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Supplementary Material

Section S1 includes a brief introduction to differential privacy. Section

S2 gives details for the derivation of the privatized beta estimates of Section

6.3. All other proofs and technical details are provided in Section S3.

S1 Background on Differential Privacy

In this section, we review the basics of differential privacy (DP), which

was proposed by Dwork et al. (2006) as a framework to mathematically

quantify the degree of privacy protection. To satisfy differential privacy, a

method must introduce additional randomness into the analysis, and the

constraint of DP requires that for all possible databases, the change in one

person’s data does not significantly change the distribution of outputs. Con-

sequently, having observed the DP output, an adversary cannot accurately

determine the input value of any single person in the database. Definition
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1 gives a formal definition of DP. In Definition 1, h : X n × X n → Z≥0

represents the Hamming metric, defined by h(x, x′) = #{i | xi ̸= x′
i}.

Definition 1 (Differential privacy: Dwork et al. (2006)). Let the privacy

parameter ϵ > 0 and the sample size n ∈ {1, 2, . . .} be given. Let X be any

set, and (Y ,S) a measurable space. Let M = {Mx | x ∈ X n} be a set of

probability measures on (Y ,S), which we call a mechanism. We say that

M satisfies ϵ-differential privacy (ϵ-DP) if Mx(S) ≤ eϵMx′(S) for all S ∈ S

and all x, x′ ∈ X n such that h(x, x′) = 1.

An important property of differential privacy is that it is invariant to

post-processing. Applying any data-independent procedure to the output

of a DP mechanism preserves ϵ-DP (Dwork et al., 2014, Proposition 2.1).

Furthermore, Smith (2011) demonstrated that under conditions similar to

(R1)-(R3), there exist efficient DP estimators for parametric models. Using

these techniques, the one-step procedure can produce DP synthetic data by

using a DP efficient statistic.

Remark 6. Besides Definition 1, there are many other variations of dif-

ferential privacy, the majority of which are relaxations of Definition 1,

which also allow for efficient estimators. For instance, approximate DP

(Dwork et al., 2006), concentrated DP (Dwork and Rothblum, 2016; Bun

and Steinke, 2016), truncated-concentrated DP (Bun et al., 2018), Renyi
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DP (Mironov, 2017), and Gaussian DP (Dong et al., 2022) all allow for

efficient estimators. On the other hand, local differential privacy (Ka-

siviswanathan et al., 2011; Duchi et al., 2013) in general does not permit

efficient estimators and would not fit in our framework. For an axiomatic

treatment of formal privacy, see Kifer and Lin (2012).

One of the earliest and simplest privacy mechanisms is the Laplace

mechanism. Given a statistic T , the Laplace mechanism adds independent

Laplace noise to each entry of the statistic, with scale parameter propor-

tional to the sensitivity of the statistic. Informally, the sensitivity of T is

the largest amount that T changes, when one person’s data is changed in

the dataset.

Proposition 1 (Sensitivity and Laplace Mechanism: Dwork et al. (2006)).

Let the privacy parameter ϵ > 0 be given, and let T : X n → Rp be a

statistic. The ℓ1-sensitivity of T is ∆n(T ) = sup∥T (x) − T (x′)∥1, where

the supremum is over all x, x′ ∈ X n such that h(x, x′) = 1. Provided that

∆n(T ) is finite, releasing the vector {Tj(x) + Lj}pj=1 satisfies ϵ-DP, where

L1, . . . , Lp
i.i.d.∼ Laplace {∆n(T )/ϵ}.
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S2 Deriving an Efficient DP Estimator for the Beta

Distribution

We assume that X1, . . . , Xn
i.i.d.∼ Beta(α, β), where α, β ≥ 1, and our goal is

to produce differentially private (DP) synthetic data. Recall that Xi takes

values in [0, 1] and has pdf fX(x) = xα−1(1−x)β−1/B(α, β), where B is the

Beta function.

