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In this supplementary material, we provide the explicit forms of cate-

gorical probabilities and their derivatives, prove the theorems in the paper,

and present some additional simulation results.

S1. Explicit Forms of Categorical Probabilities and their Deriva-

tives

This section is dedicated to presenting the explicit forms of πij(β)’s and

their derivatives, which are important parts in searching the maximum

likelihood estimator and in the theoretical proofs. The categorical proba-

bility πij(β) for Models (2.1)-(2.4) can be calculated directly, and the first

derivative of πij(β) with respect to β can be gotten through

∂πij(β)

∂β
= πij(β)

∂ log πij(β)

∂β
, (S1.1)
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as long as ∂ log πij(β)/∂β is obtained. Denote the cumulative categorical

probability by ξij(β), i.e., ξi0(β) = 0, ξij(β) = πi1(β) + · · · + πij(β), j =

1, . . . , J . By direct calculations, the explicit forms of πij(β) and ∂ log πij(β)/∂β

are presented below for Models (2.1)-(2.4), respectively.

(i) Model (2.1).

The categorical probability is

πij(β) =


exp{xT

i(0)
β0+xT

i(j)
βj}

1+
∑J−1

k=1 exp{xT
i(0)
β0+xT

i(k)
βk}

j = 1, . . . , J − 1,

1

1+
∑J−1

k=1 exp{xT
i(0)
β0+xT

i(k)
βk}

j = J.

Recall β = (βT0 ,β
T
1 , . . . ,β

T
J−1)

T , the first derivative of log πij(β) with

respect to β0 is

∂ log πij(β)

∂β0

=


πiJ(β)xi(0) j 6= J,

(πiJ(β)− 1)xi(0) j = J,

and the first derivative of log πij(β) with respect to βk, k = 1, . . . , J−

1, is

∂ log πij(β)

∂βk
=


(1− πik(β))xi(k) k = j,

−πik(β)xi(k) k 6= j.

(ii) Model (2.2).
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The categorical probability is

πij(β) =



exp{xT
i(0)
β0+xT

i(1)
β1}

1+exp{xT
i(0)
β0+xT

i(1)
β1}

j = 1,

exp{xT
i(0)
β0+xT

i(j)
βj}

1+exp{xT
i(0)
β0+xT

i(j)
βj}
−

exp{xT
i(0)
β0+xT

i(j−1)
βj−1}

1+exp{xT
i(0)
β0+xT

i(j−1)
βj−1}

j = 2, . . . , J − 1,

1
1+exp{xT

i(0)
β0+xT

i(J−1)
βJ−1}

j = J.

The first derivative of log πij(β) with respect to β0 is

∂ log πij(β)

∂β0

= (1− ξij(β)− ξi,j−1(β))xi(0),

and the first derivative of log πij(β) with respect to βk, k = 1, . . . , J−

1, is

∂ log πij(β)

∂βk
=


− ξik(β)(1−ξik(β))

πi,k+1(β)
xi(k) k = j − 1,

ξik(β)(1−ξik(β))
πik(β)

xi(k) k = j.

(iii) Model (2.3).

The categorical probability is

πij(β) =


∏J−1

k=j exp{xT
i(0)
β0+xT

i(k)
βk}

1+
∑J−1

l=1

(∏J−1
k=l exp{xT

i(0)
β0+xT

i(k)
βk}

) j = 1, . . . , J − 1,

1

1+
∑J−1

l=1

(∏J−1
k=l exp{xT

i(0)
β0+xT

i(k)
βk}

) j = J.

The first derivative of log πij(β) with respect to β0 is

∂ log πij(β)

∂β0

=

(
J − j −

J−1∑
l=1

ξil(β)

)
xi(0),

and the first derivative of log πij(β) with respect to βk, k = 1, . . . , J−

3



1, is

∂ log πij(β)

∂βk
=


−ξik(β)xi(k) k < j,

(1− ξik(β))xi(k) k ≥ j.

(iv) Model (2.4).

The categorical probability is

πij(β) =


exp{xT

i(0)
β0+xT

i(j)
βj}∏j

k=1

(
1+exp{xT

i(0)
β0+xT

i(k)
βk}

) j = 1, . . . , J − 1,

1∏J−1
k=1

(
1+exp{xT

i(0)
β0+xT

i(k)
βk}

) j = J.

The first derivative of log πij(β) with respect to β0 is

∂ log πij(β)

∂β0

=

(
1−

j∑
l=1

πil(β)

1− ξi,l−1(β)

)
xi(0),

and the first derivative of log πij(β) with respect to βk, k = 1, . . . , J−

1, is

∂ log πij(β)

∂βk
=


− πik(β)

1−ξi,k−1(β)
xi(k) k < j,

1−ξik(β)
1−ξi,k−1(β)

xi(k) k = j,

0 k > j.

Note that all the first order derivatives contain the categorical probabil-

ities and the predictors only. Recall that the first order derivatives of πij(β)

can be obtained through Equation (S1.1). Thus, one can easily calculate

the corresponding second order derivatives. For Model (2.1), we have

∂2 log πij(β)

∂β0∂βT0
= πiJ(β)(πiJ(β)− 1)xi(0)x

T
i(0),
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∂2 log πij(β)

∂β0∂βTk
= −πiJ(β)πik(β)xi(0)x

T
i(k),

∂2 log πij(β)

∂βk∂βTl
=


−πik(β)(1− πik(β))xi(k)x

T
i(k) l = k,

πik(β)πil(β)xi(k)x
T
i(l) l 6= k,

where j = 1, . . . , J, k = 1, . . . , J − 1, l = 1, . . . , J − 1. The second order

derivatives of log πij(β) in Models (2.2)-(2.4) are similar to calculate and

thus we omit it for simplicity.

S2. Theoretical Proofs

To proof Theorem 1, we start with introducing the following two lemmas.

Lemma S1. For Models (2.1)-(2.4), there exist two constant C1, C2 such

that

max
1≤j≤J

| log πij(β)| ≤ C1‖xi‖‖β‖+ C2,

for any i = 1, . . . , N.

Proof of Lemma S1. We prove this lemma for the four models separately.

Utilizing the facts that ‖xi(k)‖ ≤ ‖xi‖, ‖βk‖ ≤ ‖β‖, for i = 1, . . . , N, k =

0, . . . , J − 1, and log(1 + x) < 1 + log x, for all x ≥ 1, we have the following

conclusions.

