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Supplementary Material

In this Supplementary Materials, we provide the proof details of our main results in Section S1.

Additional simulations are demonstrated in Section S2. The variable information in practical

application is described in Section S3.

S1 Technical details

To prove the results given in Theorems 1 - 3, we first describe three lemmas.

Note that when pn increases with sample size and the objective function is

undifferentiable, readers can refer to some classic works (Welsh (1989), He

and Shao (2000)) for proofs of consistency and asymptotic normality for the

M-estimators of regression parameters under different regularity conditions.

Here, the first lemma, regarding the consistency and asymptotic normality

of β̃
(k)
, adopts the Corollary 2.1 of He and Shao (2000), and thus their
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proofs are omitted here.

Lemma 1. Assume that Conditions (C1)-(C2) hold, then ∥β̃(k) − β
(k)
0 ∥ =

Op(
√

pn/nk) for pn(log pn)
3/nk → 0 as nk → ∞. Furthermore, if p3n(log pn)

2/nk →

0 as nk → ∞, then

√
nke

T
1 (β̃

(k) − β
(k)
0 )/σk

D−→ N(0, 1),

for any pn-dimensional vector e1, where σ2
k = e1

TΣke1 and Σk = τ(1 −

τ)V −1
k UkV

−1
k .

Lemma 2. Assume that Conditions (C1) and (C2) hold, if ∥β(k)− β̃
(k)∥ =

op(1), thus equation (2.2) holds.

Proof of Lemma 2. Let νn ≜ β(k) − β̃
(k)
, by Knight (1998)’s identity, it

yields that

nk(L
(k)
n (β(k))− L(k)

n (β̃
(k)
))

= −
nk∑
i=1

X
(k)T
i νn

(
τ − I(Y

(k)
i −X

(k)T
i β

(k)
0 < 0)

)

+

nk∑
i=1

∫ X(k)T

i (β̃
(k)−β

(k)
0 )+X(k)T

i νn

X(k)T

i (β̃
(k)−β

(k)
0 )

(
I(Y

(k)
i −X

(k)T
i β

(k)
0 ≤ s)

−I(Y
(k)
i −X

(k)T
i β

(k)
0 ≤ 0)

)
ds

≜
nk∑
i=1

J1i +

nk∑
i=1

J2i. (S1.1)

Obviously, E[
∑nk

i=1 J1i] = 0 and
∑nk

i=1 E[J2
1i] ≤

∑nk

i=1E[∥νn∥2∥X(k)T
i ∥2] =

O(∥νn∥2nkpn) by Condition (C2). Hence, we obtain
∑nk

i=1 J1i = Op(∥νn∥
√
nkpn).
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For the second term
∑nk

i=1 J2i, combining Conditions (C1), (C2) and

Lemma 1, we have

E[

nk∑
i=1

J2i]

=

nk∑
i=1

E

[ ∫ X(k)T

i (β̃
(k)−β

(k)
0 )+X(k)T

i νn

X(k)T

i (β̃
(k)−β

(k)
0 )

(FY |X(X
(k)T
i β

(k)
0 + s|X(k)

i )

−FY |X(X
(k)T
i β

(k)
0 |X(k)

i ))ds

]
=

nk∑
i=1

E

[ ∫ X(k)T

i (β̃
(k)−β

(k)
0 )+X(k)T

i νn

X(k)T

i (β̃
(k)−β

(k)
0 )

(fY |X(X
(k)T
i β

(k)
0 |X(k)

i )s+ op(s))ds

]

=
1

2
νT
n

nk∑
i=1

E

[
fY |X(X

(k)T
i β0|X

(k)
i )X

(k)
i X

(k)T
i

]
νn + op(nk∥νn∥2). (S1.2)

According to Conditions (C2), max1≤i≤nk
∥X(k)T

i (β(k) − β̃
(k)
)∥ = op(1) as

n → ∞. Then combining with (S1.2), we have

Var(

nk∑
i=1

J2i) =

nk∑
i=1

Var(J2i)

≤
nk∑
i=1

E(J2i)
2

≤ max
1≤i≤nk

∥X(k)T
i νn∥

nk∑
i=1

E(J2i)

= op(nk∥νn∥2). (S1.3)

Because pn < nk, it is enough to show

nk(L
(k)
n (β(k))− L(k)

n (β̃
(k)
)) = nk

[
1

2
(β(k) − β̃

(k)
)TVk(β

(k) − β̃
(k)
) + op(1)

]
.

The proof of Lemma 2 is completed.
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Lemma 3. Assume that Conditions (C1)-(C2) hold, if p3n(log pn)
2/n → 0

as n → ∞, then

√
nkΨ

(k)
n (β̃

(k)
) =

√
nkΨ

(k)
n (β

(k)
0 ) + Vk

√
nk(β̃

(k) − β
(k)
0 ) + op(1).