Often, to ensure finite sensitivity, the data are clamped to artificial

bounds [a, b], introducing bias in the DP estimate. Naive bounds are fixed

in n, resulting in asymptotically negligible noise, but Op(1) bias. However,

we show that it is possible to increase the bounds in n to produce both

noise and bias of order op(n
−1/2), resulting in an efficient DP estimator. We

show through simulations that using this estimator along with Algorithm

1 results in a DP sample with optimal asymptotics. While we work with

the beta distribution, this approach may be of value for other exponential

family distributions as well. We note that the asymptotics of clamping

bounds have appeared in other DP works, but which are not immediately

applicable to our setting (e.g., Smith, 2011; Kamath et al., 2020).

Recall that n−1
∑n

i=1 log(Xi) and n−1
∑n

i=1 log(1 − Xi) are sufficient

statistics for the beta distribution. We will add Laplace noise to each
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DISTRIBUTION

of these statistics to achieve differential privacy. However, the sensitiv-

ity of these quantities is unbounded. First we pre-process the data by

setting X̃i = min{max(Xi, t), 1 − t}, where t is a threshold that depends

on n. Then the ℓ1-sensitivity of the pair of sufficient statistics is ∆(t) =

2n−1 |log(t)− log(1− t)|. We add independent noise to each of the statis-

tics from the distribution Laplace{∆(t)/ϵ}, which results in ϵ-DP versions

of these statistics. Finally, we estimate θ = (α, β) by plugging in the pri-

vatized sufficient statistics into the log-likelihood function and maximizing

over θ. The resulting parameter estimate satisfies ϵ-DP by post-processing.

We must carefully choose the threshold t to ensure that the resulting

estimate is efficient. The choice of t must satisfy ∆(t) = o(n−1/2) to ensure

that the noise does not affect the asymptotics of the likelihood function. We

also require that both P (Xi < t) = o(n−1/2), and P (Xi > 1− t) = o(n−1/2)

to ensure that X̃i = Xi + op(n
−1/2), which limits the bias to op(n

−1/2). For

the beta distribution, we can calculate that P (Xi < t) = O(tα) and P (Xi >

1− t) = O(tβ). Since we assume that α, β ≥ 1, so long as t = o(n−1/2) the

probability bounds will hold. Taking t = min[1/2, 10/{log(n)
√
n}] satisfies

t = o(n−1/2), and we estimate the sensitivity as

∆(t) ≤ 2n−1 log(t−1) ≤ 2n−1 log{log(n)
√
n} = O{log(n)/n} = o(n−1/2),

which satisfies our requirement for ∆. While there are other choices of t
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which would satisfy the requirements, our threshold was chosen to optimize

the finite sample performance, so that the asymptotics could be illustrated

with smaller sample sizes.

S3 Proofs and Technical Lemmas

For two distributions P and Q on Rk, the Kolmogorov-Smirnov distance

(KS-distance) is KS(P,Q) = supR rectangle |P (R)−Q(R)|, where the supre-

mum is over all axis-aligned rectangles. If FP and FQ are the multivariate

cdfs of P and Q, then ∥FP − FQ∥∞ ≤ KS(P,Q) ≤ 2k∥FP − FQ∥∞, so con-

vergence in distribution is equivalent to convergence in KS-distance (Smith,

2011). By definition, we have that TV(P,Q) ≥ KS(P,Q).

Proof of Theorem 1. First we will establish the asymptotic distribution of

θ̂Z . Recall that by efficiency, we know that
√
n(θ̂X−θ)

d→ N{0, I−1(θ)} and

√
n{θ̂Z − E(θ̂Z | θ̂X)} | θ̂X

d→ N{0, I−1(θ̂X)}. Then by Slutsky’s theorem,

we have that
√
n{θ̂Z−E(θ̂Z | θ̂X)}

d→ N{0, I−1(θ)}. We can easily compute

that Cov{θ̂Z−E(θ̂Z | θ̂X), θ̂X} = 0 using the law of total covariance. So, we

have that
√
n{θ̂Z − E(θ̂Z | θ̂X) + θ̂X − θ} d→ N{0, 2I−1(θ)}. We also know

that
√
n{E(θ̂Z | θ̂X) − θ̂X} = op(1), since E(θ̂Z | θ̂X) = θ̂X + op(n

−1/2).

