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Technical proofs

Proof of Theorem 1. For any t = 0,...,7 — 1, given S, it is always true that E' Var(z;|xs,) =
E Var(mj|xpaj) = 0? for any j € A, due to the fact that pa; C S; if j € A;. Moreover, for any

Jj € V\{S; U A}, by total variance, we have

E[Var(z;|xs,)] = E[E[Var(xj|xpaj)|xst]] + E[ Var (E[xj|xpaj]]x5i)}

= O’? + E[ Var (E[xj|xpaj]|x3t)}.

This completes the first part of Theorem 1. Additionally, by Assumption 1 in the main text, for any

j,j" € A, we have

E[Var(zjlxs,)] = E[ Var(zj [xs,)] = 07 in;

and for any k£ € V\{S; U A;}, we have
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E[ Var(zy|xs,)] = of + E|[ Var (E[zg|%p, ]1Xs,)] > 07 min + Mumax. (1)

Clearly, all the nodes in A; can be exactly identified by evaluating the expected conditional
variance. This completes the proof. |

Proof of Theorem 3. Note that the sample variance estimator

n

\/fa\r(xk) = i 1 i (wzk - %ijk)2 = %Z %(%’k — wj8)"

i=1 Jj=1 27 <y

is a U-statistics with kernel %(wzk — a:jk)Q. By the definition of Cy that denotes the diameter of the
support X, then we have %(xlk —z)? < %ng Then, by McDiarmid’s inequality, for any ¢ > 0

and k£ € V, there holds

P<|\//'a\r($k) — Var(xk)’ > C) < 2exp ( - %) )

Moreover, we define the following event

Max }

& = {r’?ea]} |\//'a\r(xk) — Var(z;,)| < 1

and use the notation & to denote its complementary. By (2), we have

nM? ) 3)

PE) < 2pexp (- o).
X



Note that

P(Ag # Ag) <P(Ag # Ao, &) + P(E)
§P<EI k € Ay such that‘\//z;(xk) — 3ffi)n\ > €0, 80>
+ P(H k € V\{Ao} such that|Var(zy) — 5% | < o, 50) + P(EY)

=P, + P, + P(&5), “4)

where 81(1?311 = minjey Va\r(:cj). For ease notation, we denote ky = argmin,, \//z;"(xk), and it
always holds true that ky € Ay. If not, suppose that kg € V\{Ap} and for any j € Ay, under the

event & and by Theorem 1 in the main text, we have

Y Mmax Mmax 7
Var(zy,) > Var(xy,) — 5 Var(z;) + 5 Var(z;),

—_

which contradicts the definition that k) = argmin,,, Var(zy).

To bound P;, we notice that under the event &, for any j € Ay, there holds

|Var(a;) — Var(ay, )| = [Var(z;) — Var(z;) + Var(z;) — Var(zy,) + Var(zy,) — Var(zy, )|

< [Var(z;) — Var(z;)| + [Var(z;) — Var(zy,)| + [Var(zy,) — Var(zy, )|

<Mmax+0+Mmax_MmaX
- 4 4 27

where the last inequity follows from Assumption 1 in the main text and the definition of &. Thus,
by taking ey = x| we have P, = 0.

Next, we turn to bound P». Note that for any £ € V\{ A}, by Theorem 1 in the main text,
there holds

|var($k) - Var(a:ko)| 2 MmaX7



and triangle inequality yields that
|Var(z,) — Var(xk0)| < |Var(xk) - \//z;(a:k){ + }\//a\r(xk) — \//z;(mko)‘ + |\//a\r(xk0) — Var(xk0)|.
Then, under the event &, we have

|Var(zy) — Var(zg,)| > Minax — |Var(ay) — Var(ay,)| — [Var(ay,) — Var(zy,)|

> Mmax _ Mmax _ Mmax — Mmax‘
- 4 4 2

Thus, by taking ¢, = 22x there holds P, = 0.

Clearly, we have

T C an’%laX
P(Ay # Ag) < P(EG) < 2pexp - o 2], 5)
32C%
by taking €y = % This completes the proof. [

Lemma S1. Suppose that Assumptions 1— 3 in the main text are satisfied. Given the events {.%To =
Ao, ..., ./Zl\t_l = A1} and J and assume n\ — oo. Then, with probability at least 1 — 0,, for any
Jj € V\{S.}, there holds