(i) Model (2.1).
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Directly calculation yields

| log πij(β)|

≤ max
1≤j≤J−1

{|xTi(0)β0 + xTi(j)βj|}+ log

(
1 +

J−1∑
j=1

exp{xTi(0)β0 + xTi(j)βj}

)

≤2‖xi‖‖β‖+ log (1 + (J − 1) exp{2‖xi‖‖β‖})

≤2‖xi‖‖β‖+ 1 + log(J − 1) + 2‖xi‖‖β‖

=4‖xi‖‖β‖+ 1 + log(J − 1).

(ii) Model (2.2).

The cases j = 1 and j = J are similar to the cases in Model (2.1).

When j = 2, . . . , J − 1, by the mean-value theorem, there exists ξ ∈

(xTi(0)β0 + xTi(j−1)βj−1,x
T
i(0)β0 + xTi(j)βj) such that

πij(β) =
eξ

(1 + eξ)2
(
xTi(j)βj − xTi(j−1)βj−1

)
.

Since ∣∣∣∣∣∣∣log
exp{xTi(0)β0 + xTi(k)βk}(

1 + exp{xTi(0)β0 + xTi(k)βk}
)2
∣∣∣∣∣∣∣

≤|xTi(0)β0 + xTi(k)βk|+ 2 log
(
1 + exp{xTi(0)β0 + xTi(k)βk}

)
≤2‖xi‖‖β‖+ 2 log(1 + exp{2‖xi‖‖β‖})

≤2‖xi‖‖β‖+ 2(1 + 2‖xi‖‖β‖)
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=6‖xi‖‖β‖+ 2,

for k = j−1, j. Since the maximum point of the function | log(et/(1+

et)2)| with t belonging to a closed interval is the endpoint, and ξ ∈

(xTi(0)β0 + xTi(j−1)βj−1,x
T
i(0)β0 + xTi(j)βj), then

∣∣∣∣log
eξ

(1 + eξ)2

∣∣∣∣ ≤ 6‖xi‖‖β‖+ 2.

Combining Assumption 2, we have

| log πij(β)| ≤ 6‖xi‖‖β‖+ 2 + | log c0|.

(iii) Model (2.3).

Simple calculation yields

| log πij(β)|

≤

∣∣∣∣∣
J−1∑
k=j

(
xTi(0)β0 + xTi(k)βk

)∣∣∣∣∣+ log

[
1 +

J−1∑
j=1

(
J−1∏
k=j

exp{xTi(0)β0 + xTi(k)βk}

)]

≤2(J − 1)‖xi‖‖β‖+ log (1 + (J − 1) exp{2(J − 1)‖xi‖‖β‖})

≤2(J − 1)‖xi‖‖β‖+ 1 + log(J − 1) + 2(J − 1)‖xi‖‖β‖

=4(J − 1)‖xi‖‖β‖+ 1 + log(J − 1).

(iv) Model (2.4).
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We have

| log πij(β)|

≤ max
1≤j≤J−1

∣∣xTi(0)β0 + xTi(j)βj
∣∣+ log

[
J−1∏
k=1

(
1 + exp{xTi(0)β0 + xTi(k)βk}

)]

≤2‖xi‖‖β‖+ (J − 1) log(1 + exp{2‖xi‖‖β‖})

≤2‖xi‖‖β‖+ (J − 1) (1 + 2‖xi‖‖β‖)

=2J‖xi‖‖β‖+ J − 1.

Combining the four cases, this lemma has been proved.

Lemma S2. For Models (2.1)-(2.4), there exists a constant C, such that∥∥∥∥∂ log πij(β)

∂β

∥∥∥∥ ≤ C‖xi‖,∥∥∥∥∂2 log πij(β)

∂β∂βT

∥∥∥∥
F

≤ C‖xi‖2,∥∥∥∥∂3 log πij(β)

∂β̄l∂β∂βT

∥∥∥∥
F

≤ C‖xi‖3,

for i = 1, . . . , N, j = 1, . . . , J , l = 1, . . . , d, and β̄l is the lth item of β,

where ‖ · ‖F denotes the Frobenius norm of the corresponding matrix.

Proof of Lemma S2. As illustrated in Section S1, it is easily to calculate the

second and third order derivatives of log πij(β) with respect to β through

the explicit forms of πij(β) and the first order derivatives of log πij(β), with

Equation (S1.1). Now we prove this lemma for the four models separately.
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(i) Model (2.1).

By the explicit forms of the first order and second order derivatives in

Section S1, we know that∥∥∥∥∂ log πij(β)

∂β

∥∥∥∥ ≤ J−1∑
k=0

‖xi(k)‖ ≤ J‖xi‖,

and ∥∥∥∥∂2 log πij(β)

∂β∂βT

∥∥∥∥
F

≤
J−1∑
k=0

J−1∑
l=0

‖xi(k)‖‖xi(l)‖ ≤ J2‖xi‖.

Note that the first order derivative of πij(β) with respect to β0 is

∂πij(β)

∂β0

=


πij(β)πiJ(β)xi(0) j 6= J,

πiJ(β)(πiJ(β)− 1)xi(0) j = J,

and the first order derivative of πij(β) with respect to βk, k = 1, . . . , J−

1, is

∂πij(β)

∂βk
=


πij(β)(1− πik(β))xi(k) k = j,

−πij(β)πik(β)xi(k) k 6= j.

Thus, we have ∥∥∥∥∂πij(β)

∂βk

∥∥∥∥ ≤ ‖xi(k)‖,
for k = 0, 1, . . . , J−1. Combining with the explicit form of ∂2 log πij(β)/∂β∂βT ,

it follows that ∥∥∥∥∂3 log πij(β)

∂β̄l∂β∂βT

∥∥∥∥
F

≤ J2‖xi‖3,

for any l = 1, . . . , d.
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(ii) Model (2.2).

The cases j = 1 and j = J are similar to the case in Model (2.1) and

we omit it for simplicity. For j = 2, . . . , J − 1, we have

log πij(β)

= log

(
exp{xTi(0)β0 + xTi(j)βj}

1 + exp{xTi(0)β0 + xTi(j)βj}
−

exp{xTi(0)β0 + xTi(j−1)βj−1}
1 + exp{xTi(0)β0 + xTi(j−1)βj−1}

)

=(xTi(0)β0 + xTi(j−1)βj−1) + log
(
exp{xTi(j)βj − xTi(j−1)βj−1} − 1

)
− log

(
1 + exp{xTi(0)β0 + xTi(j)βj}

)
− log

(
1 + exp{xTi(0)β0 + xTi(j−1)βj−1}

)
.