Together, we have that
√
n(θ̂Z − θ)

d→ N{0, 2I−1(θ)}.
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TV (X,Z) ≥ TV
{√

n(θ̂X − θ),
√
n(θ̂X − θ)

}
(S3.1)

≥ KS
{√

n(θ̂X − θ),
√
n(θ̂X − θ)

}
(S3.2)

≥ KS
[
N{0, I−1(θ)}, N{0, 2I−1(θ)}

]
(S3.3)

−KS
[√

n(θ̂X − θ), N{0, I−1(θ)}
]

(S3.4)

−KS
[√

n(θ̂Z − θ), N{0, 2I−1(θ)}
]

(S3.5)

= KS
[
N{0, I−1(θ)}, N{0, 2I−1(θ)}

]
+ o(1) (S3.6)

≥ Φ
{
−
√

log(4)/
√
2
}
− Φ

{
−
√
log(4)

}
+ o(1) (S3.7)

≥ .083 + o(1) (S3.8)

where (S3.1) is by the data processing inequality, (S3.2) uses the KS-

distance as a lower bound on total variation, (S3.5) applies two triangle

inequalities since KS-distance is a metric, and (S3.6) uses the asymptotic

distributions of θ̂X and θ̂Z .

To establish S3.7, consider the following. Denote σ2 = (I−1(θ))1,1.

Then consider the sequence of rectangles Ri = {x ∈ Rk | −(i + 1)σ ≤

x1 ≤ −
√

log(4)σ, and − i ≤ xj ≤ i,∀j ̸= 1}. Note that Ri ⊂ Ri+1

and
⋃∞

i=1Ri = {x ∈ R | x1 ≤ −
√

log(4)σ}. Denote by P the probability

measure for N{0, 2I−1(θ)} and Q the probability measure for N{0, I−1(θ)}.

Then

7



Jordan Awan and Zhanrui Cai

KS
[
N{0, I−1(θ)}, N{0, 2I−1(θ)}

]
≥ lim

i→∞
|P (Ri)−Q(Ri)|

=
∣∣∣ lim
i→∞

P (Ri)− lim
i→∞

Q(Ri)
∣∣∣

=

∣∣∣∣∣P
(

∞⋃
i=1

Ri

)
−Q

(
∞⋃
i=1

Ri

)∣∣∣∣∣
= Φ

{
−
√

log(4)/
√
2
}
− Φ

{
−
√

log(4)
}

≥ .083,

where the value
√

log(4) was chosen as it is the maximizer of Φ(−t/
√
2)−

Φ(t).

For the following proofs, we will overload the d
dθ

operator when working

with multivariate derivatives. For a function f : Rp → R, we write d
dθ
f(θ)

to denote the p×1 vector of partial derivatives ( ∂
∂θj

f(θ))pj=1. For a function

g : Rp → Rq, we write d
dθ
g(θ) to denote the p× q matrix ( ∂

∂θj
gk(θ))

p,q
j,k=1.

Lemmas 2 and 3 are used for the proof of Theorem 2. Parts 1 and 2

of Lemma 2 can be rephrased as the following: θ̂ is efficient if and only if

it is consistent and n−1
∑n

i=1 S(θ̂, Xi) = op(n
−1/2). The third property of

Lemma 2 is similar to many standard expansions used in asymptotics, for

example in Van der Vaart (2000). However, we require the expansion for

arbitrary efficient estimators, and include a proof for completeness.
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Lemma 2. Suppose X1, . . . , Xn
i.i.d.∼ fθ0, and assume that (R1)-(R3) hold.

Let θ̂X be an efficient estimator, which is a sequence of zeros of the score

function. Suppose that θ̃X is a
√
n-consistent estimator of θ0. Then

1. If n−1
∑n

i=1 S(θ̃X , Xi) = op(n
−1/2), then θ̃X − θ̂X = op(n

−1/2).

2. If θ̃X is efficient, then n−1
∑n

i=1 S(θ̃X , Xi) = op(n
−1/2).

3. If θ̃X is efficient, then θ̃X = θ0+I−1(θ0)n
−1
∑n

i=1 S(θ0, Xi)+op(n
−1/2).