Proof of Lemma 3. Let un ≜ β̃
(k) − β

(k)
0 , then ∥un∥ = Op(

√
pn/nk) by

Lemma 1. Hence, it is easy to get

Wn(un)

≜
1

√
nk

( nk∑
i=1

ρτ (Y
(k)
i −X

(k)T
i β̃

(k)
)−

nk∑
i=1

ρτ (Y
(k)
i −X

(k)T
i β

(k)
0 )

)
=

1
√
nk

( nk∑
i=1

ρτ (Y
(k)
i −X

(k)T
i (β

(k)
0 + un))−

nk∑
i=1

ρτ (Y
(k)
i −X

(k)T
i β

(k)
0 )

)
= − 1

√
nk

nk∑
i=1

X
(k)T
i un

(
τ − I(Y

(k)
i −X

(k)T
i β

(k)
0 < 0)

)
+

1
√
nk

nk∑
i=1

∫ X(k)T

i un

0

(
I(Y

(k)
i −X

(k)T
i β

(k)
0 ≤ s)− I(Y

(k)
i −X

(k)T
i β

(k)
0 ≤ 0)

)
ds

=
1

√
nk

nk∑
i=1

X
(k)T
i un

(
I(Y

(k)
i −X

(k)T
i β

(k)
0 < 0)− τ

)
+

√
nk

2
uT

nVkun + op(1),

where the last step is similar to (S1.2) and (S1.3). Therefore, the derivative

of Wn(un) with respect to un is

√
nkΨ

(k)
n (β̃

(k)
)−

√
nkΨ

(k)
n (β

(k)
0 ) = Vk

√
nk(β̃

(k) − β
(k)
0 ) + op(1).

The proof of Lemma 3 is completed.

Proof of Theorem 1. By the definition of β̂
(k)
, we haveQN(β̂) ≤ QN(β0).
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Furthermore, it can be shown that

1

2N

K∑
k=1

nk(β
(k)
0 − β̂

(k)
)T Ṽk(β

(k)
0 − β̂

(k)
)− 1

N

K∑
k=1

nk(β
(k)
0 − β̂

(k)
)T Ṽk(β

(k)
0 − β̃

(k)
)

≤ ϕ(β0)− ϕ(β̂). (S1.4)

Let MT
k Mk = Ṽk, Sk = Mk(β

(k)
0 − β̂

(k)
) and Tk = Mk(β

(k)
0 − β̃

(k)
). Then

(S1.4) can be written

2

N

K∑
k=1

nk(S
T
k Sk − 2ST

k Tk) +
4

N

K∑
k=1

nkT
T
k Tk

≤ 4

N

K∑
k=1

nkT
T
k Tk + 4(ϕ(β0)− ϕ(β̂)). (S1.5)

By Conditions (C1) and (C2), the left side of (S1.5) follows

1

N

K∑
k=1

nk

{
∥Sk − 2Tk∥2 + ∥Sk∥2

}
≥ 1

N

K∑
k=1

nk∥Sk∥2 ≥
d1
N

K∑
k=1

nk∥β(k)
0 −β̂

(k)
∥2,

where d1 = min1≤k≤K Λ(Ṽk). Hence,

d1

K∑
k=1

∥β(k)
0 − β̂

(k)
∥2

≤ 4
K∑
k=1

T T
k Tk +O(K)(ϕ(β0)− ϕ(β̂))

≤ 4d2

K∑
k=1

∥β(k)
0 − β̃

(k)∥2 +O(K)(
∑
j∈Aα

Pλ1(|α0j|)−
∑
j∈Aα

Pλ1(|α̂j|))

+O(K)(
∑
j∈Aγ

Pλ2(∥γ0j∥)−
∑
j∈Aγ

Pλ2(∥γ̂0j∥))

≤ 4d2

K∑
k=1

∥β(k)
0 − β̃

(k)∥2 +O(K)(a+ 1)(|Aα|λ2
1 + |Aγ|λ2

2),
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where d2 = max1≤k≤K Λ(Ṽk). According to Lemma 1,
∑K

k=1 ∥β
(k)
0 −β̃

(k)∥2 =

Op(qnK/N). Therefore,

∥β0 − β̂∥2 =
K∑
k=1

∥β(k)
0 − β̂

(k)
∥2 = Op

(
qnK

N
+K(|Aα|λ2

1 + |Aγ|λ2
2)

)
.

Under Condition (C4), we obtain ∥β0 − β̂∥ = Op(
√

qnK/N). The proof of

Theorem 1 is completed.

Proof of Theorem 2. Combining Theorem 1 and Cauchy-Schwarz in-

equality, it is easy to get

K∑
k=1

∥β̂
(k)

− β
(k)
0 ∥ = Op

(
K
√
pn/n

)
. (S1.6)

Because
∑K

k=1 ∥β̃
(k) − β

(k)
0 ∥ = Op

(
K
√

pn/n
)
, it is obvious that

K∑
k=1

∥β̂
(k)

− β̃
(k)∥ = Op

(
K
√

pn/n
)
. (S1.7)

Now we will complete our proof by contradiction.