The first order derivative of log πij(β) with respect to β0 is(
1−

exp{xTi(0)β0 + xTi(j)βj}
1 + exp{xTi(0)β0 + xTi(j)βj}

−
exp{xTi(0)β0 + xTi(j−1)βj−1}

1 + exp{xTi(0)β0 + xTi(j−1)βj−1}

)
xi(0),

which implies ‖∂ log πij(β)/∂β0‖ ≤ 2‖xi‖. Since the first and second

order derivatives of et/(1+et) with respect to t are bounded by 1, thus

we have ‖∂2 log πij(β)/∂β0∂β
T
k ‖F ≤ 2‖xi‖2, ‖∂3 log πij(β)/∂β̄l∂β0∂β

T
k ‖F ≤

2‖xi‖3, for k = 0, . . . , J − 1, l = 1, . . . , p.

Now we turns to consider the first order derivative of log πij(β) with

respect to βj (the case βj−1 is similar), i.e.,(
exp{xTi(j)βj − xTi(j−1)βj−1}

exp{xTi(j)βj − xTi(j−1)βj−1} − 1
−

exp{xTi(0)β0 + xTi(j)βj}
1 + exp{xTi(0)β0 + xTi(j)βj}

)
xi(j).

By Assumption 2, xTi(j)βj − xTi(j−1)βj−1 > c0. Since the function
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et/(et − 1), et/(1 + et), and their first, second order derivatives are

all bounded with t ∈ (c0,+∞), this lemma holds.

(iii) Model (2.3).

The first order derivative of πij(β) with respect to β0 is

∂πij(β)

∂β0

= πij(β)

(
J − j +

J−1∑
l=1

ξil(β)

)
xi(0),

and the first order derivative of πij(β) with respect to βk, k = 1, . . . , J−

1, is

∂πij(β)

∂βk
=


−πij(β)ξik(β)xi(k) k < j,

πij(β)(1− ξik(β))xi(k) k ≥ j,

which implies that ∥∥∥∥∂πij(β)

∂βk

∥∥∥∥ ≤ J‖xi‖,

for k = 0, 1, . . . , J − 1. By using the same method in case (1), this

lemma holds.

(iv) Model (2.4).

The first order derivative of log πij(β) with respect to β0 is

∂ log πij(β)

∂β0

=


(

1−
∑j

l=1

exp{xT
i(0)
β0+xT

i(l)
βl}

1+exp{xT
i(0)

β0+xT
i(l)
βl}

)
xi(0) j < J,

−
(∑J−1

l=1

exp{xT
i(0)

β0+xT
i(l)
βl}

1+exp{xT
i(0)

β0+xT
i(l)
βl}

)
xi(0) j = J,
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and the first order derivative of log πij(β) with respect to βk, k =

1, . . . , J − 1, is

∂ log πij(β)

∂βk
=


−

exp{xT
i(0)
β0+xT

i(k)
βk}

1+exp{xT
i(0)

β0+xT
i(k)

βk}
xi(k) k < j,

1
1+exp{xT

i(0)
β0+xT

i(k)
βk}
xi(k) k = j,

0 k > j.

Since the first order and second order derivatives of functions et/(1+et)

with respect to t are bounded, this lemma holds.

Combining the four cases above, we have proved this lemma.

Now we turn to prove Theorem 1.

Proofs of Theorem 1. Recall that `(β) is the log-likelihood function on the

full dataset. For the subsample, the weighted log-likelihood function (2.6)

can be written as

`∗(β) =
N∑
i=1

Ri

pi
δTi logπi(β),

whereRi is the Bernoulli variable with probability pi, δi = (I(yi = 1), . . . , I(yi = J))T ,

and πi(β) = (πi1(β), . . . ,πiJ(β))T .

Direct calculation shows that,

E

(
1

N
`∗(β)

∣∣∣∣FN) =
1

N
`(β),

Var

(
1

N
`∗(β)

∣∣∣∣FN) =
1

N2

N∑
i=1

(
1

pi
− 1

)(
δTi logπi(β)

)2
12



≤ 1

N2

N∑
i=1

(
δTi logπi(β)

)2
pi

≤
(

max
i=1,...,N

1

Npi

) N∑
i=1

(
δTi logπi(β)

)2
N

.

By Lemma S1 and Assumptions 4, 5, we have

Var

(
1

N
`∗(β)

∣∣∣∣FN) = OP (n−1).

Thus, as n → ∞, `∗(β) − `(β) → 0 in conditional probability given FN

for all β. Note that the parameter space is compact, β̂sub and β̂full are

the unique global maximums of the continuous concave functions `∗(β) and

`(β), respectively. Thus, from Theorem 5.9 and its remark in Van der Vaart

(1998), we obtain that

‖β̂sub − β̂full‖ = oP |FN
(1). (S2.2)

Using Taylor’s Theorem (Ferguson, 1996),

0 = ˙̀∗
k(β̂sub) = ˙̀∗

k(β̂full) +
∂ ˙̀∗

k(β̂full)

∂βT
(β̂sub − β̂full) +Rk,

where ˙̀∗
k(·) is the partial derivative of `∗(·) with respect to the kth item of

the parameter vector β, and

Rk =
(
β̂sub − β̂full

)T ∫ 1

0

∫ 1

0

∂2 ˙̀∗
k(β̂full + uv(β̂sub − β̂full))

∂β∂βT
vdudv

(
β̂sub − β̂full

)
.

By Lemma S2, we have∥∥∥∥∥ 1

N

∂ ˙̀∗
k(β)

∂β∂βT

∥∥∥∥∥ ≤ 1

N

N∑
i=1

Ri

pi
C‖xi‖3,
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where C is a constant. By Markov inequality,

P

(
1

N

N∑
i=1

Ri

pi
C‖xi‖3 ≥ τ

∣∣∣∣∣FN
)
≤ C

Nτ

N∑
i=1

E

(
Ri‖xi‖3

pi

∣∣∣∣FN)

=
C

Nτ

N∑
i=1

‖xi‖3

→ 0,

as τ →∞. Thus

1

N
sup
u,v

∥∥∥∥∥∂2 ˙̀∗
k(β̂full + uv(β̂sub − β̂full))

∂β∂βT

∥∥∥∥∥ = OP |FN
(1),

and then

1

N
Rk = OP |FN

(
‖β̂sub − β̂full‖2

)
.

Denote

M∗
N(β̂full) =

1

N

∂2`∗(β̂full)

∂β∂βT
,

and hence,

β̂sub − β̂full = −M∗−1
N (β̂full)

(
1

N

∂`∗(β̂full)

∂β
+OP |FN

(
‖β̂sub − β̂full‖2

))
.