Proof. As θ̃X and θ̂X are both
√
n-consistent, we know that θ̃X − θ̂X =

Op(n
−1/2). So, we may consider a Taylor expansion of the score function

about θ̃X = θ̂X .

n−1

n∑
i=1

S(θ̃X , Xi)

= n−1

n∑
i=1

S(θ̂X , Xi) +

{
d

dθ
n−1

n∑
i=1

S(θ,Xi)
∣∣∣
θ=θ̂X

}
(θ̃X − θ̂X) +Op(n

−1)

= 0 +

{
d

dθ
n−1

n∑
i=1

S(θ,Xi)
∣∣
θ=θ̂X

+Op(n
−1/2)

}
(θ̃X − θ̂X)

= {−I(θ0) + op(1)} (θ̃X − θ̂X),

(S3.9)

where we used assumptions (R1)-(R3) to justify that 1) the second deriva-

tive is bounded in a neighborhood about θ0 (as both θ̂X and θ̃X converge to

θ0), 2) the derivative of the score converges to −I(θ0) by Lehmann (2004,

Theorem 7.2.1) along with the Law of Large Numbers, and 3) that I(θ0) is
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finite, by (R3).

To establish property 1, note that the left hand side of Equation (S3.9)

is op(n
−1/2) implying that (θ̃X − θ̂X) = op(n

−1/2). For property 2, recall

that by Lehmann (2004, page 479), if θ̃X and θ̂X are both efficient, then

(θ̃X − θ̂X) = op(n
−1/2). Plugging this into the right hand side of Equation

(S3.9) gives n−1
∑n

i=1 S(θ̃X , Xi) = op(n
−1/2), establishing property 2.

For property 3, we consider a slightly different expansion:

op(n
−1/2) = n−1

n∑
i=1

S(θ̃, Xi)

= n−1

n∑
i=1

S(θ0, Xi) +
d

dθ0
n−1

n∑
i=1

S(θ0, Xi)(θ̃ − θ0) +Op(n
−1),

= n−1

n∑
i=1

S(θ0, Xi) + {−I(θ0) + op(1)}(θ̃ − θ0) +Op(n
−1)

where we used property 2 for the first equality, expanded the score about

θ̂X = θ0 for the second, and justify the Op(n
−1) by (R2). By (R1)-(R2)

and Law of Large Numbers along with Lehmann (2004, Theorem 7.2.1), we

have the convergence of the derivative of score to −I(θ0). By (R3), I(θ0) is

invertible. Solving the equation for θ̃X gives the desired result.

Lemma 3. Assume that (R0)-(R4) hold, and let ω1, . . . , ωn
i.i.d.∼ P . Then

n−1

n∑
i=1

d

dθ
S{θ,Xθ(ωi)} = op(1).
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Proof. First we can express the derivative as

n−1

n∑
i=1

d

dθ
S{θ,Xθ(ωi)}

= n−1

n∑
i=1

[
d

dα
S{α,Xθ(ωi)}+

d

dα
S{θ,Xα(ωi)}

] ∣∣∣
α=θ

.

The result follows from the Law of Large Numbers, provided that

Eω∼P

[
d

dα
S{α,Xθ(ω)}+

d

dα
S{θ,Xα(ω)}

] ∣∣∣
α=θ

= 0.

The expectation of the first term is −I(θ), by Lehmann (2004, Theorem

7.2.1). For the second term, we compute

Eω∼P
d

dα
S{θ,Xα(ω)}

∣∣∣
α=θ

=

∫
Ω

d

dα
S{θ,Xα(ω)}

∣∣∣
α=θ

π(ω) dω (S3.10)

=
d

dα

∫
Ω

S{θ,Xα(ω)} π(ω) dω
∣∣∣
α=θ

(S3.11)

=
d

dα

∫
Rd

S(θ, x)fα(x) dx
∣∣∣
α=θ

(S3.12)

=

∫
Rd

d

dα
S(θ, x)fα(x)

∣∣∣
α=θ

dx (S3.13)

=

∫
Rd

S(θ, x)

{
d

dα
fα(x)

∣∣∣
α=θ

}⊤

dx (S3.14)

=

∫
Rd

S(θ, x)

{
d
dθ
fθ(x)

fθ(x)

}⊤

fθ(x) dx (S3.15)

=

∫
Rd

S(θ, x)S⊤(θ, x)fθ(x) dx (S3.16)

= EX∼θ

{
S(θ,X)S⊤(θ,X)

}
(S3.17)

= I(θ), (S3.18)
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where for (S3.11) we use the boundedness of Ω from (R0) and (R4) to

interchange the derivative and integral; for (S3.12), we apply a change of

variables, using the fact that fα(ω) is the density for the random variable

Xα(ω); and for (S3.13), we use (R2) and the dominated convergence theo-

rem to change the order of the derivative and integral again.

