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This document contains supplementary material to the main text of the

article. Section S1 includes auxiliary results needed to prove the results in

the main text, which are proved in Section S2. In Section S3, we present an

additional simulation study where we compare our method to the differen-

tially private t-test proposed in Barrientos et al. (2019). Lastly, Section S4

presents the results of the test for the kurtosis of errors proposed in Peña

and Slate (2006), in the context of the simulation study reported in Section

4.1 of the main text.
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S1 Auxiliary results

First, we prove auxiliary propositions that are ancillary for proving the

results in the main text. All of them use theorems in Shaked and Shan-

thikumar (2007).

We use the notation Binomial(i, p) + Binomial(j, p) for the distribu-

tion of the sum of independent Binomial(i, p) and Binomial(j, p) random

variables, with the understanding that if the number of trials is zero, the

random variable is zero with probability one.

Definition 1. LetX and Y be discrete random variables with common sup-

port S, which is a subset of the integers. We say that X stochastically dom-

inates Y with respect to the likelihood ratio order if P(X = t)/P(Y = t) is

increasing in t for t ∈ S.

Proposition S1.1. Let Bi ∼ Binomial(n − i, 1 − p) + Binomial(i, p) with

1/2 < p < 1 for i ∈ {0, 1, ..., n} . For any {i, j} ⊂ {0, 1, ... , n} such that

j > i, Bj stochastically dominates Bi with respect to the likelihood ratio

ordering.

Proof. The result follows by an application of Theorem 1.C.9. in Shaked and

Shanthikumar (2007). To see this, let {i, j} ⊂ {0, 1, ... , n} such that j > i.

Let Ci, Cj ∼ Binomial(i, p) + Binomial(n − j, 1 − p), Ni ∼ Binomial(j −
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i, 1 − p), and Nj ∼ Binomial(j − i, p). We can write Bi = Ci + Ni and

Bj = Cj + Nj. Binomial random variables have log-concave probability

mass functions, Cj stochastically dominates Ci with respect to the likelihood

ratio ordering (they are equal in distribution), and Nj dominates Ni with

respect to the likelihood ratio ordering because p > 1/2 by assumption.

We can apply Theorem 1.C.9. in Shaked and Shanthikumar (2007) and the

result follows.

Proposition S1.2. Let 1/2 < p < 1 andBi ∼ Binomial(i, p)+Binomial(n−

i, 1 − p) for i ∈ {0, 1, ..., n}. For any {i, j} ⊂ {0, 1, ... , n} such that j > i

and x ∈ {0, 1, .... , n},

P(Bi = x)

P(Bi > x)
≥ P(Bj = x)

P(Bj > x)
.

Proof. This is a direct consequence of Proposition S1.1 and the fact that

stochastic domination according to the likelihood ratio order implies stochas-

tic domination according to the hazard ratio order (see e.g. Theorem 1.C.1.

Shaked and Shanthikumar (2007)).

Proposition S1.3. Let 1/2 < p < 1 and Bi ∼ Binomial(n − i, 1 − p) +

Binomial(i, p) and x ∈ {0, 1, ... , n}. Then, the ratio

rj =
P(Bi > x)

P(Bi−1 > x)

is decreasing in i.
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Proof. It suffices to show that for i ∈ {1, 2, ... , n− 1} and x ∈ {0, 1, ... , n},

P(Bi > x)

P(Bi−1 > x)
≥ P(Bi+1 > x)

P(Bi > x)
.

Let Ci+1 ∼ Binomial(i, p) + Binomial(n− i− 1, 1− p). Then,

P(Bi+1 > x)−P(Bi > x) = (2p− 1)P(Ci+1 = x)

P(Bi > x) = (1− p)P(Ci+1 > x− 1) + pP(Ci+1 > x).

Similarly, letting Ci ∼ Binomial(i− 1, p) + Binomial(n− i, 1− p),

P(Bi > x)−P(Bi−1 > x) = (2p− 1)P(Ci = x)

P(Bi−1 > x) = (1− p)P(Ci > x− 1) + pP(Ci > x).