(S2.3)

Direct calculation yields

E(M∗
N(β̂full)|FN) = MN(β̂full).

For any component M
∗(j1j2)
N (β̂full) of M∗

N(β̂full), where 1 ≤ j1, j2 ≤ d,

Var
(
M
∗(j1j2)
N (β̂full)|FN

)
14



=
N∑
i=1

pi(1− pi)
p2i

 1

N

J∑
j=1

I(yi = j)

(
∂2 log πij(β̂full)

∂β∂βT

)(j1j2)
2

≤
N∑
i=1

1

pi

 1

N

J∑
j=1

I(yi = j)

(
∂2 log πij(β̂full)

∂β∂βT

)(j1j2)
2

≤
(

max
i=1,...,N

1

Npi

)
1

N

N∑
i=1

 J∑
j=1

I(yi = j)

(
∂2 log πij(β̂full)

∂β∂βT

)(j1j2)
2

≤
(

max
i=1,...,N

1

Npi

)
1

N

N∑
i=1

C2‖xi‖4.

Combined with Markov’s inequality and Assumption 4, 5, we have that

M∗
N(β̂full)−MN(β̂full) = OP |FN

(n−1/2). (S2.4)

Note that

E

(
1

N

∂`∗(β̂full)

∂β

∣∣∣∣∣FN
)

=
1

N

∂`(β̂full)

∂β
= 0, (S2.5)

and

Var

(
1

N

∂`∗(β̂full)

∂β

∣∣∣∣∣FN
)

=
1

N2

N∑
i=1

1− pi
pi

(
∂ logπi(β̂full)

∂βT

)T

δiδ
T
i

(
∂ logπi(β̂full)

∂βT

)
,

≤
(

max
i=1,...,N

1

Npi

)
1

N

N∑
i=1

(
∂ logπi(β̂full)

∂βT

)T

δiδ
T
i

(
∂ logπi(β̂full)

∂βT

)
,

(S2.6)

whose elements are bounded by(
max

i=1,...,N

1

Npi

)
1

N

N∑
i=1

C2‖xi‖2 = OP (n−1).
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By Markov’s inequality, we know that

1

N

∂`∗(β̂full)

∂β
= OP |FN

(n−1/2). (S2.7)

Note that Equation (S2.4) indicates that M∗−1
N (β̂full) = OP |FN

(1). Com-

bining this with Equations (S2.2), (S2.3) and (S2.7),we have

β̂sub − β̂full = OP |FN
(n−1/2) + oP |FN

(‖β̂sub − β̂full‖) = OP |FN
(n−1/2).

(S2.8)

Denote

ηi =
Ri

Npi

(
∂ logπi(β̂full)

∂βT

)T

δi, i = 1, . . . , N.

Then

1

N

∂`∗(β̂full)

∂β
=

N∑
i=1

ηi.

For any ε > 0,

N∑
i=1

E
(
‖ηi‖2I(‖ηi‖ > ε)

∣∣FN)
≤

N∑
i=1

1

ε
E
(
‖ηi‖3I(‖ηi‖ > ε)

∣∣FN)
≤

N∑
i=1

1

ε
E
(
‖ηi‖3

∣∣FN)
=

N∑
i=1

1

ε

1

N3p2i

∥∥∥∥∥∥
(
∂ logπi(β̂full)

∂βT

)T

δi

∥∥∥∥∥∥
3

≤1

ε

(
max

i=1,...,N

1

(Npi)2

)
C3

N

N∑
i=1

‖xi‖3

16



=oP (1),

by Assumption 4 and Lemma S2. By Equations (S2.5), (S2.6), the Lindeberg-

Feller central limit theorem (see Van der Vaart, 1998, Proposition 2.27),

conditional on FN in probability,

1

N
V
−1/2
Nc (β̂full)

∂`∗(β̂full)

∂β
→ N(0, Id),

where

VNc(β̂full) =
1

N2

N∑
i=1

1− pi
pi

(
∂ logπi(β̂full)

∂βT

)T

δiδ
T
i

(
∂ logπi(β̂full)

∂βT

)
.

Equations (S2.3), (S2.8) imply

β̂sub − β̂full = − 1

N
M∗−1

N (β̂full) ˙̀∗(β̂full) +OP |FN
(n−1). (S2.9)

From Equation (S2.4),

M∗−1
N (β̂full)−M−1

N (β̂full)

=−M−1
N (β̂full)(M

∗
N(β̂full)−MN(β̂full))M

∗−1
N (β̂full)

=OP |FN
(n−1/2).

(S2.10)

Based on Assumptions 3-5,

V = M−1
N (β̂full)VNc(β̂full)M

−1
N (β̂full) = OP (n−1).

Combining with Equations (S2.9), (S2.10), it follows that

V −1/2(β̂sub − β̂full)

17



=− V −1/2M∗−1
N (β̂full)

1

N

∂`∗(β̂full)

∂β
+OP |FN

(n−1/2)

=− V −1/2M−1
N (β̂full)

1

N

∂`∗(β̂full)

∂β
− V −1/2(M∗−1

N (β̂full)

−M−1
N (β̂full))

1

N

∂`∗(β̂full)

∂β
+OP |FN

(n−1/2)

=− V −1/2M−1
N (β̂full)V

1/2
Nc (β̂full)V

−1/2
Nc (β̂full)

1

N

∂`∗(β̂full)

∂β
+OP |FN

(n−1/2).

Theorem 1 holds by Slutsky’s Theorem (Ferguson, 1996) and the fact that

V −1/2M−1
N (β̂full)V

1/2
Nc (β̂full)(V

−1/2M−1
N (β̂full)V

1/2
Nc (β̂full))

T = Id.

Proof of Theorem 2. In order to minimize the AMSE, i.e., tr(V ), it is suf-

ficient to solve the following optimization problem:

min
N∑
i=1

1

pi

∥∥∥M−1
N (β̂full)ui(β̂full)

∥∥∥2 ,
s.t.

N∑
i=1

pi = n, 0 < pi ≤ 1, i = 1, . . . , N.

This problem is essentially the same with the optimization problem (A.29)

in Ai et al. (2021), therefore we omit the rest proofs for simplicity.

The following lemma is needed to proof Theorem 3.

Lemma S3. (Achlioptas, 2003, Theorem 1.1) Let z1, . . . ,zN be an arbitrary

set of points, where zi ∈ Rd, T3 ∈ Rr3×d be a JLT, ν0, β > 0. If r3 satisfies

r3 ≥
4 + 2β

ν20/2− ν30/3
log(N + 1),

18



with probability at least 1− (N + 1)−β,

(1− ν0)‖zi‖2 ≤ ‖T3zi‖2 ≤ (1 + ν0)‖zi‖2.