K1 Cjo

L 2 12
1fs = fisilloo < 5= log == + M VLS s 2

AV

where Cjp = 2k1 max {C’X + 2k R, \/Q(ZH%RQ + 032.)},

Proof of Lemma qzl. To begin with, we define the sampling operator Sx,, : Hx — R" associated

with some copies of xs, € X as

Ss, (F) = (f(X18,)s ooes f(Xns,))



and the adjoint of the sample operator as S_. s, R"™ — Hy as
n
T
stt = Z CiniSt’

i=1

where ¢ = (cy, ..., ¢,)T € R™. Note that given the events {.,Zl\o = A, ..., .,Zl\t,l = A1} and J, we
have S, = &, and || f;||x < R, for any j € V\{&,}. Clearly, the solution of (3.2) in Section 3.1 of

the main text can be written as
~ 1 ., 11
Ji = (85, S, + L) —SE %,

where x; = (1, ..., 7,;)" and I,, € R™ " denotes the identity matrix.

Moreover, we define an immediate function f ; as

fag = argmin E[w; — f(xs,)]” + A fl1%- 6)
fi€HK

Note that solving (6) equals solving the following problem that

frj = argmin || f¥s, — fj‘|%2(xst,px3t) + M| fill% (7

JE€EHK

by the fact that each node z; is centered with mean zero and £ f(x) = 0 for all f € H . Thus, the

solution of () can be derived as

Frj = (Lie + M) Lo fis,

where the integral operator L, is defined in Section 4 of the main text.



Simple algebra yields that

f = (A5 1) (T L7 ey a0)
<%5€5t Sxs, T+ )\In> B (% Z (235 — faj(Xis)) Kxis, — Lt (fis, — fA,j))-

=1

Thus, we have

K.

~ 11 ¢
155 = Fuillie < 5[ D2 @i = fratxis)) Kns, = Ll fis, = o)
i=1

For notation simplicity, we denote &; = (mij — (Xi8t>)Kxi s,» Which satisfies

Bl&] = Lica(Fis, = Fr): &l < 5 (Cx + 20 fasllo)

2
and E[|&]%] < &2 / (2 Frs(%5) Apros

and then by Lemma 2 of |[Smale and Zhou| (2007), for any 4,, € (0, 1), with probability at least

1 —6,,, we have

1f5 = Fallee <

K1 (CX + 2||f,\7j||oo) log(2/6,) N ﬂ\/Qf (mj — fA,j(XSt))zdpxstu{j} log(2/6,)
n A n

It is clear that by pluging f; = 0 into (7) , we have ||\ ||x < %—’f;”[{, and thus we have
il£5s, 2 . .
[ faillse < mallfagllx < 2mase™ T =, To bound [ (z; — fr;(xs,)) dpxs,.,;,» Simple calculation

yields that for any f € H,

2 . 2 .
/(a:j — f(xs)) dpxs,00y / (zj = fs.(xs.)) doxs,oy = If = fj,SzH%%Xst,pxst)' (8)



By taking f = 0, there holds

* 2 * * *
/ (xj - fj,St(XSt)) dpxstu{j} +1]0 — fj,StHQLZ(XSt,pxSt) = E[fj (Xpaj) + ”jPS H%Hfj,&”%( + 032-7

where the last equality follows from the generating scheme of Model 1 in the main text and the last
inequality follows from Assumption 3 in the main text. Moreover, we notice that from (/) and by

the definition of f) ;, there holds
1555~ Frilaampeg) + Ml < 1555, — Ollfageg g ) + AOI < #211£75, 1
and then, by plugging f = f, ; into (§), we have

2 * 2 * *
[ 21— 5 gy = [ (21~ 0550 ey + s~ s < 2630555 + o

Therefore, with probability 1 — ¢,,, we have

1fi = Fjllx <

< CjO 10g(2/(5n>
>~ )\\/ﬁ )

k1(Cx + 263 || f1s, | /A7) 1og(2/6,) N ﬂ\/2(2’€%||f;5t 1% + 07)log(2/6,)
n A n

€))

where Cjp = 2k; max {CX—i—Q/{le]’-"’St |7 \/2(2/1%Hf]’f5t 1% + UJQ-)} and the last inequality follows
from the fact that n\ — oo.

