Supplemental file for "Efficient learning of nonparametric directed acyclic graph with statistical guarantee"

Yibo Deng ${ }^{\dagger}$, Xin He^{\dagger}, and Shaogao $\mathrm{Lv}^{\ddagger *}$
${ }^{\dagger}$ School of Statistics and Management
Shanghai University of Finance and Economics
${ }^{\dagger}$ School of Statistics and Mathematics
Nanjing Audit University

Technical proofs

Proof of Theorem 1. For any $t=0, \ldots, T-1$, given \mathcal{S}_{t}, it is always true that $E \operatorname{Var}\left(x_{j} \mid \mathbf{x}_{\mathcal{S}_{t}}\right)=$ $E \operatorname{Var}\left(x_{j} \mid \mathbf{x}_{\mathrm{pa}_{j}}\right)=\sigma_{j}^{2}$ for any $j \in \mathcal{A}_{t}$, due to the fact that $\mathrm{pa}_{j} \subset \mathcal{S}_{t}$ if $j \in \mathcal{A}_{t}$. Moreover, for any $j \in \mathcal{V} \backslash\left\{\mathcal{S}_{t} \cup \mathcal{A}_{t}\right\}$, by total variance, we have

$$
\begin{aligned}
E\left[\operatorname{Var}\left(x_{j} \mid \mathbf{x}_{\mathcal{S}_{t}}\right)\right] & =E\left[E\left[\operatorname{Var}\left(x_{j} \mid \mathbf{x}_{\mathrm{pa}_{j}}\right) \mid \mathbf{x}_{\mathcal{S}_{t}}\right]\right]+E\left[\operatorname{Var}\left(E\left[x_{j} \mid \mathbf{x}_{\mathrm{pa}_{j}}\right] \mid \mathbf{x}_{\mathcal{S}_{t}}\right)\right] \\
& =\sigma_{j}^{2}+E\left[\operatorname{Var}\left(E\left[x_{j} \mid \mathbf{x}_{\mathrm{pa}_{j}}\right] \mid \mathbf{x}_{\mathcal{S}_{t}}\right)\right]
\end{aligned}
$$

This completes the first part of Theorem 1. Additionally, by Assumption 1 in the main text, for any $j, j^{\prime} \in \mathcal{A}_{t}$, we have

$$
E\left[\operatorname{Var}\left(x_{j} \mid \mathbf{x}_{\mathcal{S}_{t}}\right)\right]=E\left[\operatorname{Var}\left(x_{j^{\prime}} \mid \mathbf{x}_{\mathcal{S}_{t}}\right)\right]:=\sigma_{t, \text { min }}^{2}
$$

and for any $k \in \mathcal{V} \backslash\left\{\mathcal{S}_{t} \cup \mathcal{A}_{t}\right\}$, we have

[^0]\[

$$
\begin{equation*}
E\left[\operatorname{Var}\left(x_{k} \mid \mathbf{x}_{\mathcal{S}_{t}}\right)\right]=\sigma_{k}^{2}+E\left[\operatorname{Var}\left(E\left[x_{k} \mid \mathbf{x}_{\mathrm{pa}_{k}}\right] \mid \mathbf{x}_{\mathcal{S}_{t}}\right)\right]>\sigma_{t, \min }^{2}+M_{\max } \tag{1}
\end{equation*}
$$

\]

Clearly, all the nodes in \mathcal{A}_{t} can be exactly identified by evaluating the expected conditional variance. This completes the proof.

Proof of Theorem 3. Note that the sample variance estimator

$$
\widehat{\operatorname{Var}}\left(x_{k}\right)=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i k}-\frac{1}{n} \sum_{j=1}^{n} x_{j k}\right)^{2}=\frac{1}{\binom{n}{2}} \sum_{i<j} \frac{1}{2}\left(x_{i k}-x_{j k}\right)^{2}
$$

is a U-statistics with kernel $\frac{1}{2}\left(x_{i k}-x_{j k}\right)^{2}$. By the definition of $C_{\mathcal{X}}$ that denotes the diameter of the support \mathcal{X}, then we have $\frac{1}{2}\left(x_{i k}-x_{j k}\right)^{2} \leq \frac{1}{2} C_{\mathcal{X}}^{2}$. Then, by McDiarmid's inequality, for any $\zeta>0$ and $k \in \mathcal{V}$, there holds

$$
\begin{equation*}
P\left(\left|\widehat{\operatorname{Var}}\left(x_{k}\right)-\operatorname{Var}\left(x_{k}\right)\right|>\zeta\right) \leq 2 \exp \left(-\frac{n \zeta^{2}}{2 C_{\mathcal{X}}^{4}}\right) \tag{2}
\end{equation*}
$$

Moreover, we define the following event

$$
\mathcal{E}_{0}=\left\{\max _{k \in \mathcal{V}}\left|\widehat{\operatorname{Var}}\left(x_{k}\right)-\operatorname{Var}\left(x_{k}\right)\right| \leq \frac{M_{\max }}{4}\right\}
$$

and use the notation \mathcal{E}_{0}^{c} to denote its complementary. By (2), we have

$$
\begin{equation*}
P\left(\mathcal{E}_{0}^{c}\right) \leq 2 p \exp \left(-\frac{n M_{\max }^{2}}{32 C_{\mathcal{X}}^{4}}\right) \tag{3}
\end{equation*}
$$

