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S1 Additional Numerical Results

3 3
5 SPGD
~ DP-SPGD(H)
~ DP-SPGD
DP-SPGD(K)
4
2 2
¥ * ¥
@3 @ @
| I I
=5 \ = =
\ 1 Sy 1 -
1 Nl N ™~
e, e . —_—
25 50 7.5 10.0 25 50 7.5 10.0 25 50 7.5 10.0
n/m (e=0.5, p = 50) n/m (e=1, p=50) n/m (e=3, p = 50)

Figure S1: Simulation study results for the lasso model: accuracy vs. batch size n/m

under p = 50 and different privacy budgets e.
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Figure S2: Simulation study results for the /;-regularized logistic regression model: ac-

curacy vs. batch size n/m under p = 50 and different privacy budgets e.

Table S1: Results for the blog feedback analysis: comparison of RMSE under different
privacy budget e. Averages (and in parentheses, standard errors) over 20 training—test

splits are presented.

Methods e=10.5 €e=2

SPGD 0.867(0.041) | 0.857(0.042)
DP-SPGD | 0.893(0.050) | 0-892(0.054)
DP-SPGD(K) | 0.954(0.051) | 0.9050.046)

DP-SPGD(H) | 0.949(0 044 | 0.859(0.03s)

S2 Technical Detalils

S2.1 Proofs for Algorithm

Proof of Proposition [l The proof follows from [Abadi et al/ (2016]), which

provides a tight privacy bound for minibatch SGD under the assumption of
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Table S2: Results for the crop-mapping analysis: comparison of classification accuracy
under different privacy budget e. Averages (and in parentheses, standard errors) over 20

training—test splits are presented.

Methods e=0.5 €e=2

SPGD 0.935(0.001) | 0-935(0.003)
DP-SPGD | 0.916(0.004) | 0-916(0.003)
DP-SPGD(K) | 0.886(0.010) | 0-911(0.000)

DP-SPGD(H) | 0.909(0.007) | 0-929(0.002)

a bounded gradient. In Algorithms[l] the bound of the minibatch gradients

is C'/m after clipping. Consequently, the result follows from Theorem 1 in

Abadi et al.| (2016]). O

Lemma 1 (Lemma 8 in |Atchadé et al| (2017)). Assume that v € (0, K;'].

Then under Assumption (A1), for all 3,5 ,w € B,

_QV(FD (prox%g(ﬁ)) — Fp (5/>) > ”me%g(ﬁ) B Ble

+2(prox, ,(8) — #',w =4V Lp(w) = B) = |8 = w|”.

Proof of Theorem[]. By Jensen’s inequality,

E[Fp(3T) — Fp(8%)] <E [T} Z{Fb(ﬁt) — Fp(B7)}

Firstly, we consider a single step by taking g = ;-1 — ’yt,lvzp(ﬁt,l),



w=Pi1, f/ =B, and v = y,_1 in Lemma [1| which yields that

Fp(6;) — Fp(87)
1

271
2

(1Bi=1 = B> = 1B = B*11*) + (B — B*, VLp(Bi—1) — VLp(Bi—1))

+ (B — 5", VLp(Bi—1) — VED(@—Q%

IN

271

where the second inequality holds by Assumption (A2).

Summing for t = 1,...,7T, we have
T 9 T R
> {Fp(B) — Fo(8")} < +Y (B — B*. VLp(Bi1) — VLp(Bi-1)).
t=1 v I
Then,
E[Fp(B") — Fp(8")]
AQ 1 T ~
< 37+ 7 2L BlB = B VEn(Bir) = VIp(Bi-1))]
t=1
A2 A -
< + — Bias) ((VL;_1),
T T T ; 11V Ler)
where the second inequality comes from the Holder’s inequality. O]

S2.2 Proofs for Algorithm

Lemma 2 (Lemma 13 in Kamath et al| (2020)). Let X be a distribution

over R with mean p. Suppose that x ~ X and that El|x — u|*] < 1 for some
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k > 2. Furthermore, for any c € R, define

p

c—p0/2, T<c—p/2

Z=9 c+o/2, x>c+0/2

L else.

If |u—c| < of4, then |u—E[Z]| < 8(4/0)"".
Proof of Theorem [, For any j € [p] and = € Z; (defined in Algorithm ,
by Hélder’s inequality,
Ele - E[Z,]” < (Elle - EIZ])** <1
for any fixed i € [¢]. The second inequality holds under the assumption that

E[(X — u,e;)[F] <1 for X ~ P.