Proof of Theorem 2. We expand θ̂Z about θ̂X using part 3 of Lemma 2:

θ̂Z = θ̂X + I−1{θ̂X}n−1

n∑
i=1

S{θ̂X , Xθ̂X
(ωi)}+ op(n

−1/2) (S3.19)

The score can be expanded about θ̂X = θ0:

n−1

n∑
i=1

S{θ̂X , Xθ̂X
(ωi)}

= n−1

n∑
i=1

S{θ0, Xθ0(ωi)}+

[
d

dθ̃
n−1

n∑
i=1

S{θ̃, Xθ̃(ωi)}

]
{θ̂X − θ0}

= n−1

n∑
i=1

S{θ0, Xθ0(ωi)}+ op(1)Op(n
−1/2),

where θ̃ is between θ̂X and θ0; by Lemma 3, we justify that the derivative

is op(1).

Combining this derivation along with the fact that I−1(θ̂X) = I−1(θ0)+

op(1) by the continuous mapping theorem, we have the following equation:

θ̂Z = θ̂X + I−1(θ0)n
−1

n∑
i=1

S{θ0, Xθ0(ωi)}+ op(n
−1/2). (S3.20)
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Using the same techniques, we do an expansion for θ̂Y about θ∗ =

2θ̂X − θ̂Z :

θ̂Y = θ∗ + I−1(θ∗)n−1

n∑
i=1

S{θ∗, Xθ∗(ωi)}+ op(n
−1/2) (S3.21)

= θ∗ + I−1(θ0)n
−1

n∑
i=1

S{θ0, Xθ0(ωi)}+ op(n
−1/2) (S3.22)

= θ∗ + (θ̂Z − θ̂X) + op(n
−1/2) (S3.23)

= θ̂X + op(n
−1/2), (S3.24)

where line (S3.22) is a similar expansion as used for equation (S3.19), in

line (S3.23) we substituted the expression from (S3.20), and line (S3.24)

uses the fact that as n → ∞, θ∗ = 2θ̂X − θ̂Z with probability tending to

one. Indeed, since 2θ̂X − θ̂Z is a consistent estimator of θ0, we have that as

n → ∞, P (2θ̂X − θ̂Z ∈ Θ) ≥ P{2θ̂X − θ̂Z ∈ B(θ0)} → 1.

Proof of Lemma 1. For a fixed θ ∈ Θ, for ω ∼ P , the random variable Y =

Xθ(ω) is distributed with probability measure PX−1
θ : for any measurable

set E, P (Y ∈ E) = PX−1
θ (E). We denote by P n

Ω the joint probability

measure on Ωn, and (PX−1
θ )n the joint probability measure on Rd×n.

Given θ∗ ∈ Θ, our goal is to derive the probability distribution of

the random variables Xθ∗(ω1), . . . , Xθ∗(ωn) conditioned on the event that
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{ω1, . . . , ωn | θ̂{Xθ∗(ωi)} = ϑ̂}. However, this event may have zero probabil-

ity. Instead, we will condition on Sδ
ϑ̂,θ∗

= {ω1, . . . , ωn | ϑ̂{Xθ∗(ω)} ∈ Bδ(ϑ̂)},

where Bδ(ϑ̂) = {θ | ∥ϑ̂ − θ∥ ≤ δ}, which has positive probability. At the

end, we will take the limit as δ → 0 to derive the desired distribution.