Note that

$$
\begin{align*}
P\left(\mathcal{A}_{0} \neq \widehat{\mathcal{A}}_{0}\right) \leq & P\left(\mathcal{A}_{0} \neq \widehat{\mathcal{A}}_{0}, \mathcal{E}_{0}\right)+P\left(\mathcal{E}_{0}^{c}\right) \\
\leq & P\left(\exists k \in \mathcal{A}_{0} \text { such that }\left|\widehat{\operatorname{Var}}\left(x_{k}\right)-\widehat{\sigma}_{\text {min }}^{(0)}\right| \geq \epsilon_{0}, \mathcal{E}_{0}\right) \\
& +P\left(\exists k \in \mathcal{V} \backslash\left\{\mathcal{A}_{0}\right\} \text { such that }\left|\widehat{\operatorname{Var}}\left(x_{k}\right)-\widehat{\sigma}_{\text {min }}^{(0)}\right|<\epsilon_{0}, \mathcal{E}_{0}\right)+P\left(\mathcal{E}_{0}^{c}\right) \\
= & P_{1}+P_{2}+P\left(\mathcal{E}_{0}^{c}\right), \tag{4}
\end{align*}
$$

where $\widehat{\sigma}_{\text {min }}^{(0)}=\min _{j \in \mathcal{V}} \widehat{\operatorname{Var}}\left(x_{j}\right)$. For ease notation, we denote $k_{0}=\operatorname{argmin}_{k \in \mathcal{V}} \widehat{\operatorname{Var}}\left(x_{k}\right)$, and it always holds true that $k_{0} \in \mathcal{A}_{0}$. If not, suppose that $k_{0} \in \mathcal{V} \backslash\left\{\mathcal{A}_{0}\right\}$ and for any $j \in \mathcal{A}_{0}$, under the event \mathcal{E}_{0} and by Theorem 1 in the main text, we have

$$
\widehat{\operatorname{Var}}\left(x_{k_{0}}\right)>\operatorname{Var}\left(x_{k_{0}}\right)-\frac{M_{\max }}{2}>\operatorname{Var}\left(x_{j}\right)+\frac{M_{\max }}{2}>\widehat{\operatorname{Var}}\left(x_{j}\right),
$$

which contradicts the definition that $k_{0}=\operatorname{argmin}_{k \in \mathcal{V}} \widehat{\operatorname{Var}}\left(x_{k}\right)$.
To bound P_{1}, we notice that under the event \mathcal{E}_{0}, for any $j \in \mathcal{A}_{0}$, there holds

$$
\begin{aligned}
\left|\widehat{\operatorname{Var}}\left(x_{j}\right)-\widehat{\operatorname{Var}}\left(x_{k_{0}}\right)\right| & =\left|\widehat{\operatorname{Var}}\left(x_{j}\right)-\operatorname{Var}\left(x_{j}\right)+\operatorname{Var}\left(x_{j}\right)-\operatorname{Var}\left(x_{k_{0}}\right)+\operatorname{Var}\left(x_{k_{0}}\right)-\widehat{\operatorname{Var}}\left(x_{k_{0}}\right)\right| \\
& \leq\left|\widehat{\operatorname{Var}}\left(x_{j}\right)-\operatorname{Var}\left(x_{j}\right)\right|+\left|\operatorname{Var}\left(x_{j}\right)-\operatorname{Var}\left(x_{k_{0}}\right)\right|+\left|\operatorname{Var}\left(x_{k_{0}}\right)-\widehat{\operatorname{Var}}\left(x_{k_{0}}\right)\right| \\
& \leq \frac{M_{\max }}{4}+0+\frac{M_{\max }}{4}=\frac{M_{\max }}{2},
\end{aligned}
$$

where the last inequity follows from Assumption 1 in the main text and the definition of \mathcal{E}_{0}. Thus, by taking $\epsilon_{0}=\frac{M_{\text {max }}}{2}$, we have $P_{1}=0$.

Next, we turn to bound P_{2}. Note that for any $k \in \mathcal{V} \backslash\left\{\mathcal{A}_{0}\right\}$, by Theorem 1 in the main text, there holds

$$
\left|\operatorname{Var}\left(x_{k}\right)-\operatorname{Var}\left(x_{k_{0}}\right)\right| \geq M_{\max }
$$

and triangle inequality yields that

$$
\left|\operatorname{Var}\left(x_{k}\right)-\operatorname{Var}\left(x_{k_{0}}\right)\right| \leq\left|\operatorname{Var}\left(x_{k}\right)-\widehat{\operatorname{Var}}\left(x_{k}\right)\right|+\left|\widehat{\operatorname{Var}}\left(x_{k}\right)-\widehat{\operatorname{Var}}\left(x_{k_{0}}\right)\right|+\left|\widehat{\operatorname{Var}}\left(x_{k_{0}}\right)-\operatorname{Var}\left(x_{k_{0}}\right)\right| .
$$

Then, under the event \mathcal{E}_{0}, we have

$$
\begin{aligned}
\left|\widehat{\operatorname{Var}}\left(x_{k}\right)-\widehat{\operatorname{Var}}\left(x_{k_{0}}\right)\right| & \geq M_{\max }-\left|\operatorname{Var}\left(x_{k}\right)-\widehat{\operatorname{Var}}\left(x_{k}\right)\right|-\left|\widehat{\operatorname{Var}}\left(x_{k_{0}}\right)-\operatorname{Var}\left(x_{k_{0}}\right)\right| \\
& \geq M_{\max }-\frac{M_{\max }}{4}-\frac{M_{\max }}{4}=\frac{M_{\max }}{2} .
\end{aligned}
$$

Thus, by taking $\epsilon_{0}=\frac{M_{\max }}{2}$, there holds $P_{2}=0$.
Clearly, we have

$$
\begin{equation*}
P\left(\mathcal{A}_{0} \neq \widehat{\mathcal{A}}_{0}\right) \leq P\left(\mathcal{E}_{0}^{c}\right) \leq 2 p \exp \left(-\frac{n M_{\max }^{2}}{32 C_{\mathcal{X}}^{4}}\right) \tag{5}
\end{equation*}
$$

by taking $\epsilon_{0}=\frac{M_{\max }}{2}$. This completes the proof.
Lemma S1. Suppose that Assumptions $1-3$ in the main text are satisfied. Given the events $\left\{\widehat{\mathcal{A}}_{0}=\right.$ $\left.\mathcal{A}_{0}, \ldots, \widehat{\mathcal{A}}_{t-1}=\mathcal{A}_{t-1}\right\}$ and \mathcal{J} and assume $n \lambda \rightarrow \infty$. Then, with probability at least $1-\delta_{n}$, for any $j \in \mathcal{V} \backslash\left\{\mathcal{S}_{t}\right\}$, there holds

$$
\left\|\widehat{f}_{j}-f_{j, \mathcal{S}_{t}}^{*}\right\|_{\infty} \leq \frac{\kappa_{1} C_{j 0}}{\lambda \sqrt{n}} \log \frac{2}{\delta_{n}}+\kappa_{1} \lambda^{r-1 / 2}\left\|L_{K, t}^{-r} f_{j, \mathcal{S}_{t}}^{*}\right\|_{2}
$$