First, let’s consider the selection consistency of α̂ and γ̂. Suppose

α̂j ̸= 0 for any j ∈ Ac
α, then

0 =
∂QN

∂αj

∣∣∣∣
β=β̂

(S1.8)

=
1

N

K∑
k=1

nk[Ṽk]j.(β̂
(k)

− β̃
(k)
) + P ′

λ1
(|α̂j|)sign(α̂j)

=
1

N

K∑
k=1

nk∥[Ṽk]j.∥∥β̂
(k)

− β̃
(k)∥+ P ′

λ1
(|α̂j|)sign(α̂j)

= λ1

{
Op

(√
pn
n
/λ1

)
+

P ′
λ1
(|α̂j|)
λ1

sign(α̂j)

}
,
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where [H]j. represents the jth row of H.

In addition, suppose ∥γ̂j∥ ≠ 0 for any j ∈ Ac
γ, then

0 =
∂QN

∂γ
(k)
j

∣∣∣∣
β=β̂

(S1.9)

=
nk

N
[Ṽk]j.(β̂

(k)
− β̃

(k)
) +

P ′
λ2
(∥γ̂j∥)
∥γ̂j∥

γ̂
(k)
j

=
nk

N
∥[Ṽk]j.∥∥β̂

(k)
− β̃

(k)∥+
P ′
λ2
(∥γ̂j∥)
∥γ̂j∥

γ̂
(k)
j

= λ2

{
Op(

√
pn
n
/λ2) +

P ′
λ2
(∥γ̂j∥)
λ2

|γ̂(k)
j |

∥γ̂j∥
sign(γ̂

(k)
j )

}
.

In fact, by Conditions (C1), (C2) and (C3),

∥[Ṽk]j.∥ ≤ ∥[Vk]j.∥+ ∥[Ṽk]j. − [Vk]j.∥

≤ ∥[Vk]j.∥+ ∥Ṽk − Vk∥

≤ Λmax(Vk) +Op(

√
pn
n
).

Obviously, the “=” in (S1.8) and (S1.9) is completely determined by α̂j and

γ̂
(k)
j under Conditions (C5) and (C6), respectively. However, two assump-

tions imply that the “=” in (S1.8) and (S1.9) cannot be satisfied. Hence,

the proof of the consistency of α̂ and γ̂ is completed.

Next, consider the selection consistency of β̂. Without loss of generality,

for any j ∈ Ac, suppose ∥γ̂j∥ = 0 and α̂j ̸= 0, then β̂
(k)

j = α̂j (k = 1, . . . , K).

It can be seen that this is a special case of the consistency of α̂, and the

variable selection consistency can be obtained using similar proof ideas.
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The proof of Theorem 2 is completed.

Proof of Theorem 3. When j ∈ A∗, we have β
(1)
j = · · · = β

(K)
j = αj,

then

QN(β) =
1

2N

K∑
k=1

nk(αA∗ − β̃
(k)

A∗ )T Ṽ 11
k (αA∗ − β̃

(k)

A∗ )

+
1

N

K∑
k=1

nk(αA∗ − β̃
(k)

A∗ )T Ṽ 12
k (β

(k)
A∗c − β̃

(k)

A∗c)

+
1

2N

K∑
k=1

nk(β
(k)
A∗c − β̃

(k)

A∗c)T Ṽ 22
k (β

(k)
A∗c − β̃

(k)

A∗c)

+
∑
j∈A∗

Pλ1(|αj|) +
∑
j /∈A∗

Pλ1(|αj|) +
pn∑
j=2

Pλ2(∥γj∥).

It is easy to achieve

0 =
∂QN

∂αA∗

∣∣∣∣
(αA∗ ,β

(k)
A∗c )=(α̂A∗ ,β̂

(k)
A∗c )

=
1

N

K∑
k=1

nk

[
Ṽ 11
k (α̂A∗ − β̃

(k)

A∗ ) + Ṽ 12
k (β̂

(k)

A∗c − β̃
(k)

A∗c)

]
+∇Pλ1(|α̂A∗|)

=
1

N

K∑
k=1

nk

[
Ṽ 11
k (α̂A∗ −α0A∗)− Ṽ 11

k (β̃
(k)

A∗ −α0A∗)

]

+
1

N

K∑
k=1

nkṼ
12
k (β̂

(k)

A∗c − β̃
(k)

A∗c) +∇Pλ1(|α̂A∗ |).
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Then we have

1

N

K∑
k=1

nkṼ
11
k (α̂A∗ −α0A∗)

=
1

N

K∑
k=1

nk

[
Ṽ 11
k (β̃

(k)

A∗ −α0A∗) + Ṽ 12
k (β̃

(k)

A∗c − β̂
(k)

A∗c)

]
−∇Pλ1(|α̂A∗|)

=
1

N

K∑
k=1

nk

[
Ṽ 11
k (β̃

(k)

A∗ −α0A∗) + Ṽ 12
k (β̃

(k)

A∗c − β̂
(k)

A∗c)

]
−∇Pλ1(|α0A∗|)−∇2Pλ1(α

⋆)(α̂A∗ −α0A∗)

=
1

N

K∑
k=1

nk

[
Ṽ 11
k (β̃

(k)