Now,

P(Bi > x)

P(Bi−1 > x)
≥ P(Bi+1 > x)

P(Bi > x)
⇔ P(Bi−1 > x)

P(Bi > x)−P(Bi−1 > x)
≤ P(Bi > x)

P(Bi+1 > x)−P(Bi > x)
.

The inequality on the right-hand side is equivalent to

(1− p)
P(Ci > x− 1)

P(Ci = x)
+ p

P(Ci > x)

P(Ci = x)
≤ (1− p)

P(Ci+1 > x− 1)

P(Ci+1 = x)
+ p

P(Ci+1 > x)

P(Ci+1 = x)

Since Ci+1 stochastically dominates Ci according to the likelihood ratio

ordering, Proposition S1.2 implies that P(Ci > x)/P(Ci = x) ≤ P(Ci+1 >

x)/P(Ci+1 = x). It remains to show that

P(Ci > x− 1)

P(Ci = x)
≤ P(Ci+1 > x− 1)

P(Ci+1 = x)
.
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The inequality is true after substituting P(Cj > x − 1) = P(Cj > x) +

P(Cj = x) in both numerators and then applying Proposition S1.2.

Proposition S1.4. Let 1/2 < p < 1 and Bi ∼ Binomial(n − i, 1 − p) +

Binomial(i, p). Then, the ratio

rx =
P(Bi > x)

P(Bi−1 > x)

is increasing in x for x ∈ {0, 1, ... , n}.

Proof. Let i ∈ {0, 1, ..., n} and x ∈ {0, 1, ... n − 1}. It is enough to show

that rx ≤ rx+1. Now,

rx ≤ rx+1 ⇔
P(Bi > x)

P(Bi > x+ 1)
≤ P(Bi−1 > x)

P(Bi−1 > x+ 1)

⇔ P(Bi = x+ 1) +P(Bi > x+ 1)

P(Bi > x+ 1)
≤ P(Bi−1 = x+ 1) +P(Bi−1 > x+ 1)

P(Bi−1 > x+ 1)
,

which is equivalent to

P(Bi = x+ 1)

P(Bi > x+ 1)
≤ P(Bi−1 = x+ 1)

P(Bi−1 > x+ 1)
.

The inequality above is shown to be true in Proposition S1.2.

S2 Proofs of Propositions in main text

Proposition 1. Let ε > 0 and p = exp(ε)/[1 + exp(ε)]. Then, r(x) is

exactly ε-differentially private.
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Proof. This is a standard result. It follows directly from the definition of

differential privacy.

Proposition 2. The statistic dc = 1(T > c) is exactly ε-differentially

private with

ε = log

(
P(B1 > c∗)

P(B0 > c∗)

)
,

where c∗ = max(c, 2k−c) and Bi ∼ Binomial(i, p)+Binomial(2k+1−i, 1−p)

for i ∈ {0, 1}.

Proof. Let 1/2 < p < 1 and Bi ∼ Binomial(i, p)+Binomial(2k+1− i, 1−p)

for i ∈ {0, 1, ..., 2k+1}. Let ri = P(Bi > c) be the probability of rejecting

the null hypothesis given that
∑2k+1

j=1 xj = i. By the definition of differential

privacy,

exp(ε) = max
i∈{1, ... ,2k+1}

max

{
ri
ri−1

,
ri−1

ri
,
1− ri
1− ri−1

,
1− ri−1

1− ri

}
.

From Proposition S1.1, we know that ri > ri−1 (first order or “usual”

stochastic domination is implied by likelihood ratio domination, see e.g.

Theorem 1.C.1 in Shaked and Shanthikumar (2007)). Therefore,

max

{
ri
ri−1

,
ri−1

ri
,
1− ri
1− ri−1

,
1− ri−1

1− ri

}
= max

{
ri
ri−1

,
1− ri−1

1− ri

}
.