where $C_{j 0}=2 \kappa_{1} \max \left\{C_{\mathcal{X}}+2 \kappa_{1} R, \sqrt{2\left(2 \kappa_{1}^{2} R^{2}+\sigma_{j}^{2}\right)}\right\}$.
Proof of Lemma S1. To begin with, we define the sampling operator $S_{\mathbf{x}_{\mathcal{S}_{t}}}: \mathcal{H}_{K} \rightarrow \mathcal{R}^{n}$ associated with some copies of $\mathbf{x}_{\mathcal{S}_{t}} \in \mathcal{X}_{t}$ as

$$
S_{\mathbf{x}_{\mathcal{S}_{t}}}(f)=\left(f\left(\mathbf{x}_{1 \mathcal{S}_{t}}\right), \ldots, f\left(\mathbf{x}_{n \mathcal{S}_{t}}\right)\right)^{T}
$$

and the adjoint of the sample operator as $S_{\mathbf{x}_{\mathcal{S}_{t}}}^{T}: \mathcal{R}^{n} \rightarrow \mathcal{H}_{K}$ as

$$
S_{\mathbf{x}_{S_{t}}}^{T} \mathbf{c}=\sum_{i=1}^{n} c_{i} K_{\mathbf{x}_{i} \mathcal{S}_{t}},
$$

where $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)^{T} \in \mathcal{R}^{n}$. Note that given the events $\left\{\widehat{\mathcal{A}}_{0}=\mathcal{A}_{0}, \ldots, \widehat{\mathcal{A}}_{t-1}=\mathcal{A}_{t-1}\right\}$ and \mathcal{J}, we have $\mathcal{S}_{t}=\widehat{\mathcal{S}}_{t}$, and $\left\|\widehat{f}_{j}\right\|_{K} \leq R$, for any $j \in \mathcal{V} \backslash\left\{\widehat{\mathcal{S}}_{t}\right\}$. Clearly, the solution of (3.2) in Section 3.1 of the main text can be written as

$$
\widehat{f_{j}}=\left(\frac{1}{n} S_{\mathbf{x}_{\mathcal{S}_{t}}}^{T} S_{\mathbf{x}_{S_{t}}}+\lambda \mathbf{I}_{n}\right)^{-1} \frac{1}{n} S_{\mathbf{x}_{\mathcal{S}_{t}}}^{T} \mathbf{x}_{j}
$$

where $\mathbf{x}_{j}=\left(x_{1 j}, \ldots, x_{n j}\right)^{T}$ and $\mathbf{I}_{n} \in \mathcal{R}^{n \times n}$ denotes the identity matrix.
Moreover, we define an immediate function $f_{\lambda, j}$ as

$$
\begin{equation*}
f_{\lambda, j}=\underset{f_{j} \in \mathcal{H}_{K}}{\operatorname{argmin}} E\left[x_{j}-f_{j}\left(\mathbf{x}_{\mathcal{S}_{t}}\right)\right]^{2}+\lambda\left\|f_{j}\right\|_{K}^{2} . \tag{6}
\end{equation*}
$$

Note that solving (6) equals solving the following problem that

$$
\begin{equation*}
\left.f_{\lambda, j}=\underset{f_{j} \in \mathcal{H}_{K}}{\operatorname{argmin}}\left\|f_{j, \mathcal{S}_{t}}^{*}-f_{j}\right\|_{\mathcal{L}^{2}\left(\mathcal{X}_{\mathcal{S}_{t}}, \rho_{\mathbf{x}}\right.}^{2}\right)+\lambda\left\|f_{j}\right\|_{K}^{2}, \tag{7}
\end{equation*}
$$

by the fact that each node x_{j} is centered with mean zero and $E f(\mathbf{x})=0$ for all $f \in \mathcal{H}_{K}$. Thus, the solution of (6) can be derived as

$$
f_{\lambda, j}=\left(L_{K, t}+\lambda I\right)^{-1} L_{K, t} f_{j, \mathcal{S}_{t}}^{*}
$$

where the integral operator $L_{K, t}$ is defined in Section 4 of the main text.

Simple algebra yields that

$$
\begin{aligned}
\widehat{f}_{j}-f_{\lambda, j} & =\left(\frac{1}{n} S_{\mathbf{x}_{\mathcal{S}_{t}}}^{T} S_{\mathbf{x}_{\mathcal{S}_{t}}}+\lambda \mathbf{I}_{n}\right)^{-1}\left(\frac{1}{n} S_{\mathbf{x}_{\mathcal{S}_{t}}}^{T} \mathbf{x}_{j}-\frac{1}{n} S_{\mathbf{x}_{\mathcal{S}_{t}}}^{T} S_{\mathbf{x}_{\mathcal{S}_{t}}} f_{\lambda, j}-\lambda f_{\lambda, j}\right) \\
& =\left(\frac{1}{n} S_{\mathbf{x}_{\mathcal{S}_{t}}}^{T} S_{\mathbf{x}_{\mathcal{S}_{t}}}+\lambda \mathbf{I}_{n}\right)^{-1}\left(\frac{1}{n} \sum_{i=1}^{n}\left(x_{i j}-f_{\lambda, j}\left(\mathbf{x}_{i S_{t}}\right)\right) K_{\mathbf{x}_{i S_{t}}}-L_{K, t}\left(f_{j, \mathcal{S}_{t}}^{*}-f_{\lambda, j}\right)\right) .
\end{aligned}
$$

Thus, we have

$$
\left\|\widehat{f}_{j}-f_{\lambda, j}\right\|_{K} \leq \frac{1}{\lambda}\left\|\frac{1}{n} \sum_{i=1}^{n}\left(x_{i j}-f_{\lambda, j}\left(\mathbf{x}_{i S_{t}}\right)\right) K_{\mathbf{x}_{i S_{t}}}-L_{K, t}\left(f_{j, \mathcal{S}_{t}}^{*}-f_{\lambda, j}\right)\right\|_{K}
$$