Then, we turn to bound || fy; — f7s,|/x following similar treatments as in |Smale and Zhou
(2005). Specifically, for the integral operator Ly ; defined in Section 4 of the main text with

normalized eigenpairs { (g, o)} 5>, we have

L}K/i i Z“;m(d)iv Gj)2d; = Mil/2¢z' € Hy,

Jj=1



and

1/2
I e = (3 W0 BY g ), =

j>1 Hi

Thus by Assumption 2 of the main text, there exists some function h;; = > .o (hj., ¢i)og €

L*(Xs,, pxs,) such that fro = Ly by =370 wi (hje, di)2¢s € e

Therefore, we have

Frj—Fso= (L + A1) (= Mis) ==

i>1

: h; i 7y
>\+M'Lﬂl< J,ta¢>2¢

and then, the K-norm of f) ; — f s, can be bounded as

" A 2
(R Z@ <)\ Tt Y2 (hj, ¢i>2>

A —2r i r—
e ) )T e

<A Z¢>1<hj,t7 Gi)s = >\2T71th,t‘|g - )‘QTAHL;(Q Jist”g' 10

Combining (9) and (T0), under the events { Ay = Ay, ..., A,_; = A,_ } and 7, with probability

at least 1 — 9,,, we have

1f; = fislx < |If5 — fAjHK + 1 fxs = fisllx

Cio r—
< )\\/_log + XTI frs N
Moreover, we notice that Hf] — [isllo < fﬁHfj — [7s|lx by the reproducing property and the
requirement that || f; 5, [|% < R/2 in Section 4 of the main text. This completes the proof. |

Proof of Theorem 4. Given the event {ﬁg = A, ..., A = A1}, we have S; = S,. Then, for



any j € V\{S:}, there holds

E\@(ZEAXSJ — EV&I‘(JZj|XSt)

n

= ‘% Z(:%-)Q - %Z (f;(xis,))" = El2?] + E[Elz;|xs,)?] ‘

(1)

+ )E[E[%!X&]z} T Z (Fixis.))").

To bound the first term of (L)), we notice that each x; is required to be centered with mean

zero in Section 2 of the main text, which implies that zero belong to the support X', and then x?j
2

are bounded by %‘ from the definition of C'y, which denotes the diameter of the support X'. Then

by the Hoeffding’s inequality, for any g > (), there holds

n

P(‘E[x?] — %Z(LIZ”)Q‘ > g) < 2exp ( - 835). (12)

=1

Next, the second term of (T1]) can be decomposed as

n

BB xs - L3 (Fxis)’

n <
=1

< ’E[E[%IX&]Q - EZ(X&)H + ‘E[EZ(X&)] - %z”: (J?j(xist))z‘

=

= A1+A27

and thus it suffices to bound A; and A, sequentially under the events {ﬁo = A, ..., .Zt_l = A1}

and 7.



To bound A;, we notice that
A1 = |B[fs,(xs) (fis,0xs) = Fi(xs))] + B[Fi(xs) (15,05 = Fi(xs)]|
< s = Blle| [ 175006l + [ 15 lds,

<2y max{|| fill s, [| ffs, | | fis, — filloo < 261RI ffs, = filloos

where the last inequality follows from the reproducing property of RKHS, the requirement that
|f;s,llx < R/2 in Section 4 of the main text and and under the event J that ||f; |k < R. Then,

by Lemma with probability at least 1 — §,,/2, we have

Ay <2 2R< FXNT2NLE frs ). (13)

W

To bound A,, we notice that

AQ = /fj Xst f]a X5, deXSt - Zf] ’LSt fj7 ’St> ’

= fJ’/ (xs.) xstde5t>K_E<fj’s’?5tsxstfj>l(’

1 .
_ / (X6 s dpxs, — 5T, S fj> ]

= (B (Laee = S5 Sx6) B | < WB el Lice = S5, S s

where ST s, and Sy, denote the sampling operators defined in Lemma and || - ||gs denotes
the norm endowed with a Hilbert space HS(K) containing all the Hilbert-Schmidt operators on
Hy and satisfying ||T'||x < ||T||gs for any T' € HS(K). Note that under the event 7, we have

HfAj |k < R. Moreover, by Lemma 18 of Rosasco et al. (2013), with probability at least 1 — 4,,/2,

10



we have

2
< 2\/551 log i

HS Vn On

HLK,t - %ST S

RCH XSt

Clearly, with probability at least 1 — ¢,,/2, we have Ay < % log %.

Combining the upper bounds of A; and A,, with probability at least 1 — 4,,, there holds

n

1

N 2
B[Eixs ) - = 3 (Fixis)’|
i=1
C; 4 2RV2K? 4
2 0 r—1/2 —r px 1
< 2“1R<ﬁ log F XL j,st||2> + Y log i
0tV2. 4
< 2H§R(q;%f10g5— NTV2ILE fr ).