Proof of Theorem 3. By the definition of T2 and M̂N(β̂full), we know that

M̂N(β̂full) =
1

r2

N∑
i=1

(
R̃i

J∑
j=1

I(yi = j)
∂ log πij(β̂full)

∂ββT

)
,

where R̃i is the number of times that the ith row of
√
N/r2IN is selected,

(R̃1, . . . , R̃N) = Multinomial(r2; 1/N, . . . , 1/N). Directly calculation yields

that

E
(
M̂N(β̂full)|FN

)
= MN(β̂full).

For any component M̂N

(j1j2)
(β̂full) of M̂N(β̂full), where 1 ≤ j1, j2 ≤ d,

Var
(
M̂N

(j1j2)
(β̂full)|FN

)
=

1

r2N

N∑
i=1

 J∑
j=1

I(yi = j)

(
∂2 log πij(β̂full)

∂β∂βT

)(j1j2)

−M (j1j2)
N (β̂full)

2

=
1

r2N

N∑
i=1

 J∑
j=1

I(yi = j)

(
∂2 log πij(β̂full)

∂β∂βT

)(j1j2)
2

− 1

r2

(
M

(j1j2)
N (β̂full)

)2

≤ 1

r2N

N∑
i=1

 J∑
j=1

I(yi = j)

(
∂2 log πij(β̂full)

∂β∂βT

)(j1j2)
2

.

Thus, by Lemma S2,

E
(
‖M̂N(β̂full)−MN(β̂full)‖2F |FN

)
=

d∑
j1=1

d∑
j2=1

Var
(
M̂N

(j1j2)
(β̂full)|FN

)
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≤ C2

r2N

N∑
i=1

‖xi‖4.

Combining with Markov’s inequality, we have that

P

∣∣∣∣∣∣‖M̂N(β̂full)−MN(β̂full)‖F >

√√√√ C2

r2ν2

1

N

N∑
i=1

‖xi‖4

∣∣∣∣∣∣FN
 ≤ ν2.

(S2.11)

It follows that ‖M̂N(β̂full) − MN(β̂full)‖F = OP |FN
(r
−1/2
2 ). There exists

γ ∈ (0, 1] such that λmin

(
M̂N(β̂full)

)
≥ γλmin

(
MN(β̂full)

)
, where λmin(·)

denotes the minimal eigenvalue of the corresponding matrix.

Let β = − log ν1/ log(N+1), ν0 =
√

(12 log(N + 1)− 6 log ν1)/r3, then

ν0 ≤ 1/2 and r3 satisfies the condition in Lemma S3, with probability at

least 1− ν1,

∥∥∥T3M̂N

−1
(β̂full)ui(β̂full)

∥∥∥ ≤ √1 + ν0

∥∥∥M̂N

−1
(β̂full)ui(β̂full)

∥∥∥ . (S2.12)

Combine (S2.11) and (S2.12), with probability at least (1− ν1)(1− ν2),

conditional on FN ,

∣∣∣‖M−1
N (β̂full)ui(β̂full)‖ − ‖T3M̂N

−1
(β̂full)ui(β̂full)‖

∣∣∣
≤
∣∣∣‖M−1

N (β̂full)ui(β̂full)‖ − ‖M̂N

−1
(β̂full)ui(β̂full)‖

∣∣∣
+
∣∣∣‖M̂N

−1
(β̂full)ui(β̂full)‖ − ‖T3M̂N

−1
(β̂full)ui(β̂full)‖

∣∣∣
≤‖M−1

N (β̂full)ui(β̂full)− M̂N

−1
(β̂full)ui(β̂full)‖+
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max
{√

1 + ν0 − 1, 1 +
√

1 + ν0
}
‖M̂N

−1
(β̂full)‖F‖ui(β̂full)‖

≤‖M−1
N (β̂full)‖F‖M̂N

−1
(β̂full)‖F‖MN(β̂full)− M̂N(β̂full)‖F‖ui(β̂full)‖+

ν0‖M̂N

−1
(β̂full)‖F‖ui(β̂full)‖

≤λmax(M−1
N (β̂full))λmax(M̂N

−1
(β̂full))dC

√√√√ 1

r2ν2

1

N

N∑
i=1

‖xi‖4‖ui(β̂full)‖

+ ν0
√
dλmax

(
M̂N

−1
(β̂full)

)
‖ui(β̂full)‖

=λ−1min(MN(β̂full))λ
−1
min(M̂N(β̂full))dC

√√√√ 1

r2ν2

1

N

N∑
i=1

‖xi‖4‖ui(β̂full)‖

+

√
12 log(N + 1)− 6 log ν1

r3
dλmin(M̂N(β̂full))

−1‖ui(β̂full)‖

=
‖ui(β̂full)‖

γλ2min(MN(β̂full))

√√√√d2C2

r2ν2

1

N

N∑
i=1

‖xi‖4

+
‖ui(β̂full)‖

γλmin(MN(β̂full))

√
12 log(N + 1)− 6 log ν1

r3
d.

Since using a JLT has no much benefit when r3 ≥ d, the second term of the

previous formula is omitted, which completes the proof.

Proof of Theorem 4. Note that n0n
−1/2 → 0, we focus on the subsamples

drawn in the second step only since the contribution of the first step sub-

samples to the likelihood function is oP |FN
(n−1/2).

We reuse the notation of `∗(β) to represent the subsampling likelihood
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function, i.e.,

`∗(β) =
N∑
i=1

Ri

p̆i ∧ 1
δTi logπi(β),

where p̆i is defined in (4.10), and Ri = 1 if and only if (xi, yi) is in the

subsample.

Since p̆i satisfies p̆i ≥ ρn/N , maxi=1,...,N(N(p̆i ∧ 1))−1 = OP (n−1), the

subsampling probabilities satisfy Assumption 5. Using the same method in

the proof of Theorem 1, we have

1

N
V̆
−1/2
Nc (β̂full)

∂`∗(β̂full)

∂β
→ N(0, Id),

in distribution, conditional on β̂pilot and FN , where

V̆Nc(β̂full) =
1

N2

N∑
i=1

1− (p̆i ∧ 1)

p̆i ∧ 1
ui(β̂full)u

T
i (β̂full).

