 19: Coverage proportion of a single null variable, single non-null variable, and

in a single-shot experiment with standard deviation between the parentheses. Here, we

fit a logistic regression when the true model is probit. The values closest to the target

coverage are highlighted in bold.

Theoretical CI Resized Bootstrap

Nominal Known γ Estimated γ

coverage Classical High-Dim Boot-g Boot-t Boot-g Boot-t

Single Null

95
89.8 95.9 93.5 93.6 93.6 93.6

(1.1) (0.7) (0.9) (0.9) (0.9) (0.9)

90
84.1 89.5 88.0 87.8 88.3 88.5

(1.3) (1.1) (1.2) (1.2) (1.1) (1.1)

80
72.5 81.9 79.9 79.1 79.6 79.9

(1.6) (1.4) (1.4) (1.4) (1.4) (1.4)

Single Non-null

95
28.8 93.0 91.9 92.1 92.4 92.6

(1.6) (0.9) (1.0) (1.0) (0.9) (0.9)

90
18.1 89.4 88.0 88.3 88.1 88.13

(1.4) (1.1) (1.2) (1.1) (1.1) (1.1)

80
11.5 81.1 78.0 78.3 78.5 78.4

(1.1) (1.4) (1.5) (1.5) (1.5) (1.5)

Single Experiment

95
77.4 95.4 94.2 94.3 94.7 94.7

(0.1) (0.1) (0.1) (0.1) (0.1) (0.1)

90
71.1 90.8 89.0 89.1 89.6 89.7

(0.1) (0.1) (0.1) (0.1) (0.1) (0.1)

80
61.0 81.4 78.8 78.7 79.4 79.4

(0.1) (0.1) (0.2) (0.2) (0.1) (0.1)
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Table 20: Estimated inflation and std. dev. of the logistic MLE when the true model

is probit and when covariates are from a MVT distribution. This example is repeated

B = 1, 100 times.

Inflation Standard Deviation

High-dim Resized Bootstrap Empirical Classical High-dim Resized Bootstrap Empirical

Theory Known-γ Estimated-γ inflation Theory Theory Known-γ Estimated-γ Std. dev.

β = 0 - - - - 2.79 3.49 3.26 3.40 3.45

β = 4.52 2.97 2.74 2.80 2.87 2.83 3.49 3.31 3.46 3.54
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Table 21: Coverage proportion of a single null variable, single non-null variable, and in a

single-shot experiment with standard deviation between parentheses. Here we compute

the logistic MLE when the true model is Probit and when covariates are from a MVT

distribution.

Theoretical CI Resized Bootstrap

Nominal Known γ Estimated γ

coverage Classical High-Dim Boot-g Boot-t Boot-g Boot-t

Single Null

95
88.6 95.5 93.8 93.99 95.3 95.2

(1.0) (0.6) (0.7) (0.7) (0.6) (0.7)

90
80.6 90.9 87.7 87.4 89.4 89.9

(1.2) (0.9) (1.0) (1.0) (0.9) (0.9)

80
68.7 78.8 75.8 74.9 77.9 77.6

(1.4) (1.2) (1.3) (1.3) (1.3) (1.3)

Single Non-null

95
19.0 94.5 92.4 92.8 94.4 94.6

(1.2) (0.7) (0.8) (0.8) (0.7) (0.7)

90
12.6 90.1 87.4 87.4 89.2 89.0

(1.0) (0.9) (1.0) (1.0) (0.9) (0.9)

80
7.18 80.0 77.9 77.8 81.0 80.6

(0.8) (1.2) (1.3) (1.3) (1.2) (1.2)

Single Experiment

95
78.27 94.8 93.2 93.1 94.5 94.4

(0.06) (0.05) (0.07) (0.07) (0.03) (0.03)

90
70.7 89.7 87.4 87.2 89.2 88.9

(0.07) (0.07) (0.09) (0.09) (0.05) (0.05)

80
59.3 79.7 76.7 76.4 78.8 78.4

(0.07) (0.10) (0.11) (0.11) (0.06) (0.06)
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