For notation simplicity, we denote $\xi_{i}=\left(x_{i j}-f_{\lambda, j}\left(\mathbf{x}_{i \mathcal{S}_{t}}\right)\right) K_{\mathbf{x}_{i S_{t}}}$, which satisfies

$$
\begin{aligned}
& E\left[\xi_{i}\right]=L_{K, t}\left(f_{j, \mathcal{S}_{t}}^{*}-f_{\lambda, j}\right), \quad\left\|\xi_{i}\right\|_{K} \leq \frac{\kappa_{1}}{2}\left(C_{\mathcal{X}}+2\left\|f_{\lambda, j}\right\|_{\infty}\right) \\
& \text { and } E\left[\left\|\xi_{i}\right\|_{K}^{2}\right] \leq \kappa_{1}^{2} \int\left(x_{j}-f_{\lambda, j}\left(\mathbf{x}_{\mathcal{S}_{t}}\right)\right)^{2} \mathrm{~d} \rho_{\mathbf{x}_{\mathcal{S}_{t} \cup\{j\}}},
\end{aligned}
$$

and then by Lemma 2 of Smale and Zhou (2007), for any $\delta_{n} \in(0,1)$, with probability at least $1-\delta_{n}$, we have

$$
\left\|\widehat{f}_{j}-f_{\lambda, j}\right\|_{K} \leq \frac{\kappa_{1}\left(C_{\mathcal{X}}+2\left\|f_{\lambda, j}\right\|_{\infty}\right) \log \left(2 / \delta_{n}\right)}{\lambda n}+\frac{\kappa_{1}}{\lambda} \sqrt{\frac{2 \int\left(x_{j}-f_{\lambda, j}\left(\mathbf{x}_{\mathcal{S}_{t}}\right)\right)^{2} \mathrm{~d} \rho_{\mathbf{x}_{\mathcal{S}_{t} \cup\{j\}}} \log \left(2 / \delta_{n}\right)}{n}} .
$$

It is clear that by pluging $f_{j}=0$ into (7), we have $\left\|f_{\lambda, j}\right\|_{K} \leq \frac{\kappa_{1}\left\|f_{j, \mathcal{S}_{s}}\right\|_{K}}{\lambda^{1 / 2}}$, and thus we have $\left\|f_{\lambda, j}\right\|_{\infty} \leq \kappa_{1}\left\|f_{\lambda, j}\right\|_{K}<\frac{\kappa_{1}^{2}\left\|f_{j, \mathcal{S}_{t}}\right\|_{K}}{\lambda^{1 / 2}}$. To bound $\int\left(x_{j}-f_{\lambda, j}\left(\mathbf{x}_{\mathcal{S}_{t}}\right)\right)^{2} \mathrm{~d} \rho_{\mathbf{x}_{\mathcal{S}_{t} \cup\{j\}}}$, simple calculation yields that for any $f \in \mathcal{H}_{K}$,

$$
\begin{equation*}
\int\left(x_{j}-f\left(\mathbf{x}_{\mathcal{S}_{t}}\right)\right)^{2} \mathrm{~d} \rho_{\mathbf{x}_{\mathcal{S}_{t} \cup\{j\}}}-\int\left(x_{j}-f_{j, \mathcal{S}_{t}}^{*}\left(\mathbf{x}_{\mathcal{S}_{t}}\right)\right)^{2} \mathrm{~d} \rho_{\mathbf{x}_{\mathcal{S}_{t} \cup\{j\}}}=\left\|f-f_{j, \mathcal{S}_{t}}^{*}\right\|_{\mathcal{L}^{2}\left(\mathcal{X}_{\mathcal{S}_{t}}, \rho_{\mathbf{x}_{\mathcal{S}_{t}}}\right)}^{2} \tag{8}
\end{equation*}
$$

By taking $f=0$, there holds

$$
\int\left(x_{j}-f_{j, S_{t}}^{*}\left(\mathbf{x}_{\mathcal{S}_{t}}\right)\right)^{2} \mathrm{~d} \rho_{\mathbf{x}_{s_{t} \cup\{ \}}}+\left\|0-f_{j, S_{t}}^{*}\right\|_{\mathcal{L}^{2}\left(\mathcal{X}_{S_{t}}, \rho_{x_{S_{t}}}\right)}^{2}=E\left[f_{j}^{*}\left(\mathbf{x}_{\mathrm{pa}_{j}}\right)+n_{j}\right]^{2} \leq \kappa_{1}^{2}\left\|f_{j, S_{t}}^{*}\right\|_{K}^{2}+\sigma_{j}^{2},
$$

where the last equality follows from the generating scheme of Model 1 in the main text and the last inequality follows from Assumption 3 in the main text. Moreover, we notice that from (7) and by the definition of $f_{\lambda, j}$, there holds

$$
\left\|f_{j, \mathcal{S}_{t}}^{*}-f_{\lambda, j}\right\|_{\mathcal{L}^{2}\left(\mathcal{X}_{\mathcal{S}_{t}}, \rho_{\mathbf{x}_{\mathcal{S}_{t}}}\right)}^{2}+\lambda\left\|f_{\lambda, j}\right\|_{K}^{2} \leq\left\|f_{j, \mathcal{S}_{t}}^{*}-0\right\|_{\mathcal{L}^{2}\left(\mathcal{X}_{\mathcal{S}_{t}}, \rho_{\boldsymbol{x}_{\mathcal{S}_{t}}}\right)}^{2}+\lambda\|0\|_{K}^{2} \leq \kappa_{1}^{2}\left\|f_{j, \mathcal{S}_{t}}^{*}\right\|_{K}^{2},
$$

and then, by plugging $f=f_{\lambda, j}$ into (8), we have
$\int\left(x_{j}-f_{\lambda, j}\left(\mathbf{x}_{\mathcal{S}_{t}}\right)\right)^{2} \mathrm{~d} \rho_{\mathbf{x}_{S_{t} \cup\{j\}}}=\int\left(x_{j}-f_{j, \mathcal{S}_{t}}^{*}\left(\mathbf{x}_{\mathcal{S}_{t}}\right)\right)^{2} \mathrm{~d} \rho_{\mathrm{x}_{s_{t} \cup\{j\}}}+\left\|f_{\lambda, j}-f_{j, \mathcal{S}_{t}}^{*}\right\|_{2}^{2} \leq 2 \kappa_{1}^{2}\left\|f_{j, \mathcal{S}_{t}}^{*}\right\|_{K}^{2}+\sigma_{j}^{2}$,