Now, since

Elp; ~EZ]?=E |13 «-E[Z)]

n ,
IGZ]?
- 2
2 2
q n
= SE d w- ?E[Z]]
_xEZ;
q2 - 2
=LE |3 (e -EZ)
zEZ]i»
<L
n

Chebyshev’s inequality implies that

P || —E[Z)]] < 10\/5] > 0.9.



Recall that ji; = Median{ji;, ..., !} Let Y; = 1(|i} — E[Z;]] > 10y/q/n).
The Y;s are i.i.d. Bernoulli random variables with a success probability of

at most 1/10. It follows that

P [ - E[Z]] 2 10V/a/n| =P =P

q
q
;1625

q
1 2
Y Yi-—=) =T
10 5
1
By Hoeffding’s inequality,
P [Iﬂj —E[Zj]| > 10\/@/”} < exp(—q/3).

Recall that fi = (fiy, ..., fi,) " +N(0,021,), where o = og+/plog(6-1)/(ne).
By Lemma [2| and the tail properties of the chi-squared distribution, with

probability no less than 1 — ¢,

I —pll <O

olog(p/C)+/plog(01) {\/ﬁJr\/m}

e

if we take ¢ = 3log(2p/¢) and o0 > 4|| 14| co- O

Lemma 3. For Algorithm [3, under Assumptions (A2)-(A5), with proba-

bility at least 1 — (,

IVZo(8) = VLo(8)] < O|p log(c™){

me

plog(6-1) }kkl]

for any B € B.

Proof of Lemmal3 Since B is closed and bounded, it is compact. The num-

ber of balls of radius { required to cover B is bounded above as N, <
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(3A/26)? (Kolmogorov and Tikhomirov, [1959). Let 8 € {fi, ... ,BNg} be

any center of this {-net. It follows that
IVLZo(8) = VLo < IVLo(8) = V()| + VLo(B) — VLn(B)|
+ (VLo (5) = VLo (B)]-

Then we handle each component separately.

For the first term, let N ~ N(0,0%1,), where o = og+/plog(d=1)/(me),

we have

NE

IVZo(8) - VIo()l < || S {9 — B} + 20N

1

J

m/q

{% kz\wkj(ﬁ) - wkj(é)} + 2| N]|

Il
M=

j=1

< VPIG||8 = B + 2| Nl.

Since
PIN1] < 20{vp+ VIos(1/20)}] > 1,

with probability at least 1 — (,

~ . ~ /25— _
IVE(8) - VEo(A)ll <O {mw g+ 280 g€ 1)}

<0

me

VI8 = Bl + vplog(¢™h) {M} ] ,

where the notation O omits some logarithmic terms.



Next is to bound the second term. From Theorem [2] we know for any

center B(,B),

IVLy(3) — VLp(B)| <O

with probability at least 1 — (. The &-net for B circumvents the need to

take a supremum over 3 € B as

sup||VLp(B8(8)) = VLo(3(8))|

pBeB

= iré?V)E(HVED(Bk) — VLp(By)|

< o|2sleNee DVplosd g log(Ngé‘l)}Jr\/ﬁ{ —log(prg_lh(é)‘“‘lH

me m 0

<ol (P

According to Assumption (A3), the third term ||V Lp(3) — VLp(B)|| <

K118 - 8.

To sum up,

sup||VLp(8) = VLp(B)]
BeB

~ ~ 3 1 01 %
< 0|8 — A + pHrog(cH { VPR ]

with probability 1 — (. Setting £ = mE directly yields Lemma . O
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Proof of Corollary[]. We will begin by demonstrating that Algorithm
satisfies the DP guarantee. This can be directly inferred from the proof
of Proposition (1, with minibatch gradients bounded by pg,/p/m. Subse-
quently, we will derive an upper bound on the excess population risk with

high probability:

Fp(5T) — Fp(5*)
T
< 12{ (16— 5P - ||ﬁt—5*||2>+wt-a*,wpwt_l)_vzpwt_l))}
g A
< A7, _ltz;(ﬁt — B, VLp(Bi—1) — VLp(Bi_1))
A’ 5| ety { Y/ Plog(0 )
S 7 T O loelC D ]

with probability at least 1 —(. The first inequality holds by Lemma[l] while
the second holds by Assumption (A2). The last inequality follows from the

