
Statistica Sinica: Supplement

1

Supplementary Material for

“Differentially Private Regularized Stochastic

Convex Optimization with Heavy-Tailed Data”

Haihan Xie1 Matthew Pietrosanu1 Yi Liu1

Wei Tu2 Bei Jiang1 Linglong Kong1

1 Department of Mathematical and Statistical Sciences, University of Alberta

2 Department of Public Health Sciences, Queen’s University

S1 Additional Numerical Results

Figure S1: Simulation study results for the lasso model: accuracy vs. batch size n/m

under p = 50 and different privacy budgets ϵ.



Figure S2: Simulation study results for the ℓ1-regularized logistic regression model: ac-

curacy vs. batch size n/m under p = 50 and different privacy budgets ϵ.

Table S1: Results for the blog feedback analysis: comparison of RMSE under different

privacy budget ϵ. Averages (and in parentheses, standard errors) over 20 training–test

splits are presented.

Methods ϵ = 0.5 ϵ = 2

SPGD 0.867(0.041) 0.857(0.042)

DP-SPGD 0.893(0.059) 0.892(0.054)

DP-SPGD(K) 0.954(0.051) 0.905(0.046)

DP-SPGD(H) 0.949(0.044) 0.859(0.038)

S2 Technical Details

S2.1 Proofs for Algorithm 1

Proof of Proposition 1. The proof follows from Abadi et al. (2016), which

provides a tight privacy bound for minibatch SGD under the assumption of
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Table S2: Results for the crop-mapping analysis: comparison of classification accuracy

under different privacy budget ϵ. Averages (and in parentheses, standard errors) over 20

training–test splits are presented.

Methods ϵ = 0.5 ϵ = 2

SPGD 0.935(0.004) 0.935(0.003)

DP-SPGD 0.916(0.004) 0.916(0.003)

DP-SPGD(K) 0.886(0.010) 0.911(0.004)

DP-SPGD(H) 0.909(0.007) 0.929(0.002)

a bounded gradient. In Algorithms 1, the bound of the minibatch gradients

is C/m after clipping. Consequently, the result follows from Theorem 1 in

Abadi et al. (2016).

Lemma 1 (Lemma 8 in Atchadé et al. (2017)). Assume that γ ∈ (0, K−1
1 ].

Then under Assumption (A1), for all β, β′, ω ∈ B,

−2γ
(
FD

(
proxγ,g(β)

)
− FD (β′)

)
≥

∥∥proxγ,g(β)− β′∥∥2

+ 2
〈
proxγ,g(β)− β′, ω − γ∇LD(ω)− β

〉
− ∥β′ − ω∥2 .

Proof of Theorem 1. By Jensen’s inequality,

E[FD(β̄
T )− FD(β

∗)] ≤ E

[
T−1

T∑
t=1

{FD(βt)− FD(β
∗)}

]
.

Firstly, we consider a single step by taking β = βt−1 − γt−1∇L̂D(βt−1),



ω = βt−1, β
′ = β∗, and γ = γt−1 in Lemma 1, which yields that

FD(βt)− FD(β
∗)

≤ 1

2γt−1

(∥βt−1 − β∗∥2 − ∥βt − β∗∥2) + ⟨βt − β∗,∇LD(βt−1)−∇L̂D(βt−1)⟩

≤ ∆2

2γt−1

+ ⟨βt − β∗,∇LD(βt−1)−∇L̂D(βt−1)⟩,

where the second inequality holds by Assumption (A2).

Summing for t = 1, . . . , T , we have

T∑
t=1

{FD(βt)− FD(β
∗)} ≤ ∆2

2γT−1

+
T∑
t=1

⟨βt − β∗,∇LD(βt−1)−∇L̂D(βt−1)⟩.

Then,

E[FD(β̄
T )− FD(β

∗)]

≤ ∆2

2TγT−1

+
1

T

T∑
t=1

E[⟨βt − β∗,∇LD(βt−1)−∇L̂D(βt−1)⟩]

≤ ∆2

2TγT−1

+
∆

T

T∑
t=1

Bias∥·∥(∇L̂t−1),

where the second inequality comes from the Hölder’s inequality.

S2.2 Proofs for Algorithm 2

Lemma 2 (Lemma 13 in Kamath et al. (2020)). Let X be a distribution

over R with mean µ. Suppose that x ∼ X and that E[|x−µ|k] ≤ 1 for some
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k ≥ 2. Furthermore, for any c ∈ R, define

Z =


c− ϱ/2, x < c− ϱ/2

c+ ϱ/2, x > c+ ϱ/2

x, else.