Therefore, with probability $1-\delta_{n}$, we have

$$
\begin{align*}
\left\|\widehat{f}_{j}-f_{\lambda, j}\right\|_{K} & \leq \frac{\kappa_{1}\left(C_{\mathcal{X}}+2 \kappa_{1}^{2}\left\|f_{j, \mathcal{S}_{t}}^{*}\right\|_{K} / \lambda^{1 / 2}\right) \log \left(2 / \delta_{n}\right)}{\lambda n}+\frac{\kappa_{1}}{\lambda} \sqrt{\frac{2\left(2 \kappa_{1}^{2}\left\|f_{j, \mathcal{S}_{t}}^{*}\right\|_{K}^{2}+\sigma_{j}^{2}\right) \log \left(2 / \delta_{n}\right)}{n}} \\
& \leq \frac{C_{j 0} \log \left(2 / \delta_{n}\right)}{\lambda \sqrt{n}} \tag{9}
\end{align*}
$$

where $C_{j 0}=2 \kappa_{1} \max \left\{C_{\mathcal{X}}+2 \kappa_{1}\left\|f_{j, \mathcal{S}_{t}}^{*}\right\|_{K}, \sqrt{2\left(2 \kappa_{1}^{2}\left\|f_{j, \mathcal{S}_{t}}^{*}\right\|_{K}^{2}+\sigma_{j}^{2}\right)}\right\}$ and the last inequality follows from the fact that $n \lambda \rightarrow \infty$.

Then, we turn to bound $\left\|f_{\lambda, j}-f_{j, \mathcal{S}_{t}}^{*}\right\|_{K}$ following similar treatments as in Smale and Zhou (2005). Specifically, for the integral operator $L_{K, t}$ defined in Section 4 of the main text with normalized eigenpairs $\left\{\left(\mu_{k}, \phi_{k}\right)\right\}_{k=1}^{\infty}$, we have

$$
L_{K, t}^{1 / 2} \phi_{i}=\sum_{j \geq 1} \mu_{j}^{1 / 2}\left\langle\phi_{i}, \phi_{j}\right\rangle_{2} \phi_{j}=\mu_{i}^{1 / 2} \phi_{i} \in \mathcal{H}_{K},
$$

and

$$
\left\|\mu_{i}^{1 / 2} \phi_{i}\right\|_{K}=\left(\sum_{j \geq 1} \frac{\left\langle\mu_{i}^{1 / 2} \phi_{i}, \phi_{j}\right\rangle_{2}^{2}}{\mu_{j}}\right)^{1 / 2}=\left\langle\phi_{i}, \phi_{i}\right\rangle_{2}=1
$$

Thus by Assumption 2 of the main text, there exists some function $h_{j, t}=\sum_{i \geq 1}\left\langle h_{j, t}, \phi_{i}\right\rangle_{2} \phi_{i} \in$ $\mathcal{L}^{2}\left(\mathcal{X}_{\mathcal{S}_{t}}, \rho_{\mathbf{x}_{\mathcal{S}_{t}}}\right)$ such that $f_{j, \mathcal{S}_{t}}^{*}=L_{K, t}^{r} h_{j, t}=\sum_{i \geq 1} \mu_{i}^{r}\left\langle h_{j, t}, \phi_{i}\right\rangle_{2} \phi_{i} \in \mathcal{H}_{K}$.

Therefore, we have

$$
f_{\lambda, j}-f_{j, \mathcal{S}_{t}}^{*}=\left(L_{K, t}+\lambda I\right)^{-1}\left(-\lambda f_{j, \mathcal{S}_{t}}^{*}\right)=-\sum_{i \geq 1} \frac{\lambda}{\lambda+\mu_{i}} \mu_{i}^{r}\left\langle h_{j, t}, \phi_{i}\right\rangle_{2} \phi_{i},
$$

and then, the K-norm of $f_{\lambda, j}-f_{j, \mathcal{S}_{t}}^{*}$ can be bounded as

$$
\begin{align*}
\left\|f_{\lambda, j}-f_{j, \mathcal{S}_{t}}^{*}\right\|_{K}^{2} & =\sum_{i \geq 1}\left(\frac{\lambda}{\lambda+\mu_{i}} \mu_{i}^{r-1 / 2}\left\langle h_{j, t}, \phi_{i}\right\rangle_{2}\right)^{2} \\
& =\lambda^{2 r-1} \sum_{i \geq 1}\left(\frac{\lambda}{\lambda+\mu_{i}}\right)^{3-2 r}\left(\frac{\mu_{i}}{\lambda+\mu_{i}}\right)^{2 r-1}\left\langle h_{j, t}, \phi_{i}\right\rangle_{2}^{2} \\
& \leq \lambda^{2 r-1} \sum_{i \geq 1}\left\langle h_{j, t}, \phi_{i}\right\rangle_{2}^{2}=\lambda^{2 r-1}\left\|h_{j, t}\right\|_{2}^{2}=\lambda^{2 r-1}\left\|L_{K, t}^{-r} f_{j, \mathcal{S}_{t}}^{*}\right\|_{2}^{2} \tag{10}
\end{align*}
$$

Combining (9) and (10), under the events $\left\{\widehat{\mathcal{A}}_{0}=\mathcal{A}_{0}, \ldots, \widehat{\mathcal{A}}_{t-1}=\mathcal{A}_{t-1}\right\}$ and \mathcal{J}, with probability at least $1-\delta_{n}$, we have

$$
\begin{aligned}
\left\|\widehat{f}_{j}-f_{j, \mathcal{S}_{t}}^{*}\right\|_{K} & \leq\left\|\widehat{f}_{j}-f_{\lambda, j}\right\|_{K}+\left\|f_{\lambda, j}-f_{j, \mathcal{S}_{t}}^{*}\right\|_{K} \\
& \leq \frac{C_{j 0}}{\lambda \sqrt{n}} \log \frac{2}{\delta_{n}}+\lambda^{r-1 / 2}\left\|L_{K, t}^{-r} f_{j, \mathcal{S}_{t}}^{*}\right\|_{2}
\end{aligned}
$$

Moreover, we notice that $\left\|\widehat{f}_{j}-f_{j, \mathcal{S}_{t}}^{*}\right\|_{\infty} \leq \kappa_{1}\left\|\widehat{f}_{j}-f_{j, \mathcal{S}_{t}}^{*}\right\|_{K}$ by the reproducing property and the requirement that $\left\|f_{j, \mathcal{S}_{t}}^{*}\right\|_{K}^{2} \leq R / 2$ in Section 4 of the main text. This completes the proof.