Holder’s inequality and Lemma [3] O

S2.3 Proofs for Algorithm

Lemma 4 (Theorem 2 in |Wang et al. (2020))). Let X1, Xo,..., X, be i.i.d.
samples from some distribution ©. Assume that that Ex eo[X?] < 7 for

some known 7. Let v = /log((™") and s = \/ner/{log(¢™")log"*(67")}



for a given failure probability (. Then with probability at least 1 — (,

IA(D) — E[X]| < O \/Tlog1/2(5—1)log((—1>

ne

Lemma 5 (Lemma 7 in Holland (2019)). The estimator & defined in ([5.3))

as a function of the data (x1,...,x,)" € R" satisfies
#() - 3(@)| < Xle — 2|,
n

where the factor c, takes the form

cy =1=20(—/v) + \/%exp <—g>

and where ® is the cumulative distribution function for the standard normal

distribution.

Proof of Theorem[3. As the proof of Lemma [3| we apply the standard
strategy of covering to obtain the uniform upper bound of the error term
IVLp(8) — VLp(B)||. By triangle inequality, we decompose it into three

components:

IVLo(8) — VLp(B)|| < |[VLo(B) — VLp(B)|| + |[VLp(B) — VL (5)|

+IVLp(B) — VLo(B)|,

where § € {Bl, e 5N5} is any center of a &-net. Then we handle each

component separately.
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We first deal with the last term. By Assumption (A3),

IVLp(B) — VLp(B)|| < K15 — 8.

Regarding the first term, let N ~ N'(0, 021,), where o = 4s+/2plog(6-1)/(3me),

we have Vzp(ﬁ) ={(8) + N in Algorithm (line 6), so
IVLo(8) — VLo(B)| < [16(8) — €(B)| + 2| V|-

In accordance with the tail property of chi-squared distribution,

P [||N|| < 20{@+ log <%> H -,

In addition, Lemma [5] yields that

166~ 1) < Y- {21960 - Vel

<> {a IV (5) - m(é)\}

< p K318 - B,

and so
16(8) = LB < v/pe JKall8 = B
Therefore,
I To(3 : log (3T
IVEn(8) — VI < vy Kallg — B -+ Y2060 {@+ o (3¢ } .

To bound the second term, we apply Lemma [d] It follows that

6-1)log(¢1)

me

VL (8) - VL ()] < \/ rlog ™



for j € [p] and any fixed § as long as E[{V;¢(8;x,y)}*] < co. Hence,

P

me

IVLo(8) — VLo(B)] > \/ prlog'*(571) log<<—1>]

< zpzplwfj(ﬁ) _VL(B)| < \/Tlog1/2(51)1og(g1)]

me

<pC.

Let =3 (B) denote the closest center to any fixed /3. Thus,

IVEn(B) - VIn(B)] > WT log? (5 log (1)

me

occurs with probability no greater than (. Then

ZEEHVED(BW)) - VLD(B(ﬁ))“ = i%?foVE’D(Bk) - VLD(Bk)H

- \/p710g1/2(5‘1)10g(pNgC‘1)

me

Therefore, if we let

V:165\/2p10g(5—1){\/2_)+ log (%)}

3me

a uniform upper bound on ||V Lp(3) — VLp(8)]| is

sup||VLp () — VLp(B)|
BeB

7 . log'/?(5-1)1 -1
s;gg(ﬁcxmnﬁ—ﬁu+K1||/3—6||)+\/W og (97" log(pNe¢ ™)

me

+V

< max{ Ky, K2 }¢(\/pey + 1) + \/pT log'/%(6-1) log(pNe¢ 1) )

me
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with probability at least 1 — . Setting s = /mer/{log(¢™1) log"/4(671)}

and & = m~1/2 directly yield Theorem O

Proof of Corollary[d. Once the truncation step is performed, the robust
gradients in Algorithm [4| are bounded by 4s/2p/(3m). As a result, it is
easy to demonstrate that the privacy guarantee is met. The proof for the
utility guarantee is identical to that of Corollary [T but with the application

of the uniform bound from Theorem [3] O

S2.4 Explicit form of C(a,b) in |Catoni and Giulini (2017))

The correction term C(a,b) can be computed as follows. First, define

where ® denotes the cumulative distribution function for the standard nor-

mal distribution. With these elements, we can break the final quantity into



five terms:

b2 1
T4—%{F++F+E(V+E++VE)}7
b3
Ts = 2+ VHE — (24+VHEL.
5= Gyan (2H V) B = (24 VE) By

At last, we explicitly define

C(a,b):T1+T2+T3+T4+T5.
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