A∗ −α0A∗) + Ṽ 12
k (β̃

(k)

A∗c − β̂
(k)

A∗c)

]
−∇Pλ1(|α0A∗ |)

−∇2Pλ1(|α0A∗|)(α̂A∗ −α0A∗) +
(
∇2Pλ1(|α0A∗|)−∇2Pλ1(|α⋆|)

)
(α̂A∗ −α0A∗)

=
1

N

K∑
k=1

nk(Ṽ
11
k , Ṽ 12

k )(β̃
(k) − β

(k)
0 )− b− Σλ1(α̂A∗ −α0A∗) +Op

(
pn
n

)
, (S1.10)

where α⋆ is between α̂A∗ and α0A∗ , and the first term on the right side of

the last equality makes use of (S1.6) and Condition (C3). In fact, under

Condition (C6), it follows that

∥ (∇2Pλ1(|α0A∗|)−∇2Pλ1(|α⋆|))(α̂A∗ −α0A∗) ∥

≤∥ ∇2Pλ1(|α0A∗|)−∇2Pλ1(|α⋆|) ∥∥ α̂A∗ −α0A∗ ∥

≤ D ∥ α̂A∗ −α0A∗ ∥2

= Op

(
pn
n

)
.

Combining (S1.6), and Condition (C3), by organizing (S1.10), it is estab-
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lished that

√
N
[( 1

N

K∑
k=1

nkV
11
k + Σλ1

)
(α̂A∗ −α0A∗) + b

]
=

1√
N

K∑
k=1

nk(V
11
k , V 12

k )(β̃
(k) − β

(k)
0 ) +Op

(
qn√
N

)
. (S1.11)

According to Lemma 1, for any given |A∗|-dimensional vector e with ∥e∥ =

1, we obtain

1√
N
eT

K∑
k=1

nk(V
11
k , V 12

k )(β̃
(k) − β

(k)
0 )/σ

D−→ N(0, 1).

Because p3n(log pn)
2/n → 0, then the second term on the right of (S1.11)

is op(1) for K = O(nι) with 0 ≤ ι ≤ 1/3. The proof of Theorem 3 is

completed.

Lemma 4. Assume that Conditions (C1) , (C2) and (C4) hold, then

∥β̂
(k)

ILD − β
(k)
0 ∥ = Op

(√
pn
nk

)
.

Proof of Lemma 4. Let bn =
√
pn/nk and ∥wn∥ = c, where c is a

sufficiently large constant. Our aim is to show that for any given η0 > 0

there is a large constant c such that, for a large nk, we have

Pr

{
inf

∥wn∥=c
GN(β

(k)
0 + bnwn) > GN(β

(k)
0 )

}
≥ 1− η0. (S1.12)

This implies with probability of at least 1 − η0 that there exists a local

minimizer in the ball {β(k)
0 + bnwn : ∥wn∥ ≤ c}. Hence, there exists a local

minimizer such that ∥β̂
(k)

ILD − β
(k)
0 ∥ = Op(bn).
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Note that

GN(β
(k)
0 + bnwn)−Gk(β

(k)
0 )

=
(
LN(β

(k)
0 + bnwn)− LN(β

(k)
0 )

)
+
(
ϕ(β

(k)
0 + bnwn)− ϕ(β

(k)
0 )

)
≥

(
LN(β

(k)
0 + bnwn)− LN(β

(k)
0 )

)
+
( ∑
j∈Aγ

(Pλ2(∥γ0j + bnwnj∥)− Pλ2(∥γ0j∥))
)

≜ V1 + V2. (S1.13)

Firstly, focus on the first term V1. Using Knight (1998)’ identity, we obtain

V1 =
1

N

K∑
k=1

nk(L
(k)
n (β

(k)
0 + bnwn)− L(k)

n (β
(k)
0 ))

= − 1

N

K∑
k=1

nk∑
i=1

X
(k)T
i bnwn

(
τ − I(Y

(k)
i −X

(k)T
i β

(k)
0 < 0)

)

+
1

N

K∑
k=1

nk∑
i=1

∫ X(k)T

i bnwn

0

(
I(Y

(k)
i −X

(k)T
i β

(k)
0 ≤ s)

−I(Y
(k)
i −X

(k)T
i β

(k)
0 ≤ 0)

)
ds

≜
1

N

K∑
k=1

nk∑
i=1

J1i +
1

N

K∑
k=1

nk∑
i=1

J2i. (S1.14)

According to Condition (C2), we have E[ 1
N

∑K
k=1

∑nk

i=1 J1i] = 0 and

1

N

K∑
k=1

nk∑
i=1

E[J 2
1i] ≤

1

N

K∑
k=1

nk∑
i=1

E[∥bnwn∥2∥X(k)T
i ∥2] = O(∥bnwn∥2pn).