Proof of Theorem 4. Given the event $\left\{\widehat{\mathcal{A}}_{0}=\mathcal{A}_{0}, \ldots, \widehat{\mathcal{A}}_{t-1}=\mathcal{A}_{t-1}\right\}$, we have $\mathcal{S}_{t}=\widehat{\mathcal{S}}_{t}$. Then, for
any $j \in \mathcal{V} \backslash\left\{\mathcal{S}_{t}\right\}$, there holds

$$
\begin{align*}
& \left|\widehat{E} \widehat{\operatorname{Var}}\left(x_{j} \mid \mathbf{x}_{\mathcal{S}_{t}}\right)-E \operatorname{Var}\left(x_{j} \mid \mathbf{x}_{\mathcal{S}_{t}}\right)\right| \\
& =\left|\frac{1}{n} \sum_{i=1}^{n}\left(x_{i j}\right)^{2}-\frac{1}{n} \sum_{i=1}^{n}\left(\widehat{f}_{j}\left(\mathbf{x}_{i \mathcal{S}_{t}}\right)\right)^{2}-E\left[x_{j}^{2}\right]+E\left[E\left[x_{j} \mid \mathbf{x}_{\mathcal{S}_{t}}\right]^{2}\right]\right| \\
& \leq\left|E\left[x_{j}^{2}\right]-\frac{1}{n} \sum_{i=1}^{n}\left(x_{i j}\right)^{2}\right|+\left|E\left[E\left[x_{j} \mid \mathbf{x}_{\mathcal{S}_{t}}\right]^{2}\right]-\frac{1}{n} \sum_{i=1}^{n}\left(\widehat{f}_{j}\left(\mathbf{x}_{i \mathcal{S}_{t}}\right)\right)^{2}\right| . \tag{11}
\end{align*}
$$

To bound the first term of (11), we notice that each x_{j} is required to be centered with mean zero in Section 2 of the main text, which implies that zero belong to the support \mathcal{X}, and then $x_{i j}^{2}$ are bounded by $\frac{C_{\mathcal{X}}^{2}}{4}$ from the definition of $C_{\mathcal{X}}$, which denotes the diameter of the support \mathcal{X}. Then by the Hoeffding's inequality, for any $\frac{\zeta}{2}>0$, there holds

$$
\begin{equation*}
P\left(\left|E\left[x_{j}^{2}\right]-\frac{1}{n} \sum_{i=1}^{n}\left(x_{i j}\right)^{2}\right|>\frac{\zeta}{2}\right) \leq 2 \exp \left(-\frac{8 n \zeta^{2}}{C_{\mathcal{X}}^{4}}\right) \tag{12}
\end{equation*}
$$

Next, the second term of (11) can be decomposed as

$$
\begin{aligned}
& \left|E\left[E\left[x_{j} \mid \mathbf{x}_{\mathcal{S}_{t}}\right]^{2}\right]-\frac{1}{n} \sum_{i=1}^{n}\left(\widehat{f}_{j}\left(\mathbf{x}_{i \mathcal{S}_{t}}\right)\right)^{2}\right| \\
& \leq\left|E\left[E\left[x_{j} \mid \mathbf{x}_{\mathcal{S}_{t}}\right]^{2}-\widehat{f}_{j}^{2}\left(\mathbf{x}_{\mathcal{S}_{t}}\right)\right]\right|+\left|E\left[\widehat{f}_{j}^{2}\left(\mathbf{x}_{\mathcal{S}_{t}}\right)\right]-\frac{1}{n} \sum_{i=1}^{n}\left(\widehat{f}_{j}\left(\mathbf{x}_{i \mathcal{S}_{t}}\right)\right)^{2}\right| \\
& =\Delta_{1}+\Delta_{2}
\end{aligned}
$$

and thus it suffices to bound Δ_{1} and Δ_{2} sequentially under the events $\left\{\widehat{\mathcal{A}}_{0}=\mathcal{A}_{0}, \ldots, \widehat{\mathcal{A}}_{t-1}=\mathcal{A}_{t-1}\right\}$ and \mathcal{J}.

To bound Δ_{1}, we notice that

$$
\begin{aligned}
\Delta_{1} & =\left|E\left[f_{j, \mathcal{S}_{t}}^{*}\left(\mathbf{x}_{\mathcal{S}_{t}}\right)\left(f_{j, \mathcal{S}_{t}}^{*}\left(\mathbf{x}_{\mathcal{S}_{t}}\right)-\widehat{f}_{j}\left(\mathbf{x}_{\mathcal{S}_{t}}\right)\right)\right]+E\left[\widehat{f}_{j}\left(\mathbf{x}_{\mathcal{S}_{t}}\right)\left(f_{j, \mathcal{S}_{t}}^{*}\left(\mathbf{x}_{\mathcal{S}_{t}}\right)-\widehat{f}_{j}\left(\mathbf{x}_{\mathcal{S}_{t}}\right)\right)\right]\right| \\
& \leq\left\|f_{j, \mathcal{S}_{t}}^{*}-\widehat{f}_{j}\right\|_{\infty}\left|\int\right| f_{j, \mathcal{S}_{t}}^{*}\left(\mathbf{x}_{\mathcal{S}_{t}}\right)\left|d \rho_{\mathbf{x}_{\mathcal{S}_{t}}}+\int\right| \widehat{f}_{j}\left(\mathbf{x}_{\mathcal{S}_{t}}\right)\left|d \rho_{\mathbf{x}_{\mathcal{S}_{t}}}\right| \\
& \leq 2 \kappa_{1} \max \left\{\left\|\widehat{f}_{j}\right\|_{K},\left\|f_{j, \mathcal{S}_{t}}^{*}\right\|_{K}\right\}\left\|f_{j, \mathcal{S}_{t}}^{*}-\widehat{f_{j}}\right\|_{\infty} \leq 2 \kappa_{1} R\left\|f_{j, \mathcal{S}_{t}}^{*}-\widehat{f}_{j}\right\|_{\infty},
\end{aligned}
$$