Let E ⊂ Rd×nbe a measurable set. Then

P{Xθ∗(ω1), . . . , Xθ∗(ωn) ∈ E | ω1, . . . , ωn ∈ Sδ
θ∗,ϑ̂

}

= P (ω1, . . . , ωn ∈ X−1
θ∗ E | ω1, . . . , ωn ∈ Sδ

θ∗,ϑ̂
)

=
P n(X−1

θ∗ E ∩ Sδ
θ∗,ϑ̂

)

P n(Sδ
θ∗,ϑ̂

)

=
(PX−1

θ∗ )
n(E ∩Xθ∗S

δ
θ∗,ϑ̂

)

(PX−1
θ∗ )

n(Xθ∗Sδ
θ∗,ϑ̂

)
,

where we used the definition of conditional probability and the fact that

X−1
θ∗ Xθ∗S

δ
θ∗,ϑ̂

= Sδ
θ∗,ϑ̂

.

This last expression shows that Xθ∗(ω1), . . . , Xθ∗(ωn) conditioned on

ω ∈ Sδ
θ∗,ϑ̂

is distributed as fn
θ∗{y1, . . . , yn | θ̂(y) ∈ Bδ(ϑ̂)}. This derivation is

valid for all δ > 0. Taking the limit as δ → 0 gives the desired formula:

Y θ∗

1 , . . . , Y θ∗

n

∣∣∣θ̂(Y θ∗) = θ̂(X) ∼ fn
θ∗{y1, . . . , yn | θ̂(y) = θ̂(X)}.

Proof of Theorem 3. While the distributions g depend on n, we will sup-

press this dependence for notational simplicity. We can then express the

14
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desired KL divergence as follows:

First, by the data processing inequality, we can add in the random

variable θ̂(X) = θ̂(Y ) to get an upper bound on the KL divergence. We

then have closed formulas for the joint distributions {X1, . . . , Xn, θ̂(X)} and

{Y1, . . . , Yn, θ̂(X)}.

KL (X1, . . . , Xn||Y1, . . . , Yn) (S3.25)

≤ KL
{
X1, . . . , Xn, θ̂(X)

∣∣∣∣∣∣Y1, . . . , Yn, θ̂(X)
}

(S3.26)

= KL
[
fn
θ {x | θ̂(x)}gθ{θ̂(x)}

∣∣∣∣∣∣fn
θn{x | θ̂(x)}gθ{θ̂(x)}

]
(S3.27)

= Eϑ̂∼g(·|X)EX∼fθ log

{
fθ(X | ϑ̂)gθ(ϑ̂)
fθn(X | ϑ̂)gθ(ϑ̂)

}
(S3.28)

= Eϑ̂∼g(·|X)EX∼fθ log

{
fθ(X)g(ϑ̂ | X)

fθn(X | ϑ̂)gθ(ϑ̂)

}
(S3.29)

= Eϑ̂∼g(·|X)EX∼fθ log

[
fθ(X)g(ϑ̂ | X)

{fθn(X)g(ϑ̂ | X)/gθn(ϑ̂)}gθ(ϑ̂)

]
(S3.30)

= Eϑ̂∼g(·|X)EX∼fθ log

{
fθ(X)g(ϑ̂ | X)

fθn(X)g(ϑ̂ | X)

}
(S3.31)

+ Eϑ̂∼g(·|X)EX∼fθ log

{
gθn(ϑ̂)

gθ(ϑ̂)

}
(S3.32)

= −EX∼fθ log

{
fθn(X)

fθ(X)

}
+ Eϑ̂∼gθ

log

{
gθn(ϑ̂)

gθ(ϑ̂)

}
, (S3.33)

where line (S3.28) simply applies the definition of KL divergence, and

line (S3.30) uses the definition of conditional distribution.

At this point, we need to compute the two expectations of line (S3.33),
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and show that everything cancels except for an op(1) term.