From Proposition S1.3, we know that ri/ri−1 is decreasing in i. This narrows

down our candidates for the maximum to

exp(ε) = max{r1/r0, (1− r2k)/(1− r2k+1)}.
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Note that

1− r2k+1 = 1−P(B2k+1 > t) = 1−P(B0 < 2k + 1− t) = P(B0 > 2k − t)

1− r2k = 1−P(B2k > t) = 1−P(B1 < 2k + 1− t) = P(B1 > 2k − t).

We can rewrite

exp(ε) = max

{
P(B1 > c)

P(B0 > c)
,
P(B1 > 2k − c)

P(B0 > 2k − c)

}
.

The result follows because Proposition S1.4 shows that the ratio P(B1 >

x)/P(B0 > x) is increasing in x.

Proposition 3. The statistic dc = 1(T > c) has the following properties:

1. For any fixed k and c, ε is increasing in p.

2. For any fixed p and c ≥ k, ε is decreasing in k.

3. For any fixed k and p, ε is minimized at c = k.

Proof. First, we show that for any fixed k and c, ε is increasing in p. We

do so by showing that 1/(exp(ε)− 1) is decreasing in p. We can write

1

exp(ε)− 1
=

P(B0 > c∗)

P(B1 > c∗)−P(B0 > c∗)
.

Let B ∼ Binomial(2k, 1− p). Then,

P(B1 > c∗)−P(B0 > c∗) = (2p− 1)P(B = c∗).
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Plugging in our new expression for P(B1 > c∗)−P(B0 > c∗), we obtain

1

exp(ε)− 1
=

P(B0 > c∗)

(2p− 1)P(B = c∗)
=

1− p

2p− 1

P (B > c∗ − 1)

P (B = c∗)
+

p

2p− 1

P (B > c∗)

P (B = c∗)
.

Rearranging terms,

1

exp(ε)− 1
=

1− p

2p− 1
+

1

2p− 1

P (B > c∗)

P (B = c∗)
.

The result follows because (1 − p)/(2p − 1) and 1/(2p − 1) are decreasing

in p for 1/2 < p < 1, and P (B > c∗)/P (B = c∗) is also decreasing in

p. The latter is true because if p increases, B is stochastically decreasing

according to the likelihood ratio and hazard ratio order (see e.g. Example

1.C.51. in Shaked and Shanthikumar (2007)), which in turn implies that

P (B > c∗)/P (B = c∗) is decreasing, as required.

Now, we show that for any fixed p and c ≥ k, ε is decreasing in

k. Since c ≥ k, we know by Proposition 1 that c∗ = c and exp(ε) =

P(B1 > c)/P(B0 > c). Let B ∼ Binomial(2k, 1 − p). Then, the ratio can

be rewritten as

P(B1 > c)

P(B0 > c)
= 1 +

2p− 1

1− p+ P(B>c)
P(B=c)

Therefore, ε is decreasing in k if and only if P(B = c)/P(B > c) is decreas-

ing in k. The result follows because B is stochastically increasing in k with

respect to the likelihood ratio order, so the ratio P(B = c)/P(B > c) is de-

creasing in k (again, this is implied by the fact that stochastic domination
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with respect to the likelihood ratio order implies domination with respect

to the hazard ratio order).

Finally, we show that for any fixed k and p, ε is minimized at c = k.

From Proposition S1.4, we know that ε is increasing in c∗. Since c∗ =

max(c, 2k − c), it follows that for fixed k, and p, ε attains its minimum at

c = k, as required.

Proposition 4. The statistic d = 1(T > k) has the following properties:

1. For any fixed p,

lim
k→∞

ε = log

(
1 +

(2p− 1)2

2p(1− p)

)
> 0.

2. A necessary condition on p for achieving ε differential privacy is

p ≤ 1

2

(
1 +

√
exp(2ε)− 1

1 + exp(ε)

)
.

A sufficient condition on p for achieving ε differential privacy is

p ≤ exp(ε)

1 + exp(ε)
.

Proof. For proving the results in this proposition, it will be useful to rewrite

exp(ε) in terms of B ∼ Binomial(2k, 1− p).

LetB0 ∼ Binomial(2k+1, 1−p), andB1 ∼ Binomial(1, p)+Binomial(2k, 1−
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p). By Proposition 1, we know that

exp(ε) =
P(B1 > k)

P(B0 > k)
.