Then

1

N

K∑
k=1

nk∑
i=1

J1i = Op(bn
√
pn)∥wn∥. (S1.15)
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Focusing on the term 1
N

∑K
k=1

∑nk

i=1 J2i, we have by Conditions (C1)-

(C2)

E[
1

N

K∑
k=1

nk∑
i=1

J2i]

=
1

N

K∑
k=1

nk∑
i=1

E

[ ∫ X(k)T

i bnwn

0

(FY |X(X
(k)T
i β

(k)
0 + s|X(k)

i )

−FY |X(X
(k)T
i β

(k)
0 |X(k)

i ))ds

]
=

1

N

K∑
k=1

nk∑
i=1

E

[ ∫ X(k)T

i bnwn

0

(fY |X(X
(k)T
i β

(k)
0 |X(k)

i )s+ op(s))ds

]

=
b2n
2N

wT
n

K∑
k=1

nk∑
i=1

E(fY |X(X
(k)T
i β0|X

(k)
i )X

(k)
i X

(k)T
i )wn + op(b

2
n∥wn∥2).(S1.16)

Since pn < nk, max1≤i≤nk
∥X(k)T

i bnwn∥ = op(1) by Condition (C2). Then

we have by (S1.16)

Var(
1

N

K∑
k=1

nk∑
i=1

J2i) =
1

N

K∑
k=1

nk∑
i=1

Var(J2i)

≤ 1

N

K∑
k=1

nk∑
i=1

E(J2i)
2

≤ max
1≤i≤nk,1≤k≤K

∥X(k)T
i bnwn∥

1

N

K∑
k=1

nk∑
i=1

E(J2i)

= op(b
2
n∥wn∥2). (S1.17)

Focusing on the second term V2, we can obtain by Condition (C4)

V2 ≤
λ2
2

2
(a+ 1)|Aγ| = o(1/K). (S1.18)

Hence, for sufficiently large c, (S1.13) is dominated by 1
N

∑K
k=1

∑nk

i=1 J2i,
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which is positive by (S1.16) and (S1.17). The proof of Lemma 4 is com-

pleted.

Lemma 5. Assume that (C1) - (C7) hold, when λ1 → 0, λ2 → 0, p3n(log pn)
2/n →

0(n → ∞), then for any j ∈ A∗, the benchmark estimator α̂ILDA∗ obtained

by minimizing GN(β) satisfies

√
NeT

[(
N−1

K∑
k=1

nkV
11
k + Σλ1

)
(α̂ILDA∗ −α0A∗) + b

]
/σ

D−→ N(0, 1).

Proof of Lemma 5. Recall that β̂ILD is the minimizer of loss function

GN(β), and it’s also the minimizer of GN(β)−N−1
∑K

k=1 nkL
(k)
n (β̃

(k)
) since

the additional item does not contain unknown parameters. According to

Lemma 1 and 4, ∥β̂
(k)

ILD − β̃
(k)∥ = op(1) as n → ∞. Hence, we can obtain

that GN(β)−N−1
∑K

k=1 nkL
(k)
n (β̃

(k)
) is asymptotically equivalent to QN(β)

by Lemma 2 and Condition (C3), and then β̂ILD is the asymptotic minimum

point of QN(β). From this, we can obtain the selection consistency of the

benchmark estimator using the proof idea similar to Theorem 2, and further

obtain the asymptotic normality of α̂ILDA∗ using the proof idea similar to

Theorem 3. The proof of Lemma 5 is completed.
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S2 Additional simulations

S2.1 Effect of different error distributions and comparison with

other methods

In this section, we further demonstrate the finite sample properties of pro-

posed method by more simulation studies. On the one hand, a comparison

is made between different error distributions, including heavy-tailed, asym-

metric, and more general heteroscedasticity distributions. On the other

hand, a comparison is conducted between the proposed method and the

integrative linear regression method, which will soon be defined.

We consider the following scenarios based on different error distribu-

tions: (1) the t distribution with degrees of freedom 3 (t(3)), (2) the chi-

square distribution with degrees of freedom 1 (χ2(1)). In addition, we

also consider a more general location-scale-shift model ϵ
(k)
i ∼ N(0, (1 +

0.1
∑11

j=1X
(k)
ij )2) (Heter).

In addition, to compare the performance of the proposed method with

the integrative linear regression analysis, we introduce how to do the inte-

grative linear regression analysis firstly. The objective function for integra-

tive linear regression using individual-level data is defined as follows

1

N

K∑
k=1

nk∑
i=1

(Y
(k)
i −X

(k)T
i (α+ γ(k)))2 + ϕ(β). (S2.19)
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Minimizing (S2.19) to estimate β is regarded as a benchmark method for

integrative linear regression and is referred to as the ILDols method here.

Meanwhile, the objective function for integrative linear regression with pri-

vacy preservation is defined as follows

1

2N

K∑
k=1

nk(α+ γ(k) − β̆
(k)
)T V̆k(α+ γ(k) − β̆

(k)
) + ϕ(β). (S2.20)

where β̆
(k)

is the ordinary least squares estimation of local linear regression,

and V̆k = n−1
k

∑nk

i=1 X
(k)
i X

(k)T
i is the estimator of the Hessian matrix. Then

we can estimate β by minimizing (S2.20), which we will reference as the

PPDols method.