We write ℓ(θ | x) =
∑n

i=1 log fθ(xi). Using our assumptions, we can

expand ℓ(θn | x):

ℓ(θn | x) = ℓ(θ | x) + (θn − θ)⊤∇ℓ(θ | x) + 1

2
(θn − θ)⊤∇2ℓ(θ | x)(θn − θ)

+
1

6
ξ∗
∑
i,j,k

(θn − θ)i(θn − θ)j(θn − θ)k

n∑
s=1

gijk(xs),

where |ξ∗| ≤ 1 and gijk(x) is an upper bound for
∣∣∣∂3ℓ(θ|x)
∂θiθjθk

∣∣∣ for a ball about

θ, which exists by (R3). These expansions are based on those from Serfling

(1980). Applying EX∼fθ to this derivation gives

EX∼fθ log

{
fθn(X)

fθ(X)

}
= 0− n

2
(θn − θ)⊤I(θ)(θn − θ)

+O(1)
n

6

∑
i,j,k

{Egi,j,k(x)}(θn − θ)i(θn − θ)j(θn − θ)k,

=
−n

2
(θn − θ)⊤I(θ)(θn − θ) +O(n)∥θn − θ∥3

(S3.34)

where the first term is zero as the expected value of the score function

is zero by (R3), the second term uses Lehmann (2004, Theorem 7.2.1)

and (R3). The O(1) factor in the third term is based on the fact that

|ξ∗| ≤ 1. Finally, note that
∑

i,j,k{Egi,j,k(x)}(θn − θ)i(θn − θ)j(θn − θ)k ≤

p3 supi,j,k{Egi,j,k(x)}∥θn − θ∥3∞ = O(1)∥θn − θ∥3. Note that all norms are

equivalent in Rp, so they can be interchanged up to a factor of O(1).
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Next, we will derive a similar formula for log gθ∗(ϑ̂):

log gθn(ϑ̂) = log gθ(ϑ̂) +∇ log gθ(ϑ̂)(θn − θ)

+
1

2
(θn − θ)⊤∇2 log gθ(ϑ̂)(θn − θ)

+
n

6
ξ∗2
∑
i,j,k

(θn − θ)i(θn − θ)j(θn − θ)kGi,j,k(ϑ̂),

(S3.35)

where |ξ∗2 | ≤ 1. In order to apply the expectation Eϑ̂∼θ to this equation, we

will first show Eϑ̂∼θ∇ log gθ(ϑ̂) = 0 and Eϑ̂∼θ∇2 log gθ(ϑ̂) = −nI(θ) + o(n).

{
Eθ̂∼θ∇ log gθ(ϑ̂)

}
j
=

∫ {
∂

∂θj
log gθ(ϑ̂)

}
gθ(ϑ̂) dϑ̂

=

∫
∂

∂θj
gθ(ϑ̂) dϑ̂

=

∫
∂

∂θj

∫
x

fθ(x)g(ϑ̂ | x) dx dϑ̂

=

∫
θ̂

∫
x

∂

∂θj
fθ(x)g(ϑ̂ | x) dx dϑ̂

=
∂

∂θj

∫ ∫
fθ(x)g(ϑ̂ | x) dx dϑ̂

= 0,

where we use the assumption (R3) that
∣∣∣ ∂
∂θj

fθ(x)
∣∣∣ is bounded above by

an integrable function, (R5) that g(ϑ̂ | x) is bounded, and the dominated

convergence theorem to interchange the derivative and the integral.

Next we work on the second derivative:
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(
Eϑ̂∼θ∇

2 log gθ(ϑ̂)
)
j,k

=

∫ {
∂2

∂θj∂θk
log gθ(ϑ̂)

}
gθ(ϑ̂) dϑ̂

=

∫ gθ(ϑ̂)
∂2

∂θj∂θk
gθ(ϑ̂)− ∂

∂θj
gθ(ϑ̂)

{
∂

∂θk
gθ(ϑ̂)

}⊤

g2θ(ϑ̂)
gθ(ϑ̂) dϑ̂

= 0− Eϑ̂∼θ

(
∇ log gθ(ϑ̂)∇⊤ log gθ(ϑ̂)

)
j,k

,

where we used (R3) along with the dominated convergence theorem to set

the first term equal to zero. We see that E∇2 log gθ(ϑ̂) = −Iθ̂X (θ), where

Iθ̂X represents the Fisher information of the random variable θ̂(X) ∼ g. It

is our current goal to show that Iθ̂X (θ) = nI(θ) + o(n), where I(θ) is the

Fisher information for one sample X ∼ fθ. First note that by the data

processing inequality (Zamir, 1998), Iθ̂(X)(θ) ≤ IX1,...,Xn(θ) = nI(θ), where

the inequality represents the positive-definite ordering of matrices. Next,

we need to find a matching lower bound. By the Cramér Rao lower bound,

we have that

{Iθ̂(X)(θ)}
−1 ≤ Var{θ̂(X)}+ o(1/n),

where Var{θ̂X} is the covariance matrix of the random variable θ̂X , and we

used the fact that θ̂X is asymptotically unbiased. By the efficiency of θ̂(X),
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we have that

Var{θ̂(X)} = n−1I−1(θ) + o(1/n).