Then, by taking A = nfﬁ, for any 9,, € (0, 1), with probability at least 1 — 4,, there holds

1 n ~ _2r-1 4
‘E[E[MX&]Q} -=> (fj(Xist)f’ < Cjen 26 log

n
i=1 n

where Cj; = 6k Rmax {Cjo, V2, | Ly, f}s,|l2}. Correspondingly, for any ¢ > 0, we have

n

P(|BExs ] - 3 ()] > 5 1A = Aoy o A = A1, T)
i=1
< dexp ( - 25 nﬁéﬁln). (14)
jt

Combining (12)) and (T4)), for any ¢ > 0, there holds

P( ‘E\/ar(xﬂxst) — E\//a\r(xj|x5t)

8 2 r—1
< 2exp ( . g—§€> ¥ dexp ( . 2éjtnz<22r+1>). (15)

> C | "Zl\o = A07 "'JA\tfl = Atflun.7>

This completes the proof of the first part of Theorem 4.

11



Next, we define the following event

~—— M
£ = { EVar(z;|xs,) — EVar(z, < Hhmax }
1t jefg\agt}\ ar(w;[xs,) ar(z;|xs,)| < 1

and use the notation &, to denote its complementary. Then, by (L5)), we have

P(Elct | JIO = Ao, ~~-a~A\t—1 = At—laj)

annax Mopaxn 2(227'1-111)
<2p—|Shesp (~ o)+ - IShew (- TRE—). (6)
X J

Note that

P(A # A | Ay = Ao,y Ay = Ay, T)

< P(A £ A, 1t | Ao = Agy oy Aoy = A1, T) + PIES, | Ao = Ay ooy Ary = Arr, )

< P(3j € A, such that| EVar(z;]xs,) — 50| > e, Eu | Ao = Aoy s Ay = A1, T)

+ P(3j € V\{S, U A} such that |EVar(z,[xs,) — 00| < &, & | Ao = Ao, ooy Ay = Ay 1, T)
+ P& | Ao = Ao,y Ay = A1, T)

=P+ P+ P(E | Ay = Ao, o, Ay = Ay, ). (17)

Note that following the similar treatments as that of P, and P, in the proof of Theorem 3 in the

main text and by taking €, = %, we have P; = 0 and P, = 0. Finally, the bound reduces to

P(-’Zl\t 7£ At | A\O - AO) "';A\t—l == At—laj)

< PE | Ay = Ao,y Ay = A1, T)

2r—1
nM2 M n2(2r+l)
< 20p— S exp (= 52 ) +4(p — |Si) exp (- ).
2C% 8Cjy

This completes the proof.

12



Proof of Lemma 1. Given the event {/To = A, ..., ﬁt = A}, t > 1, we have S; = §t At first,

for some positive constant C3, we define the following event

_ ~ 12 2 — STy
Ea={ s (152 = g5 B] < Con™ 5555 log (4 maxctn, 54) }

and use the notation &5, to denote its complementary.

‘We notice that

P({Ej 7&5‘] :jeﬁt} ’A(]:./zl\o,...,At:-/zl\t,j>
< P({gj £E €AY En| A= Ay, ., A, :ﬁt,J)

FP(E | Ao = Ag, s A = AL T). (18)

Note that by the definition that E/A’J = {k = j,[[gis]? > ol for any k € §t} and by Assump-

tion 4 of the main text, for the first term of (18], there holds

P({gj # é‘\] YRS vzl\t}7€2t | Ag = A\Ou"wAt :A\t;j)
§P<EI k € pa; such that Hﬁiji < yff),é'gt | A = fTo, A= th,J>
+ P(EI k € pa, such that [|g% |2 = 0, &x | A = Ao, .., A, = A, j>

=P + b, (19)

Where@j:{k:k%jea}.

r— B
For the bound of P, by taking v/ = %n_2(22r+11> ( log (4|S;|max{n, ]St\})) and Assumption

3 in the main text, we have

g5 l7 = Ngzill3] = Ngiells = 1Galin > 208 = 1P = v,

13



which contradicts with &;. Precisely, under &£;;, we have

~ 2 2 __2r—1
semax l[Gs ] = llgjullz] < Can™200 log (41 jmax{n, [Si]}).

and then the different rates of convergence lead to the contradiction. Thus, when 7 is sufficiently

large, P5 = 0. To bound P;, it is obvious that |[|g;[|2 — [|g5 /13| > v

, which contradicts with £y,
again, which yields that F5 = 0.