The distance between V̆Nc and V̀Nc can be quantified as

‖V̆Nc(β̂full)− V̀Nc(β̂full)‖F =

∥∥∥∥∥ 1

N2

N∑
i=1

(
1

p̆i ∧ 1
− 1

p̀i ∧ 1

)
ui(β̂full)u

T
i (β̂full)

∥∥∥∥∥
F

≤ 1

N2

N∑
i=1

(∣∣∣∣ 1

p̆i ∧ 1
− 1

p̀i ∧ 1

∣∣∣∣ ‖ui(β̂full)‖2)

≤
(

max
i=1,...,N

1

Np̀i

)
1

N

N∑
i=1

(∣∣∣∣ p̀i ∧ 1

p̆i ∧ 1
− 1

∣∣∣∣ ‖ui(β̂full)‖2)

≤C
2

ρn

1

N

N∑
i=1

(∣∣∣∣ p̀i ∧ 1

p̆i ∧ 1
− 1

∣∣∣∣ ‖xi‖2) ,
where the last inequality holds by Lemma S2.
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Let h̆i = ‖M−1
N (β̂pilot)ui(β̂pilot)‖, h̀i = ‖M−1

N (β̂full)ui(β̂full)‖, it follows

that

∣∣∣∣ p̀i ∧ 1

p̆i ∧ 1
− 1

∣∣∣∣ ≤ |p̀i − p̆i|p̆i

≤ N

ρn
|p̀i − p̆i|

=
N

ρn

∣∣∣∣∣ nh̀i∑N
i=1 h̀i

− nh̆i∑N
i=1 h̆i

∣∣∣∣∣
≤ N

ρ

(∣∣∣∣∣ h̀i∑N
i=1 h̀i

− h̆i∑N
i=1 h̀i

∣∣∣∣∣+

∣∣∣∣∣ h̆i∑N
i=1 h̀i

− h̆i∑N
i=1 h̆i

∣∣∣∣∣
)

=
1

ρ

1

N−1
∑N

i=1 h̀i

(
|h̀i − h̆i|+

∣∣∣∣∣1−
∑N

i=1 h̀i∑N
i=1 h̆i

∣∣∣∣∣ h̆i
)
.

Let βt denote the true value of parameter vector. By Assumption 4

and Lemma S2, it follows that

‖MN(β̂full)−MN(βt)‖F ≤
1

N

N∑
i=1

J∑
j=1

I(yi = j)

∥∥∥∥∥∂ log πij(β̂full)

∂ββT
− ∂ log πij(βt)

∂ββT

∥∥∥∥∥
F

≤ 1

N

N∑
i=1

J∑
j=1

I(yi = j)C‖β̂full − βt‖‖xi‖

=oP (1),

where the last equality is because ‖β̂full − βt‖ = oP |FN
(1) = oP (1) (see

Xiong and Li, 2008, Theorem 3.3). Combining this with Assumption 3,

MN(βt) is positive definite.
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By the law of large number, we have

1

N

N∑
i=1

h̀i =
1

N

N∑
i=1

‖M−1
N (β̂full)ui(β̂full)‖

=
1

N

N∑
i=1

‖M−1
N (βt)ui(βt)‖+ oP (1)

≥ λmin(M−1
N (βt))

1

N

N∑
i=1

‖ui(βt)‖+ oP (1)

= λmin(M−1
N (βt))E‖u1(βt)‖+ oP (1),

thus, (
1

N

N∑
i=1

h̀i

)−1
= OP (1). (S2.13)

In the same way, we have

1

N

N∑
i=1

h̀2i = OP (1). (S2.14)

By the triangle inequality, it follows that

|h̀i − h̆i| =
∣∣∣‖M−1

N (β̂full)ui(β̂full)‖ − ‖M−1
N (β̂pilot)ui(β̂pilot)‖

∣∣∣
≤
∣∣∣‖M−1

N (β̂full)ui(β̂full)‖ − ‖M−1
N (β̂full)ui(β̂pilot)‖

∣∣∣
+
∣∣∣‖M−1

N (β̂full)ui(β̂pilot)‖ − ‖M−1
N (β̂pilot)ui(β̂pilot)‖

∣∣∣
≤ ‖M−1

N (β̂full)‖F‖ui(β̂full)− ui(β̂pilot)‖

+ ‖M−1
N (β̂full)−M−1

N (β̂pilot)‖F‖ui(β̂pilot)‖

= oP (1),
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where the last equality holds by noting Lemma S2, and

M−1
N (β̂full)−M−1

N (β̂pilot) = M−1
N (β̂full)(MN(β̂full)−MN(β̂pilot))M

−1
N (β̂pilot).

Thus, we have

1

N

N∑
i=1

(h̆i − h̀i)2 = oP (1), (S2.15)∣∣∣∣∣1−
∑N

i=1 h̀i∑N
i=1 h̆i

∣∣∣∣∣ = oP (1). (S2.16)

Combining Equations (S2.13), (S2.14), (S2.15), (S2.16), and Assump-

tion 4, it can be seen that

1

N

N∑
i=1

∣∣∣∣ p̀i ∧ 1

p̆i ∧ 1
− 1

∣∣∣∣ ‖xi‖2
≤ 1

ρN−1
∑N

i=1 h̀i

(
1

N

N∑
i=1

|h̀i − h̆i|‖xi‖2 +

∣∣∣∣∣1−
∑N

i=1 h̀i∑N
i=1 h̆i

∣∣∣∣∣ 1

N

N∑
i=1

h̆i‖xi‖2
)

≤ 1

ρN−1
∑N

i=1 h̀i


√√√√ 1

N

N∑
i=1

|h̀i − h̆i|2

√√√√ 1

N

N∑
i=1

‖xi‖4


+

1

ρN−1
∑N

i=1 h̀i

∣∣∣∣∣1−
∑N

i=1 h̀i∑N
i=1 h̆i

∣∣∣∣∣
√√√√ 1

N

N∑
i=1

h̆2i

√√√√ 1

N

N∑
i=1

‖xi‖4


=oP (1).

That is ‖V̆Nc(β̂full)− V̀Nc(β̂full)‖F = oP (n−1).

Therefore, the desired results follow by Slutsky’s theorem (Ferguson,

1996) and

V̀ −1/2M−1
N (β̂full)V̆

1/2
Nc (β̂full)(V̀

−1/2M−1
N (β̂full)V̆

1/2
Nc (β̂full))

T
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=V̀ −1/2M−1
N (β̂full)V̆Nc(β̂full)M

−1
N (β̂full)V̀

−1/2

=V̀ −1/2M−1
N (β̂full)V̀Nc(β̂full)M

−1
N (β̂full)V̀

−1/2 + oP |FN
(n−1/2)

=Id + oP |FN
(n−1/2).