We then have

Iθ̂(X)(θ) ≥
{
n−1I−1(θ) + o(1/n)

}−1

= n{I−1(θ) + o(1)}−1

= n{I(θ) + o(1)},

where for the last equality, we use the following matrix identity:

(A+B)−1 = A−1 − A−1B(A+B)−1,

where we set A = I−1(θ) and B = o(1).

Combining our results, we have that

Eϑ̂∼θ∇
2 log gθ(ϑ̂) = −Iθ̂(X)(θ) = n{−I(θ) + o(1)}.

Finally, applying the expectation to equation (S3.35), we have

Eϑ̂∼θ log

{
gθn(ϑ̂)

gθ(ϑ̂)

}
= 0− n

2
(θn − θ){I(θ) + o(1)}(θn − θ)

+O(1)
n

6

∑
i,j,k

{EGi,j,k(ϑ̂)}(θn − θ)i(θn − θ)j(θn − θ)k

=
−n

2
(θn − θ)⊤I(θ)(θn − θ) + o(n)∥θn − θ∥2

+O(n)∥θn − θ∥3.

(S3.36)
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Combining equations (S3.34) and (S3.36), we have

KL (X1, . . . , Xn||Y1, . . . , Yn)

≤ KL
[
fn
θ {x | θ̂(x)}gθ{θ̂(x)}

∣∣∣∣∣∣fn
θn{x | θ̂(x)}gθ{θ̂(x)}

]
= −EX∼fθ log

{
fθn(X)

fθ(X)

}
+ Eϑ̂∼gθ(ϑ̂)

log

{
gθn(ϑ̂)

gθ(ϑ̂)

}

= o(n)∥θn − θ∥2 +O(n)∥θn − θ∥3.

S4 Additional Simulation Results

S4.1 Differentially private beta synthetic data

In this section, we consider additional values of ϵ that are used in the Section

6.3 experiment on differentially private beta distributed synthetic data. All

other simulation parameters are identical. We varied ϵ = .5, 2, 4,∞ (note

that ϵ = 1 appears in Figure 1(b) in the main paper). In Figure S.1, we see

that at all values of ϵ, θ̂Y is very close to θ̂DP . However, with smaller ϵ it

requires a larger sample size before the performance of θ̂Y ≈ θ̂DP is similar

to the MLE θ̂X . Note that even with ϵ = ∞, the performance of θ̂Z does

not approach that of θ̂X .
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S4.2 DP two sample proportion test

In this section, we repeat the experiment of Section 6.4 with varying values

of ϵ. All other simulation parameters are the same. We varied ϵ = .5, 2, 4, 10

(note that ϵ = 1 appears in Figure 1(b) in the main paper). In Figure S.2,

we plot the p-values of both the one-step and parametric bootstrap tests.

We see that the parametric bootstrap p-values are very conservative for all

values of ϵ, whereas the one-step p-values are fairly well-calibrated, although

sometimes slightly inflated. In Figure S.3 we plot the power of the two tests

for the different ϵ values. We see that the relative performance of one-step

compared to parametric bootstrap is unchanged as we vary ϵ.
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Figure S.1: Additional simulations for Section 6.3. In normal reading order, ϵ =

.5, 2, 4,∞. Note that Figure 1(b) in the main paper is for ϵ = 1
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Figure S.2: Additional simulations for Section 6.4. In normal reading order, ϵ =

.5, 2, 4, 10. Note that Figure 2(a) in the main paper is for ϵ = 1
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Figure S.3: Additional simulations for Section 6.4. In normal reading order, ϵ =

.5, 2, 4, 10. Note that Figure 2(b) in the main paper is for ϵ = 1
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