Now, we turn to bound P(Sé"t | Ay = ./Zt\(), A = ﬁt, J ) At first, we define the sample
operators for gradients D, 1 Hg — R™ as (Dtl i = {f,0K xis, ) ,» their adjoint operators
13;"[ R" — Hg as Dt c =1 ) D O1Kx,s,ci» and define the integral operators for gradients
Dy : Hix — Ez(th,pxst) as Dyif = (f, 0iKxs,)i» Dfy L? (Xs,s pxs,) — Mi as Dj f =

J 0 Kxs, f(Xs,)dpxs,- Then, we have
* * * A* AN * 1 - *
Dt,lDtij,St = alKXStgjl(XSt)dpxst and Dt,lDt,lfj,St = n ZaleiStgjl(XiSt)'
=1

Note that D;,D;; and lA)leA)tJ are the Hilbert-Schmidt operators belonging to a Hilbert space en-
dowed with norm || - || gs-

Moreover, we notice that for any j € A; and k € S;

-~ * 1 . o~ *
15017~ gl = |7 32 (@nxs))” - / (g5(x5))) dpxs,

= Zg]k Xis, ) O x 15t>K ( Jst,/gjk(xst)ak xstdpx5t>K‘

~

= (f5 = £150 DisDiFy = Fis.)) e + (DiiDin s 5 = Frs)x

+<f;,8taDZth,k(f fis,) K+<fjst7 tthk D:,thak)f;,St>K‘

< |15 = £ D Dokllms + 2155 = fis sl 5,1 i Dl s

+ |1 D} Dew — Df Dyl sl fs, I

14



By Assumption 3 in the main text, direct calculation yields that

max || D7 Digll s = max [0 Ko, |5 < 53

Moreover, by Lemma 18 of Rosasco et al. (2013), for any 4,, € (0, 1), with probability at least

1 —0,/2, we have

2V2K3 . 48|
log

D*. D, — DD <
fgle?sfH txDek — DipDigllns < NG 5

given {4y = Ay, ..., A, = A;}. Thus, by taking 6, = (max{n, |S;|})~", with probability at

least 1 — d,,/2, there holds

DNk * 2\/5/15
max || Di D — Dy Dillms < NG log (4|S;[max{n, |S}).

When ||J?] — [7s,|lxc is sufficiently small and by taking A = n~ 741, with probability at least

1 —4,,, we have

a2 = llas 2|
(Gl = g

< mac{, w3l fis i 155} (3 _maxc 1155 = Fs, 1 + max | DDy — DiDillus )

JEALkES:
. i} e e A4S 2v2kE 418
< mas{oh s o L ) (3 mas {Coo+ IRl 577 10g 20 4 208 18

< Cg,n”érrjl) log (4]S;|max{n, |S,|}),

where Cy = 3max{n3, w3 s, e, /s, 1%} maxjea,ses, {3Ch0. 31 L, s, 2 2V253 ). Thus,

15



we have
1

P&l Ao = Ao, o A = A ) < forra

Finally, by and (19), we have

P({g =& e A} | A=A A=A T) 21~ m
This completes the proof. ]
Proof for Theorem 5. Note that
P(G#G)=P(G#G,J)+ PG #G,J°.
For P(G # G, J¢), we have
PG#G,J)<PI)<Tp _max__ P(|f;lx > R). (20)

1<t<T—1, jeV\{S:}

Note that by Theorem 1 and Lemma 3 of Smale and Zhou (2007), for any ¢ and j € V\{S,}, we
2(2r41)

have P(||f;|[x > R) < & if the sample size satisfies n > (% log Qn) “~" for some positive

constant Cy and the K -norm of the target function is upper bounded by R/2 as assumed in Section

4 of the main text, and thus P(G # G, J¢) — 0 as n — oc.

16



For P((j # G, J), we have

P(G#G,7) < P(U) {A # AYULE £ €},T)
T—1
< P(A\O # Ao) + ZP(JZQ # A | Ay = Ao, ---,vzl\tq =A 1, J)+

t=1

P(é\?é 5 | "21\0 = "40’ "'7A\T—1 = AT—lvj)

N

-1

SP(A\O#A(J)—F P(-’Zl\t#At ’A\OZAOV'WVZ{tfl :Atflaj)"i_

(]

1

Mg
m i

P({gj :g'j :jEﬁt} !«40:@0»---,4415:«1“\7)-

t=1

Clearly, combining with Theorem 4 and Lemma 1 in the main text, we have P (§ #G,J)— 0as

n — o0. This completes the proof. |

References

Rosasco, L., S. Villa, S. Mosci, M. Santoro, and A. Verri (2013). Nonparametric sparsity and

regularization. Journal of Machine Learning Research 14, 1665-1714.

Smale, S. and D. Zhou (2005). Shannon sampling ii: Connections to learning theory. Applied and

Computational Harmonic Analysis 19(3), 285-302.

Smale, S. and D. Zhou (2007). Learning theory estimates via integral operators and their approxi-

mations. Constructive Approximation 26(2), 153-172.

17