where the last inequality follows from the reproducing property of RKHS, the requirement that $\left\|f_{j, \mathcal{S}_{t}}^{*}\right\|_{K} \leq R / 2$ in Section 4 of the main text and and under the event \mathcal{J} that $\left\|\widehat{f}_{j}\right\|_{K} \leq R$. Then, by Lemma $S 1$, with probability at least $1-\delta_{n} / 2$, we have

$$
\begin{equation*}
\Delta_{1} \leq 2 \kappa_{1}^{2} R\left(\frac{C_{j 0}}{\lambda \sqrt{n}} \log \frac{4}{\delta_{n}}+\lambda^{r-1 / 2}\left\|L_{K, t}^{-r} f_{j, \mathcal{S}_{t}}^{*}\right\|_{2}\right) \tag{13}
\end{equation*}
$$

To bound Δ_{2}, we notice that

$$
\begin{aligned}
\Delta_{2} & =\left|\int \widehat{f}_{j}\left(\mathbf{x}_{\mathcal{S}_{t}}\right)\left\langle\widehat{f}_{j}, K_{\mathbf{x}_{\mathcal{S}_{t}}}\right\rangle_{K} \mathrm{~d} \rho_{\mathbf{x}_{\mathcal{S}_{t}}}-\frac{1}{n} \sum_{i=1}^{n} \widehat{f}_{j}\left(\mathbf{x}_{i S_{t}}\right)\left\langle\widehat{f_{j}}, K_{\mathbf{x}_{i S_{t}}}\right\rangle_{K}\right| \\
& =\left|\left\langle\widehat{f} j, \int \widehat{f}_{j}\left(\mathbf{x}_{\mathcal{S}_{t}}\right) K_{\mathbf{x}_{\mathcal{S}_{t}}} \mathrm{~d} \rho_{\mathbf{x}_{\mathcal{S}_{t}}}\right\rangle_{K}-\frac{1}{n}\left\langle\widehat{f}, S_{\mathbf{x}_{S_{t}}}^{T} S_{\mathbf{x}_{\mathcal{S}_{t}}} \widehat{f}_{j}\right\rangle_{K}\right| \\
& =\left|\left\langle\widehat{f_{j}}, \int \widehat{f}_{j}\left(\mathbf{x}_{\mathcal{S}_{t}}\right) K_{\mathbf{x}_{\mathcal{S}_{t}}} d \rho_{\mathbf{x}_{\mathcal{S}_{t}}}-\frac{1}{n} S_{\mathbf{x}_{S_{t}}}^{T} S_{\mathbf{x}_{\mathcal{S}_{t}}} \widehat{f}_{j}\right\rangle_{K}\right| \\
& =\left|\left\langle\widehat{f}_{j},\left(L_{K, t}-\frac{1}{n} S_{\mathbf{x}_{\mathcal{S}_{t}}}^{T} S_{\mathbf{x}_{\mathcal{S}_{t}}}\right) \widehat{f}_{j}\right\rangle_{K}\right| \leq\left\|\widehat{f}_{j}\right\|_{K}\left\|L_{K, t}-\frac{1}{n} S_{\mathbf{x}_{\mathcal{S}_{t}}}^{T} S_{\mathbf{x}_{\mathcal{S}_{t}}}\right\|_{H S},
\end{aligned}
$$

where $S_{\mathbf{x}_{S_{t}}}^{T}$ and $S_{\mathbf{x}_{\mathcal{S}_{t}}}$ denote the sampling operators defined in Lemma $S 1$, and $\|\cdot\|_{H S}$ denotes the norm endowed with a Hilbert space $H S(K)$ containing all the Hilbert-Schmidt operators on \mathcal{H}_{K} and satisfying $\|T\|_{K} \leq\|T\|_{H S}$ for any $T \in H S(K)$. Note that under the event \mathcal{J}, we have $\left\|\widehat{f}_{j}\right\|_{K} \leq R$. Moreover, by Lemma 18 of Rosasco et al. (2013), with probability at least $1-\delta_{n} / 2$,
we have

$$
\left\|L_{K, t}-\frac{1}{n} S_{\mathbf{x}_{\mathcal{S}_{t}}}^{T} S_{\mathbf{x}_{\mathcal{S}_{t}}}\right\|_{H S} \leq \frac{2 \sqrt{2} \kappa_{1}^{2}}{\sqrt{n}} \log \frac{4}{\delta_{n}}
$$

Clearly, with probability at least $1-\delta_{n} / 2$, we have $\Delta_{2} \leq \frac{2 R \sqrt{2} \kappa_{1}^{2}}{\sqrt{n}} \log \frac{4}{\delta_{n}}$.
Combining the upper bounds of Δ_{1} and Δ_{2}, with probability at least $1-\delta_{n}$, there holds

$$
\begin{aligned}
& \left|E\left[E\left[x_{j} \mid \mathbf{x}_{\mathcal{S}_{t}}\right]^{2}\right]-\frac{1}{n} \sum_{i=1}^{n}\left(\widehat{f}_{j}\left(\mathbf{x}_{i \mathcal{S}_{t}}\right)\right)^{2}\right| \\
& \leq 2 \kappa_{1}^{2} R\left(\frac{C_{j 0}}{\lambda \sqrt{n}} \log \frac{4}{\delta_{n}}+\lambda^{r-1 / 2}\left\|L_{K, t}^{-r} f_{j, \mathcal{S}_{t}}^{*}\right\|_{2}\right)+\frac{2 R \sqrt{2} \kappa_{1}^{2}}{\sqrt{n}} \log \frac{4}{\delta_{n}} \\
& \leq 2 \kappa_{1}^{2} R\left(\frac{C_{j 0}+\sqrt{2}}{\lambda \sqrt{n}} \log \frac{4}{\delta_{n}}+\lambda^{r-1 / 2}\left\|L_{K, t}^{-r} f_{j, \mathcal{S}_{t}}^{*}\right\|_{2}\right) .
\end{aligned}
$$