The evaluation criteria for the results are similar to before, with TZR

and ER for identification accuracy, AE for estimation accuracy, and BIAS,

SD, SE and COV for assessing homogeneous effects. In addition, we also

consider the L2 loss assessment criterion (RE) ∥ βτ − β̂τ ∥. Note that

the location-shift model (abbreviated as N(0, 1) here) for our proposed

integrative quantile method has been discussed previously, and we will re-

present its results in Table 1 to facilitate comparison with the integrative

linear regression. We focus on the 0.25 and 0.5 quantile levels, which can

be extended to other quantile levels as well.

As shown in Tables 1- 3, it is evident that the proposed PPD method

based on summary statistics is asymptotically equivalent to the ILD method
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based on raw data, which maintains consistency in variable selection and

estimation, and exhibits high statistical efficiency across different error dis-

tributions. It’s worth mentioning that for the general location-scale-shift

model, the statistical performance is better at the 0.5 quantile level than

at the 0.25 quantile level due to higher data concentration at the median

level.

Focusing on integrative linear regression, Table 1 demonstrates that

it has high accuracy in identifying covariate effects and estimation, ex-

cept for the asymmetric chi-square distribution with higher AE and RE.

Meanwhile, the PPDols method is asymptotically equivalent to the ILDols

method, which implies that PPDols is a good integrative linear regression

method as far as ILDols is concerned.

We now compare the integrative linear regression with our integrative

QR method, shown in Table 1. Both of them can identify the homogeneous,

heterogeneous and spare covariate effects with high precision. For estima-

tion accuracy, the integrative linear regression outperforms our proposed

integrative QR approach under the standard normal error setting. It is

because the ordinary least squares estimate is equivalent to the maximum

likelihood estimate, when the error follows a standard normal distribution.

Even so, our proposed method has good statistical performance for the nor-
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mal error. Regarding the general location-shift-scale model, the integrative

QR approach underperforms compared to the integrative linear regression

method at the 0.25 quantile level but outperforms it at the 0.5 quantile

level. In the remaining two cases, our method consistently achieves higher

estimation accuracy than integrative linear analysis, especially when the er-

ror follows an asymmetric chi-square distribution. In brief, our integrative

QR method exhibits robustness and effectiveness in handling heteroscedas-

ticity, asymmetry, or heavy-tailed data compared to the integrative linear

analysis.

S2.2 Sensitivity analysis of tuning parameters

In this subsection, we investigate the sensitivity of our proposed method

to the tuning parameters. Based on the selection guidance of tuning pa-

rameters given in Section 4, we consider different choices of tuning param-

eters (λ1, λ2), both of which take values in {0.2, 0.4, 0.6}, by noting that

log(n)0.1
√

pn/n ≈ 0.27 and log(n)0.5
√

pn/n ≈ 0.59. There are 9 different

combinations in total. In real data analysis, to obtain better performance of

the proposed method, we can search for tuning parameters in a larger range

and with finer grid points. We illustrate the case of homoscedastic normal

error and t(3) error under τ = 0.25 as an example. Similar conclusions can
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Table 1: Simulation results of our integrative QR approach and the integrative linear

regression under different error distributions and τ ∈ {0.25, 0.5}.

Error Method

TZR ER

AE(×10−2) RE(×10−2)
α γ α γ

0.25 N(0, 1) PPD 99.78 99.94 0.22 0.06 14.35 2.42

ILD 100.00 100.00 0.00 0.00 10.45 2.08

Heter PPD 100.00 100.00 0.00 0.00 397.35 148.89

ILD 100.00 100.00 0.00 0.00 399.49 149.23

t(3) PPD 100.00 100.00 0.00 0.00 14.85 2.43

ILD 100.00 100.00 0.00 0.00 13.35 2.37

χ2(1) PPD 100.00 100.00 0.00 0.00 16.55 4.81

ILD 100.00 100.00 0.00 0.00 13.72 4.66

0.5 N(0, 1) PPD 100.00 100.00 0.00 0.00 13.65 2.43

ILD 100.00 100.00 0.00 0.00 6.39 1.52

Heter PPD 100.00 100.00 0.00 0.00 7.94 1.35

ILD 100.00 100.00 0.00 0.00 6.72 1.06

t(3) PPD 99.94 99.97 0.06 0.03 13.31 2.07

ILD 99.80 99.80 0.20 0.20 11.33 1.71

χ2(1) PPD 100.00 100.00 0.00 0.00 22.94 7.81

ILD 100.00 100.00 0.00 0.00 22.49 7.73

OSL N(0, 1) PPDols 100.00 100.00 0.00 0.00 7.41 1.23

ILDols 100.00 100.00 0.00 0.00 7.41 1.23

Heter PPDols 100.00 100.00 0.00 0.00 9.72 1.50

ILDols 100.00 100.00 0.00 0.00 9.11 1.40

t(3) PPDols 99.59 99.75 0.41 0.25 15.02 2.47

ILDols 100.00 100.00 0.00 0.00 14.95 2.47

χ2(1) PPDols 100.00 100.00 0.00 0.00 411.02 200.03

ILDols 100.00 100.00 0.00 0.00 410.60 200.03
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Table 2: Simulation results of the homogeneous effects under different error distributions

and τ = 0.25 (all entries are multiplied by 100).