If |µ− c| ≤ ϱ/4, then |µ− E[Z]| ≤ 8(4/ϱ)k−1.

Proof of Theorem 2. For any j ∈ [p] and x ∈ Zi
j (defined in Algorithm 3),

by Hölder’s inequality,

E[x− E[Zj]]
2 ≤ (E[|x− E[Zj]|k])2/k ≤ 1

for any fixed i ∈ [q]. The second inequality holds under the assumption that

E[|⟨X − µ, ej⟩|k] ≤ 1 for X ∼ P .

Now, since

E[µ̂i
j − E[Zj]]

2 = E

 q

n

∑
x∈Zi

j

x− E[Zj]

2

=
q2

n2
E

∑
x∈Zi

j

x− n2

q2
E[Zj]

2

=
q2

n2
E

∑
x∈Zi

j

(x− E[Zj])
2


≤ q

n
,

Chebyshev’s inequality implies that

P
[
|µ̂i

j − E[Zj]| ≤ 10

√
q

n

]
≥ 0.9.



Recall that µ̂j = Median{µ̂1
j , . . . , µ̂

q
j}. Let Yi = 1(|µ̂i

j − E[Zj]| ≥ 10
√

q/n).

The Yis are i.i.d. Bernoulli random variables with a success probability of

at most 1/10. It follows that

P
[
|µ̂j − E[Zj]| ≥ 10

√
q/n

]
= P

[
q∑

i=1

Yi ≥
q

2

]
= P

[
q∑

i=1

(Yi −
1

10
) ≥ 2q

5

]
.

By Hoeffding’s inequality,

P
[
|µ̂j − E[Zj]| ≥ 10

√
q/n

]
≤ exp(−q/3).

Recall that µ̂ = (µ̂1, . . . , µ̂p)
⊤+N (0, σ2Ip), where σ = ϱq

√
p log(δ−1)/(nϵ).

By Lemma 2 and the tail properties of the chi-squared distribution, with

probability no less than 1− ζ,

∥µ̂− µ∥ ≤ O

[
ϱ log(p/ζ)

√
p log(δ−1)

nϵ

{√
p+

√
log(ζ−1)

}
+
√
p

{√
log(p/ζ)

n
+

(
4

ϱ

)k−1
}]

,

if we take q = 3 log(2p/ζ) and ϱ ≥ 4∥µ∥∞.

Lemma 3. For Algorithm 2, under Assumptions (A2)–(A5), with proba-

bility at least 1− ζ,

∥∇L̂D(β)−∇LD(β)∥ ≤ Õ

[
p

3
2 log(ζ−1)

{√
p log(δ−1)

mϵ

} k−1
k

]
for any β ∈ B.

Proof of Lemma 3. Since B is closed and bounded, it is compact. The num-

ber of balls of radius ξ required to cover B is bounded above as Nξ ≤
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(3∆/2ξ)p (Kolmogorov and Tikhomirov, 1959). Let β̃ ∈ {β̃1, . . . , β̃Nξ
} be

any center of this ξ-net. It follows that

∥∇L̂D(β)−∇LD(β)∥ ≤ ∥∇L̂D(β)−∇L̂D(β̃)∥+ ∥∇L̂D(β̃)−∇LD(β̃)∥

+ ∥∇LD(β̃)−∇LD(β)∥.

Then we handle each component separately.

For the first term, let N ∼ N (0, σ2Ip), where σ = ϱq
√

p log(δ−1)/(mϵ),

we have

∥∇L̂D(β)−∇L̂D(β̃)∥ ≤

√√√√ p∑
j=1

{
µ̂j(β)− µ̂j(β̃)

}2

+ 2∥N∥

=

√√√√√ p∑
j=1

 q

m

m/q∑
k=1

|∇ℓkj(β)−∇ℓkj(β̃)|


2

+ 2∥N∥

≤ √
pK2∥β − β̃∥+ 2∥N∥.

Since

P
[
∥N∥ ≤ 2σ{√p+

√
log(1/2ζ)}

]
> 1− ζ,

with probability at least 1− ζ,

∥∇L̂D(β)−∇L̂D(β̃)∥ ≤ O

{
√
p∥β − β̃∥+ ϱqp log1/2(δ−1) log(ζ−1)

mϵ

}

≤ Õ

√p∥β − β̃∥+√
p log(ζ−1)

{√
p log(δ−1)

mϵ

} k−1
k

 ,

where the notation Õ omits some logarithmic terms.