Let B ∼ Binomial(2k, 1− p). The ratio can be rewritten as

P(B1 > k)

P(B0 > k)
= 1 +

2p− 1

1− p+ P(B>k)
P(B=k)

. (S2.1)

This shows that exp(ε) depends on k only through P(B > k)/P(B = k),

which can be expressed as

P(B > k)

P(B = k)
=

k∑
i=1

P (B = k + i)

P (B = k)
=

k∑
i=1

{
i∏

j=1

k − j + 1

k + j

}(
1− p

p

)i

. (S2.2)

First, we find the the limit of ε as k grows for fixed 1/2 < p < 1.

The product term in Equation (S2.2) can be bounded as follows:(
k − i+ 1

k + i

)i

≤
i∏

j=1

k − j + 1

k + j
≤ 1.

Then,

lim
k→∞

P(B > k)

P(B = k)
≤

∞∑
i=1

(
p

1− p

)i

=
1− p

2p− 1
.

Consider the series

lim
k→∞

k∑
i=1

(
k − i+ 1

k + i

)i(
1− p

p

)i

.

All the terms are positive and the summand is increasing in k, so we can

apply the monotone convergence theorem for series:

lim
k→∞

k∑
i=1

(
k − i+ 1

k + i

)i(
1− p

p

)i

= lim
k→∞

k∑
i=1

(
1− p

p

)i

=
1− p

2p− 1
.
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Therefore, we conclude that

lim
k→∞

P(B > k)

P(B = k)
=

1− p

2p− 1
.

Plugging the limit into Equation (S2.1), we obtain:

P(B1 > k)

P(B0 > k)
= 1 +

(2p− 1)2

2p(1− p)
,

as required.

The second part of the proposition is a direct consequence of previous

results. The sufficient condition corresponds to the case k = 0, and it is

sufficient because ε is decreasing in k, all else being equal. The necessary

condition can be found by solving for p in the limiting expression of ε when

k grows to infinity.

Proposition 5. For any given s ∈ {0, 1, ... , k},

P(d ̸= d̃ |
∑2k+1

i=1 xi = s) = P(d ̸= d̃ |
∑2k+1

i=1 xi = 2k + 1− s).

Proof. The result can be proved by letting s ∈ {0, 1, ... , k} and noting that

P(Bs > k) = P (B2k+1−s ≤ k) for Bs ∼ Binomial(s, p) + Binomial(2k + 1−

s, 1− p) and B2k+1−s ∼ Binomial(2k + 1− s, p) + Binomial(s, 1− p).

Proposition 6. The probability P(d ̸= d̃ |
∑2k+1

i=1 xi = s) has the following

properties:
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1. For any fixed k and p, P(d ̸= d̃ |
∑2k+1

i=1 xi = s) is decreasing in s if

s > k and increasing in s if s ≤ k.

2. For any fixed p and s, P(d ̸= d̃ |
∑2k+1

i=1 xi = s) is decreasing in k if

s ≤ k and increasing in k if s > k.

3. For any fixed k and s, P(d ̸= d̃ |
∑2k+1

i=1 xi = s) = 1/2 if p = 1/2 and

P(d ̸= d̃ |
∑2k+1

i=1 xi = s) = 0 if p = 1.

Proof. We prove the three statements separately.

1. If s > k, the probability of disagreement is P(Bs ≤ k), whereas if

s ≤ k, it is P(Bs > k). The result follows because, by Proposition S1.1, Bs

is stochastically increasing in s.

2. If s ≤ k, then P(d ̸= d̃) = P(Bs > k), which is decreasing in k. To

see this, let k be fixed and increase it by one, defining k∗ = k + 1. Then,

we can define B∗
s ∼ Bs + Bernoulli(1− p).

P(B∗
s > k∗) = (1− p)P(Bs > k) + pP(Bs > k + 1),

which is smaller than P(Bs > k) because p ≥ 1/2 and P(Bs > k + 1) <

P(Bs > k). If s > k, then P(d ̸= d) = P(Bs ≤ k), and a similar argument

to the one we just used shows that it is increasing in k.