Error Method α7 α8 α9 α10 α11

Heter PPD BIAS 0.83 0.71 0.83 0.72 0.78

SD 2.10 2.17 2.11 2.10 1.91

SE 1.96 2.21 2.22 2.22 1.99

COV 93.40 93.80 95.00 92.00 93.00

ILD BIAS 0.86 0.86 0.97 0.88 0.82

SD 1.87 1.92 1.92 1.89 1.82

SE 1.85 2.10 2.10 2.10 1.89

COV 94.20 93.60 95.60 92.80 94.40

t(3) PPD BIAS -0.18 -0.06 0.09 -0.07 0.25

SD 3.56 3.53 3.45 3.44 3.34

SE 3.33 3.41 3.50 3.48 3.32

COV 95.20 94.20 95.60 92.20 94.40

ILD BIAS -0.11 -0.03 -0.04 0.00 0.16

SD 3.31 3.29 3.18 3.22 3.14

SE 3.13 3.26 3.27 3.27 3.02

COV 94.80 94.60 95.20 92.40 92.80

χ2(1) PPD BIAS -0.14 -0.04 -0.18 -0.09 -0.15

SD 0.97 1.01 1.05 1.01 0.84

SE 0.88 0.98 0.99 0.98 0.88

COV 94.40 95.20 93.00 89.60 96.60

ILD BIAS -0.07 -0.04 -0.13 -0.05 -0.06

SD 1.04 1.05 1.04 1.03 0.87

SE 0.89 0.99 0.98 0.99 0.89

COV 94.60 95.20 92.80 92.00 95.80
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Table 3: Simulation results of the homogeneous effects under different error distributions

and τ = 0.5 (all entries are multiplied by 100).

Error Method α7 α8 α9 α10 α11

Heter PPD BIAS 0.10 0.26 0.09 0.16 0.33

SD 3.05 2.94 3.11 3.13 2.86

SE 2.83 3.10 3.09 3.10 2.81

COV 95.60 95.20 94.20 93.20 93.80

ILD BIAS -0.16 0.07 0.05 -0.01 -0.20

SD 2.87 2.96 2.98 2.89 2.74

SE 2.80 3.10 3.07 3.09 2.81

COV 95.60 96.00 95.80 94.40 94.60

t(3) PPD BIAS -0.01 0.20 0.18 0.16 0.33

SD 2.76 2.94 2.65 2.68 2.62

SE 2.41 2.70 2.69 2.67 2.42

COV 94.40 93.20 94.40 92.80 93.00

ILD BIAS 0.15 -0.01 -0.05 -0.03 0.00

SD 2.61 2.62 2.61 2.60 2.35

SE 2.40 2.68 2.68 2.67 2.40

COV 95.60 95.20 94.60 93.80 95.20

χ2(1) PPD BIAS 0.10 0.06 0.02 0.05 0.14

SD 1.80 1.91 1.84 1.85 1.66

SE 1.69 1.89 1.88 1.90 1.69

COV 95.80 94.80 96.40 93.00 94.00

ILD BIAS -0.02 0.11 0.09 -0.04 -0.01

SD 1.82 1.94 1.92 1.91 1.70

SE 1.68 1.88 1.87 1.88 1.68

COV 95.60 93.20 94.20 93.00 94.40
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be drawn under other error distributions and other quantile levels, and are

thus omitted here.

As reported in Table 4, the results of TZR and ER demonstrate that

our proposed method is capable of identifying the correct covariate struc-

ture under both normal error and t(3) error for various tuning parameter

combinations. In terms of estimation accuracy, the difference between AE

and RE is small across different tuning parameter combinations. Further-

more, when one tuning parameter is fixed and the another is changed, AE

and RE exhibit little change. This suggests that our proposed method is

robust and not sensitive to selection of tuning parameters.

S2.3 Performance for larger pn

To assess the performance of the proposed method with a larger pn, we

increase pn to 200 and consider the case of homoscedastic normal error and

t(3) error under τ = 0.25. For evaluating the homogeneity effect estimation,

we employ BIAS, SD and mean squared error (MSE) as evaluation criteria.

The simulation results are reported in Tables 5 and 6.

From these tables, it is evident that both the proposed method and

the benchmark method can effectively identify homogeneous structures in

higher dimensional cases, regardless of whether the error follows a nor-
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Table 4: Sensitivity analysis of tuning parameters of our proposed method under different

error distributions and τ = 0.25.