Proof of Theorem 5. Note that the subsampling probabilities in Algorithm 2

naturally satisfied Assumption 5. Thus Theorem 1 implies that
√
n‖β̂ts −

β̂full‖ = OP |FN
(1) = OP (1), where the last equality comes from Xiong and

Li (2008). By the natural of the MLE, one can show that
√
N‖β̂full −

βtrue‖ = OP (1).

Since n ≤ N by the virtual of Poisson sampling, it follows that ‖β̂ts −

βtrue‖ ≤ ‖β̂ts − β̂full‖+ ‖β̂full − βtrue‖ = OP (n−1/2). The result follows.

Proof of Remark 6. Note that the subsampling probabilities in Algorithm 2

naturally satisfied Assumption 5. This is a direct result from Theorem 1

by the definition of β̂full.

Proof of Lemma 1. Without loss of generality, we only show the case i = 1

here.
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Let `−1(β) =
∑N

i=2

∑J
j=1 I(yi = j) log πij(β). Using Taylor’s Theorem

(Ferguson, 1996), it follows that

0 = ˙̀−1(β̂−1) = ˙̀−1(β̂full) +
∂ ˙̀−1(β̂full)

∂βT
(β̂−1− β̂full) +OP (‖β̂−1− β̂full‖2),

where ˙̀−1(·) is the partial derivative of `−1(·) with respect to the β, and

the remainder term comes from the similar techniques as Theorem 1 un-

der Assumptions 1–4. Note that 0 = ˙̀(β̂full). One can conclude that

˙̀−1(β̂full) = −u1(β̂full). Since the outliers are finite, the contribution of

the likelihood can be ignored as N → ∞. Thus both ‖β̂−1 − βtrue‖2 and

‖β̂full − βtrue‖2 are OP (N−1). Let MN−1(β̂full) = −N−1 ∂
˙̀−1(β̂full)

∂βT . Simple

calculation yields M−1
N (βtrue) − M−1

N−1(βtrue) = oP (1). Thus the desired

result holds by direct calculation.

S3. Additional Simulation Results

In this section, we explore the effect of different ρ with fixed n0 and n.

We choose data generated in Case 1 as an example. The results are given

in Figure S1 with n0 = 400, r1 = r2 = 5000, r3 = 10, for the cases

n = 1000, 1600, respectively.

From Figure S1, one can see that ρ = 0.1 and 0.2 are slightly better

than the case ρ = 0 which echoes the discussion in Section 4 that a proper

specified ρ can lead a more stable and robust estimator. When ρ is close to
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(b) n = 1600

Figure S1: The log of MSE for Model (6.12) using data generated from Case

1 with different ρ based on MV, FMV-RP, FMV-RS, MVc, and Uniform

methods, where n0 = 400, r1 = r2 = 5000, r3 = 10.

one, the performances of all the methods are similar since the probabilities

are close to the uniform subsampling probabilities. This reflects that the

optimal subsampling indeed improve the statistical efficiency within the

same computing budget n.

In the following, we will illustrate the impact of the full sample size N .

To ease the presentation, we take Case 1 with N varying from 213 to 218

as an example. The empirical mean squared error (MSE) of the resultant

estimator K−1
∑K

k=1 ‖β̂
(k)
p −βtrue‖2 are reported in Figure S2. Here we opt

to report the distance between β̂
(k)
p and βtrue, since β̂full changes according

to different full samples.
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(a) Log MSE (b) Variance of MSE

Figure S2: The log of MSE and variance of MSE for Model (6.12) with

different N varying from 213 to 218 based on MV, MVc, FMV-RP, FMV-

RS, and Uniform subsampling, where n0 = 400, n = 1600, ρ = 0.2, r1 =

r2 = 5000, r3 = 10. The data are generated under Case 1 at the beginning

of Section 6.1.

Compared with the increase of n, the relative change is small as N in-

creases. This echoes the result in Theorem 1 that the convergence rate is

O(n1/2), which does not depend on N . One can see that when N changes

from 213 to 218, there is a little change for the MSE. This is because the

M in the optimal subsampling probabilities derived in Theorem 2 can not

be simply specified as ∞ when n/N is not that small. According to the

discussion in Remark 3, one can expect that our method assigns the in-

clusion probabilities to be one for some informative data points. Let S1

be the set consisting of such informative points. One can expect that our

29



method spares the excess probability, i.e.,
∑
S1(n~

MV
i /

∑N
j=1 ~MV

j ) − |S1|,

to the less informative data points, where ~MV
i = ‖M−1

N (β̂full)ui(β̂full)‖

given in Theorem 2, and |A| denotes the cardinality of set A. However, as

N increases, there are more informative points and M can be specified as

+∞, which implies the inclusion probabilities are all strictly less than one

and the excess probability is zero. Thus, we do not need to spare the excess

probability to the less informative data points.

To evaluate the computing time of the fast approximation algorithm

introduced in Section 3, we use the data generated in Case 1 as an example.

All the computations are carried out on a MacBook Pro with a 3.1GHz Intel

Core i5 processor and 8GB memory. Results on the average computing

time (in seconds) for using the different methods with different expected

subsample sizes and using the full data are reported in Table S1.

Compared with estimating parameters on the full data, all the sub-

sampling methods use less time. As expected, both the FMV-RP and the

FMV-RS methods are faster than the MV method. It is clear to see that

FMV-RS takes less time than FMV-RP since FMV-RS does not perform

a subsampled randomized Hadamard transform. The FMV-RS and MVc

methods have similar performance in terms of computing time. From Ta-

ble S1, one can clearly see that fitting the multinomial logistic regression

30



Table S1: Average Computing time (in seconds) with different n varying

from 600 to 1600. All the settings are the same as the main text.

n 600 800 1000 1200 1400 1600

MV 5.043 5.176 5.276 5.345 5.412 5.455

FMV-RP 1.134 1.288 1.385 1.489 1.546 1.635

FMV-RS 0.884 0.915 1.071 1.136 1.181 1.255

MVc 0.818 0.886 0.954 1.082 1.137 1.217

Uniform 0.549 0.687 0.738 0.862 1.012 1.075

Full data computing time seconds: 35.122

model takes most of the computing time. Thus, the sampling cost especially

for FMV-RP, FMV-RS, and MVc sampling methods can be ignored.

To take a close look at the trade-off between computational cost and

estimation efficiency, we also illustrate the results for MSE against compu-

tation times under Case 1. As suggested by a reviewer, another indicator

MSE times computing time is also reported in Figure S3.
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(a) MSE v.s. Time. (b) MSE × Time.