3. This proof of this part is direct given the expression of P(d ̸= d̃ |∑2k+1
i=1 xi = s).
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Proposition 7. The probability that d rejects H0 has the following prop-

erties:

1. For any fixed k and p, the probability that d rejects H0 is decreasing

in γ0.

2. For any fixed γ0 and k, the probability that d rejects H0 is decreasing

in p if γ0 < 1/2 and increasing in p if γ0 ≥ 1/2.

3. Let p > 1/2 be fixed. If γ0 > 1/2, then the probability that d rejects

H0 goes to 1 as k → ∞. Alternatively, if γ0 < 1/2, then the probability

that d rejects H0 goes to 0 as k → ∞.

Proof. The probability that d rejects H0 is P(T > k) for T ∼ Binomial(2k+

1, pγ0 + (1− p)(1− γ0)). We prove the three statements separately.

1. Since p ≥ 1/2, P(T > k) is increasing in γ0.

2. This is similar to part 1. If γ0 < 1/2, then pγ0 + (1 − p)(1 − γ0) is

decreasing in p. If γ0 ≥ 1/2, then it is increasing in p.

3. If p > 1/2 and γ0 > 1/2, then pγ0 + (1 − p)(1 − γ0) > 1/2 and

P(T > k) goes to one as k goes to infinity. Similarly, if p > 1/2 and

γ0 < 1/2, then pγ0 + (1 − p)(1 − γ0) < 1/2 and P(T > k) goes to zero as

k goes to infinity. One can find these limits using standard tail bounds for
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the binomial distribution.

Proposition 8. For any ε > 0, the minimum type I error α attainable by

d goes to zero as k goes to infinity.

Proof. The minimum type I error is achieved when α0 = 0. The type I error

of d is then P(T > k) for T ∼ Binomial(2k+1, 1− p), where p > 1/2 is set

given ε and k. The probability goes to zero as k goes to infinity because

p > 1/2.

S3 Differentially private t-test

In this section, we report the result of a simulation study where we compare

the performance of the subsampled-and-aggregated randomized response

mechanism (labeled “SARR” in the figures) to the differentially private t-

test for regression proposed in Barrientos et al. (2019) (labeled “DP t”) .

This is a specific test that is only applicable to this task. We also compare

our method to the test based on the sum of binary variables (labeled “Sum”)

and the average p-value (labeled ”Avg p-value”) that we explained in the

main text.

The data are simulated from the normal linear model y = Xβ + ε
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where β = [β1, β2, β3, β4, β5]
′ = [1, 1, 1, 1, 1]′. We test H0 : β1 = 0 against

H1 = β1 ̸= 0. For the method in Barrientos et al. (2019), we set the number

of subsets to 25 and the truncation parameter to a = 2, following what was

proposed in Barrientos et al. (2019). The number of subgroups for the other

methods based on data-splitting is set using the strategy proposed in Section

3.3 of the main text with α0,min = α. We consider α ∈ {0.005, 0.1, 0.05, 0.1},

ε ∈ {0.5, 0.75, 1, 1.25, 1.5} and a range of sample sizes n that runs up to

105. For each scenario, we perform 104 simulations.

The test proposed in Barrientos et al. (2019) outperforms the general-

purpose algorithms in all cases except when ε = 0.5. The binarized sum

and the average p-value are best in this case. The randomized response

mechanism performs best when α = 0.005 and ε ∈ {1.25, 1.5}.

S4 Goodness-of-fit: Kurtosis

Figure 2 displays the result of the test for kurtosis that is part of Section

4.1 of the main text. Like we observed in the other scenarios, randomized

response performs best when α = 0.005 and ε is greater or equal to 1. The

sum performs best for high α and low ε. The average p-value is best when

both α and ε are small.
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Figure 1: Differentially private t-test: Average power of t-tests for regression for different

combinations of α and ε as a function of the total sample size n.
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Figure 2: Goodness-of-fit tests: Average power of tests for kurtosis for different combi-

nations of α and ε.
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