Next is to bound the second term. From Theorem 2, we know for any

center β̃(β),

∥∇L̂D(β̃)−∇LD(β̃)∥ ≤ O

[
ϱ log

(
p
ζ

)√
p log(δ−1)

mϵ

{√
p+

√
log(ζ−1)

}

+
√
p

{√
log

(
p
ζ

)
m

+
(4
ϱ

)k−1
}]

with probability at least 1 − ζ. The ξ-net for B circumvents the need to

take a supremum over β ∈ B as

sup
β∈B

∥∇L̂D(β̃(β))−∇LD(β̃(β))∥

= max
k∈Nξ

∥∇L̂D(β̃k)−∇LD(β̃k)∥

≤ O

[
ϱ log

(
pNξζ

−1
)√

p log(δ−1)

mϵ

{√
p+

√
log(Nξζ−1)

}
+
√
p

{√
log

(
pNξζ−1

)
m

+
(4
ϱ

)k−1
}]

≤ Õ

[
p

3
2 log(ζ−1)

{√
p log(δ−1)

mϵ

} k−1
k

]

According to Assumption (A3), the third term ∥∇LD(β̃)−∇LD(β)∥ ≤

K1∥β̃ − β∥.

To sum up,

sup
β∈B

∥∇L̂D(β)−∇LD(β)∥

≤ Õ

[
√
p∥β − β̃∥+ p

3
2 log(ζ−1)

{√
p log(δ−1)

mϵ

} k−1
k

]

with probability 1− ζ. Setting ξ = m
1−k
k directly yields Lemma 3.



S2. TECHNICAL DETAILS9

Proof of Corollary 1. We will begin by demonstrating that Algorithm 2

satisfies the DP guarantee. This can be directly inferred from the proof

of Proposition 1, with minibatch gradients bounded by ρq
√
p/m. Subse-

quently, we will derive an upper bound on the excess population risk with

high probability:

FD(β̄
T )− FD(β

∗)

≤ 1

T

T∑
t=1

{
1

2γt−1

(∥βt−1 − β∗∥2 − ∥βt − β∗∥2) + ⟨βt − β∗,∇LD(βt−1)−∇L̂D(βt−1)⟩
}

≤ ∆2

2TγT−1

+ T−1

T∑
t=1

⟨βt − β∗,∇LD(βt−1)−∇L̂D(βt−1)⟩

≤ ∆2

2TγT−1

+ Õ

[
p

3
2 log(ζ−1)

{√
p log(δ−1)

mϵ

} k−1
k

]

with probability at least 1−ζ. The first inequality holds by Lemma 1 while

the second holds by Assumption (A2). The last inequality follows from the

Hölder’s inequality and Lemma 3.

S2.3 Proofs for Algorithm 4

Lemma 4 (Theorem 2 in Wang et al. (2020)). Let X1, X2, . . . , Xn be i.i.d.

samples from some distribution Θ. Assume that that EX∼Θ[X
2] ≤ τ for

some known τ . Let ν =
√
log(ζ−1) and s =

√
nϵτ/{log(ζ−1) log1/4(δ−1)}



for a given failure probability ζ. Then with probability at least 1− ζ,

|A(D)− E[X]| ≤ O


√

τ log1/2(δ−1) log(ζ−1)

nϵ

 .

Lemma 5 (Lemma 7 in Holland (2019)). The estimator x̂ defined in (5.3)

as a function of the data (x1, . . . , xn)
⊤ ∈ Rn satisfies

|x̂(x)− x̂(x′)| ≤ cχ
n
∥x− x′∥1,

where the factor cχ takes the form

cχ = 1− 2Φ(−
√
ν) +

√
2

νπ
exp

(
−ν

2

)
and where Φ is the cumulative distribution function for the standard normal

distribution.

Proof of Theorem 3. As the proof of Lemma 3, we apply the standard

strategy of covering to obtain the uniform upper bound of the error term

∥∇L̂D(β) − ∇LD(β)∥. By triangle inequality, we decompose it into three

components:

∥∇L̂D(β)−∇LD(β)∥ ≤ ∥∇L̂D(β)−∇L̂D(β̃)∥+ ∥∇L̂D(β̃)−∇LD(β̃)∥

+ ∥∇LD(β̃)−∇LD(β)∥,

where β̃ ∈ {β̃1, . . . , β̃Nξ
} is any center of a ξ-net. Then we handle each

component separately.
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We first deal with the last term. By Assumption (A3),

∥∇LD(β̃)−∇LD(β)∥ ≤ K1∥β̃ − β∥.

Regarding the first term, letN ∼ N (0, σ2Ip), where σ = 4s
√

2p log(δ−1)/(3mϵ),

we have ∇L̂D(β) = ℓ̃(β) +N in Algorithm 4 (line 6), so

∥∇L̂D(β)−∇L̂D(β̃)∥ ≤ ∥ℓ̃(β)− ℓ̃(β̃)∥+ 2∥N∥.