Error λ1 λ2

TZR ER

AE(×10−2) RE(×10−2)
α γ α γ

N(0, 1) 0.2 0.2 100.00 100.00 0.00 0.00 16.21 2.74

0.4 100.00 100.00 0.00 0.00 16.21 2.74

0.6 100.00 100.00 0.00 0.00 16.21 2.74

0.4 0.2 100.00 100.00 0.00 0.00 17.95 3.00

0.4 100.00 100.00 0.00 0.00 17.95 3.00

0.6 100.00 100.00 0.00 0.00 17.95 3.00

0.6 0.2 100.00 100.00 0.00 0.00 17.12 2.89

0.4 100.00 100.00 0.00 0.00 17.12 2.89

0.6 100.00 100.00 0.00 0.00 17.12 2.89

t(3) 0.2 0.2 100.00 100.00 0.00 0.00 19.75 3.08

0.4 100.00 100.00 0.00 0.00 19.76 3.08

0.6 100.00 100.00 0.00 0.00 19.76 3.08

0.4 0.2 100.00 100.00 0.00 0.00 18.69 3.15

0.4 100.00 100.00 0.00 0.00 18.69 3.15

0.6 100.00 100.00 0.00 0.00 18.69 3.15

0.6 0.2 100.00 100.00 0.00 0.00 18.31 3.15

0.4 100.00 100.00 0.00 0.00 18.31 3.15

0.6 100.00 100.00 0.00 0.00 18.31 3.15
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mal distribution or t(3) distribution. In terms of estimation accuracy, the

proposed estimates exhibit slightly larger AEs and REs compared to the

benchmark estimator which are obtained based on individual-level data,

but the differences are small. The homogeneity effect estimation perfor-

mance is commendable, with the three evaluation criteria of our proposed

estimation very close to those of the benchmark estimation. Overall, our

proposed method performs well for higher dimensional setting.

Table 5: Simulation results for pn = 200 under different error distributions and τ = 0.25.

Error Method

TZR ER

AE(×10−2) RE(×10−2)
α γ α γ

N(0, 1) PPD 100.00 100.00 0.00 0.00 39.57 8.56

ILD 100.00 100.00 0.00 0.00 37.09 8.23

t(3) PPD 100.00 100.00 0.00 0.00 53.42 9.22

ILD 100.00 100.00 0.00 0.00 41.53 7.30
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Table 6: Simulation results of the homogeneous effects for pn = 200 under different error

distributions and τ = 0.25 (all entries are multiplied by 100).

Error Method α7 α8 α9 α10 α11

N(0, 1) PPD BIAS 0.46 0.20 0.03 0.00 -0.08

SD 2.97 2.84 3.16 3.04 2.79

MSE 0.09 0.08 0.10 0.09 0.08

ILD BIAS -0.06 0.03 0.03 -0.12 -0.13

SD 2.67 2.65 2.83 2.75 2.60

MSE 0.07 0.07 0.08 0.08 0.07

t(3) PPD BIAS -0.96 0.08 0.54 0.64 -0.44

SD 3.84 3.20 3.82 3.47 3.28

MSE 0.16 0.10 0.15 0.12 0.11

ILD BIAS -0.81 0.43 -0.25 0.59 0.01

SD 3.54 3.03 3.59 3.44 2.95

MSE 0.13 0.09 0.13 0.12 0.09
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S3 Variable information

Table 7: Variable description for the ASIF data.

Variable Description Variable used in the model

TFP Total factor productivity Used as the response variable

Age Company age Used as a numerical variable

AgeS Company age squared Used as a numerical variable

Asset Natural logarithm of total assets Used as a numerical variable

DebtR Enterprise debt ratio Used as a numerical variable

FixR Fixed asset ratio Used as a numerical variable

ExpR Export output value ratio Used as a numerical variable

Worker Natural logarithm of the number

of company workers

Used as a numerical variable

Scale Company scale Based on the medium-scale com-

pany, it is converted to two dummies

ScaleL and ScaleS, representing the

large-scale company and small-scale

company, respectively
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Table 7 (continued): Variable description for the ASIF data.

Variable Description Variable used in the model

Registration type Enterprise registration type Based on the state-owned

enterprise, it is converted to

six dummies Col, LLC, LBS,

Pri, HMT, and Fore, repre-

senting collective enterprises,

limited liability companies,

companies limited by shares,

private enterprises, and Hong

Kong/Macao/Taiwan invested

enterprises, and foreign-invested

enterprise, respectively

Industry code Two-digit industry code

representing different in-

dustries

Based on the textile industry, it

is converted to nine dummies:

Ind24, Ind26, Ind29, Ind33,

Ind34, Ind36, Ind39, Ind40,

Ind41, see Table 8 for definitions
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Table 8: Definition of industry code for the ASIF data

Industry code Definition

Ind24 Cultural, educational and sporting goods manufacturing industry

Ind26 Chemical raw materials and chemical products manufacturing in-

dustry

Ind29 Rubber products industry

Ind33 Nonferrous metal smelting and rolling processing industry

Ind34 Metal products industry

Ind36 Special equipment manufacturing industry

Ind39 Electrical machinery and equipment manufacturing industry

Ind40 Communication equipment, computer, and other electronic equip-

ment manufacturing industry

Ind41 Instrumentation, cultural, and office machinery manufacturing in-

dustry
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