Figure S3: Graphs showing the trade-off between computational time (in

seconds) and MSE for the five approaches under Case 1 as in the main text.

From Figure S3, we can see that the uniform subsampling has its own

advantage when the computational budget is very limited. Both MVc and

FMV-RS produce a smaller MSE compared with the uniform subsampling

method in the same computing time when n is more than 1000. From Fig-

ure S3(a), one can see a cross between the uniform subsampling and FMV-

RS, which implies the advantage becomes more evident with the increase in

the used CPU time. Compared with the MV approach, both FMV-RP and

FMV-RS methods yield merely the same MSE with less computing time,

which echoes the discussions in Section 3. From Figure S3(b), we can see

that the FMV-RP, FMV-RS, and MVc methods have similar performance

compared with the uniform subsampling approach. In addition, one may

expect that as the subsample size n increases, but is still much smaller
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than N , the performance of the proposed methods will be better than the

uniform subsampling since the difference between the uniform subsampling

and MV methods becomes small. It is worth mentioning that the FMV-RP,

FMV-RS, and MVc methods still have their own advantage. For example,

if the available memory only allows the analysis of a subsample of size n

while the computational time is relatively cheap, then our approaches may

be preferable as it often results in the same statistical accuracy with fewer

subdata points. This also holds for the MV method.

To see the computational cost under different full data sizes N , we also

present the results on the average computing time (in seconds) for using

the five methods with n = 1600. The results are reported in Table S2. For

reference, we also report the computing time of the full data approach.

From Table S2, it is clear that the sampling costs of the proposed

methods increase as N increases, since the computational costs of FMV-

RP, FMV-RS, and MVc are O(Nd) and the computational cost of MV is

O(Nd2). This echoes the discussions in Section 3. As in Table S1, the

advantages of the FMV-RS and FMV-RP compared with the uniform sub-

sampling are still obvious, since in most cases, the FMV-RS and FMV-RP

reduce 40% MSE while they do not require 40% additional time of the

uniform subsampling.
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Table S2: Average Computing time (in seconds) with different N varying

from 213 to 218. Here we fix n = 1600, n0 = 400, ρ = 0.2, r1 = r2 = 5000,

r3 = 10.

N 213 214 215 216 217 218

MV 1.588 2.116 3.220 5.455 10.125 18.792

FMV-RP 1.178 1.272 1.433 1.635 2.162 3.241

FMV-RS 1.096 1.142 1.211 1.255 1.498 1.920

MVc 1.065 1.072 1.118 1.217 1.380 1.615

Uniform 1.061 1.064 1.068 1.075 1.137 1.167

Full data 5.541 11.171 20.517 35.122 76.785 137.582

It is worth mentioning that Theorem 4 enables us to draw inference

on β. Under the big data setups, the expected subsample size n is much

less than the full data size N . If n = o(N), then the full data MLE β̂full

in Theorem 4 can be replaced by the true parameter. We take β01 as an

example and construct a 95% confidence interval for it. The MVc and

uniform subsampling methods are also implemented for comparison. Since

the methods in four cases have similar performance, we only report the first

two cases for brevity and the results are reported in Table S3 with n0 = 400,
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r1 = r2 = 5000, r3 = 10, and n = 800, 1200, 1600.

Clearly, the subsampling methods based on MV, FMV-RP, FMV-RS,

MVc have similar performances and are uniformly better than the uniform

subsampling method. Moreover, the lengths of confidence intervals decrease

when the expected subsample size n increases.

For nominal categorical data, Yao and Wang (2019) used subsampling

with replacement in the softmax regression under non-proportional odds

assumption. To compare our methods with the method proposed by Yao

and Wang (2019), we take Model (2.1) with J = 3 and non-proportional

odds assumption as an example. The MVc method mentioned in Section 6

and the uniform subsampling method are also considered for comparison.

For reference, we list the model used in this section as follows.

log

(
πi1
πi3

)
= xTi β1,

log

(
πi2
πi3

)
= xTi β2.

(S3.17)

Here we set β1 = 0.5 × 115, β2 = 115, where 115 is a 15 dimensional

all-ones vector. The corresponding covariate xi ∈ R30 with N = 216 is

generated in the same scenarios in Section 6.1. We set n0 = 400, ρ = 0.2,

r1 = r2 = 5000, r3 = 10, and the expected subsample size n to be 600,

800, 1000, 1200, 1400, and 1600. We report the results in Figure S4, where

“YW” represents the method proposed by Yao and Wang (2019).
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Table S3: Empirical coverage probabilities and average lengths of confidence

intervals for Cases 1 and 2.

MV FMV-RP FMV-RS MVc Uniform

Case 1

800
Coverage 0.9349 0.9389 0.9369 0.9329 0.9399

Length 0.3293 0.3325 0.3327 0.3297 0.3505

1200
Coverage 0.9469 0.9409 0.9449 0.9449 0.9449

Length 0.2812 0.2839 0.2842 0.2816 0.3009

1600
Coverage 0.9499 0.9329 0.9339 0.9419 0.9239

Length 0.2488 0.2516 0.2518 0.2499 0.2675

Case 2

800
Coverage 0.9389 0.9539 0.9599 0.9501 0.9449

Length 0.3554 0.3579 0.3573 0.3579 0.3661

1200
Coverage 0.9409 0.9499 0.9519 0.9419 0.9489

Length 0.3035 0.3072 0.3085 0.3081 0.3147

1600
Coverage 0.9509 0.9409 0.9459 0.9449 0.9459

Length 0.2701 0.2731 0.2743 0.2747 0.2793

Empirical coverage probabilities and average lengths of confidence intervals for β01 in Model

(6.12) with different n based on MV, FMV-RP, FMV-RS, MVc, and Uniform methods, where

n0 = 400, ρ = 0.2, r1 = r2 = 5000, r3 = 10.
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(d) Case 4.

Figure S4: The log of MSE for Model (S3.17) with different n based on

MV, MVc, FMV-RP, FMV-RS, Uniform, and the method proposed in Yao

and Wang (2019), where n0 = 400, ρ = 0.2, r1 = r2 = 5000, r3 = 10. The

different distributions of covariates are listed in the beginning of Section

6.1.

As shown in Figure S4, the empirical MSEs for YW are close to that

for our methods and are uniformly smaller than the MVc and uniform

subsampling methods. Nevertheless, YW needs to calculate all the inclusion

probabilities at once, which takes a large memory to implement and may

be infeasible in the big data setting. The Poisson subsampling, compared
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with subsampling with replacement, also has a high estimation efficiency

with nonuniform subsampling probabilities.
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