In accordance with the tail property of chi-squared distribution,

P

[
∥N∥ ≤ 2σ

{
√
p+

√
log

(
1

2ζ

)}]
> 1− ζ.

In addition, Lemma 5 yields that

∥ℓ̃(β)− ℓ̃(β̃)∥2 ≤
p∑

j=1

{cχ
m
∥∇ℓj(β)−∇ℓj(β̃)∥1

}2

≤
p∑

j=1

{
cχ
m

m∑
i=1

|∇ℓij(β)−∇ℓij(β̃)|

}2

≤ pc2χK
2
2∥β − β̃∥2,

and so

∥ℓ̃(β)− ℓ̃(β̃)∥ ≤ √
pcχK2∥β − β̃∥.

Therefore,

∥∇L̂D(β)−∇L̂D(β̃)∥ ≤ √
pcχK2∥β − β̃∥+

16s
√
2p log(δ−1)

3mϵ

{
√
p+

√
log

(
1

2ζ

)}
.

To bound the second term, we apply Lemma 4. It follows that

|∇L̂j(β)−∇Lj(β)| ≤

√
τ log1/2(δ−1) log(ζ−1)

mϵ



for j ∈ [p] and any fixed β as long as E[{∇jℓ(β;x, y)}2] < ∞. Hence,

P

[
∥∇L̂D(β)−∇LD(β)∥ >

√
pτ log1/2(δ−1) log(ζ−1)

mϵ

]

≤
p∑

j=1

P

[
|∇L̂j(β)−∇Lj(β)| ≤

√
τ log1/2(δ−1) log(ζ−1)

mϵ

]

≤ pζ.

Let β̃ = β̃(β) denote the closest center to any fixed β. Thus,

∥∇L̂D(β̃)−∇LD(β̃)∥ >

√
pτ log1/2(δ−1) log(pζ−1)

mϵ

occurs with probability no greater than ζ. Then

sup
β∈B

∥∇L̂D(β̃(β))−∇LD(β̃(β))∥ = max
k∈Nξ

∥∇L̂D(β̃k)−∇LD(β̃k)∥

≤

√
pτ log1/2(δ−1) log(pNξζ−1)

mϵ
.

Therefore, if we let

V =
16s

√
2p log(δ−1)

3mϵ

{
√
p+

√
log

(
1

2ζ

)}
,

a uniform upper bound on ∥∇L̂D(β)−∇LD(β)∥ is

sup
β∈B

∥∇L̂D(β)−∇LD(β)∥

≤ sup
β∈B

(√
pcχK2∥β − β̃∥+K1∥β − β̃∥

)
+

√
pτ log1/2(δ−1) log(pNξζ−1)

mϵ
+ V

≤ max{K1, K2}ξ(
√
pcχ + 1) +

√
pτ log1/2(δ−1) log(pNξζ−1)

mϵ
+ V
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with probability at least 1 − ζ. Setting s =
√
mϵτ/{log(ζ−1) log1/4(δ−1)}

and ξ = m−1/2 directly yield Theorem 3.

Proof of Corollary 2. Once the truncation step is performed, the robust

gradients in Algorithm 4 are bounded by 4s
√
2p/(3m). As a result, it is

easy to demonstrate that the privacy guarantee is met. The proof for the

utility guarantee is identical to that of Corollary 1, but with the application

of the uniform bound from Theorem 3.

S2.4 Explicit form of C(a, b) in Catoni and Giulini (2017)

The correction term C(a, b) can be computed as follows. First, define

V− =

√
2− a

b
, V+ =

√
2 + a

b
, F− = Φ(−V−) ,

F+ = Φ(−V+) , E− = exp

(
−
V 2
−

2

)
, and E+ = exp

(
−
V 2
+

2

)
,

where Φ denotes the cumulative distribution function for the standard nor-

mal distribution. With these elements, we can break the final quantity into



five terms:

T1 =
2
√
2

3
(F− − F+) ,

T2 = −
(
a− a3

6

)
(F− + F+) ,

T3 =
b√
2π

(
1− a2

2

)
(E+ − E−) ,

T4 =
ab2

2

{
F+ + F− +

1√
2π

(V+E+ + V−E−)

}
,

T5 =
b3

6
√
2π

{(
2 + V 2

−
)
E− −

(
2 + V 2

+

)
E+

}
.

At last, we explicitly define

C(a, b) = T1 + T2 + T3 + T4 + T5.
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