Then, by taking $\lambda=n^{-\frac{1}{2 r+1}}$, for any $\delta_{n} \in(0,1)$, with probability at least $1-\delta_{n}$ there holds

$$
\left|E\left[E\left[x_{j} \mid \mathbf{x}_{\mathcal{S}_{t}}\right]^{2}\right]-\frac{1}{n} \sum_{i=1}^{n}\left(\widehat{f}_{j}\left(\mathbf{x}_{i S_{t}}\right)\right)^{2}\right| \leq C_{j t} n^{-\frac{2 r-1}{2(2 r+1)}} \log \frac{4}{\delta_{n}},
$$

where $C_{j t}=6 \kappa_{1}^{2} R \max \left\{C_{j 0}, \sqrt{2},\left\|L_{K, t}^{-r} f_{j, \mathcal{S}_{t}}^{*}\right\|_{2}\right\}$. Correspondingly, for any $\zeta>0$, we have

$$
\begin{align*}
& P\left(\left.\left|E\left[E\left[x_{j} \mid \mathbf{x}_{\mathcal{S}_{t}}\right]^{2}\right]-\frac{1}{n} \sum_{i=1}^{n}\left(\widehat{f}_{j}\left(\mathbf{x}_{i S_{t}}\right)\right)^{2}\right|>\frac{\zeta}{2} \right\rvert\, \widehat{\mathcal{A}}_{0}=\mathcal{A}_{0}, \ldots, \widehat{\mathcal{A}}_{t-1}=\mathcal{A}_{t-1}, \mathcal{J}\right) \\
& \leq 4 \exp \left(-\frac{\zeta}{2 C_{j t}} n^{\frac{2 r-1}{2(2 r+1)}}\right) \tag{14}
\end{align*}
$$

Combining (12) and (14), for any $\zeta>0$, there holds

$$
\begin{align*}
& P\left(\left|E \operatorname{Var}\left(x_{j} \mid \mathbf{x}_{\mathcal{S}_{t}}\right)-\widehat{E} \widehat{\operatorname{Var}}\left(x_{j} \mid \mathbf{x}_{\mathcal{S}_{t}}\right)\right|>\zeta \mid \widehat{\mathcal{A}}_{0}=\mathcal{A}_{0}, \ldots, \widehat{\mathcal{A}}_{t-1}=\mathcal{A}_{t-1}, \mathcal{J}\right) \\
& \leq 2 \exp \left(-\frac{8 n \zeta^{2}}{C_{\mathcal{X}}^{4}}\right)+4 \exp \left(-\frac{\zeta}{2 C_{j t}} n^{\frac{2 r-1}{2(2 r+1)}}\right) \tag{15}
\end{align*}
$$

This completes the proof of the first part of Theorem 4.

Next, we define the following event

$$
\mathcal{E}_{1 t}=\left\{\max _{j \in \mathcal{V} \backslash\left\{\mathcal{S}_{t}\right\}}\left|E \operatorname{Var}\left(x_{j} \mid \mathbf{x}_{\mathcal{S}_{t}}\right)-\widehat{E \operatorname{Var}}\left(x_{j} \mid \mathbf{x}_{\mathcal{S}_{t}}\right)\right| \leq \frac{M_{\max }}{4}\right\}
$$

and use the notation $\mathcal{E}_{1 t}^{c}$ to denote its complementary. Then, by (15), we have

$$
\begin{align*}
& P\left(\mathcal{E}_{1 t}^{c} \mid \widehat{\mathcal{A}}_{0}=\mathcal{A}_{0}, \ldots, \widehat{\mathcal{A}}_{t-1}=\mathcal{A}_{t-1}, \mathcal{J}\right) \\
& \leq 2\left(p-\left|\mathcal{S}_{t}\right|\right) \exp \left(-\frac{n M_{\max }^{2}}{2 C_{\mathcal{X}}^{4}}\right)+4\left(p-\left|\mathcal{S}_{t}\right|\right) \exp \left(-\frac{M_{\max } n^{\frac{2 r-1}{2(2 r+1)}}}{8 C_{j t}}\right) \tag{16}
\end{align*}
$$

Note that

$$
\begin{align*}
& P\left(\widehat{\mathcal{A}}_{t} \neq \mathcal{A}_{t} \mid \widehat{\mathcal{A}}_{0}=\mathcal{A}_{0}, \ldots, \widehat{\mathcal{A}}_{t-1}=\mathcal{A}_{t-1}, \mathcal{J}\right) \\
& \leq \\
& P\left(\widehat{\mathcal{A}}_{t} \neq \mathcal{A}_{t}, \mathcal{E}_{1 t} \mid \widehat{\mathcal{A}}_{0}=\mathcal{A}_{0}, \ldots, \widehat{\mathcal{A}}_{t-1}=\mathcal{A}_{t-1}, \mathcal{J}\right)+P\left(\mathcal{E}_{1 t}^{c} \mid \widehat{\mathcal{A}}_{0}=\mathcal{A}_{0}, \ldots, \widehat{\mathcal{A}}_{t-1}=\mathcal{A}_{t-1}, \mathcal{J}\right) \\
& \leq \\
& P\left(\exists j \in \mathcal{A}_{t} \text { such that }\left|\widehat{E} \operatorname{Var}\left(x_{j} \mid \mathbf{x}_{\mathcal{S}_{t}}\right)-\widehat{\sigma}_{\text {min }}^{(t)}\right| \geq \epsilon_{t}, \mathcal{E}_{1 t} \mid \widehat{\mathcal{A}}_{0}=\mathcal{A}_{0}, \ldots, \widehat{\mathcal{A}}_{t-1}=\mathcal{A}_{t-1}, \mathcal{J}\right) \\
& \quad+P\left(\exists j \in \mathcal{V} \backslash\left\{\mathcal{S}_{t} \cup \mathcal{A}_{t}\right\} \text { such that }\left|\widehat{E} \operatorname{Var}\left(x_{j} \mid \mathbf{x}_{\mathcal{S}_{t}}\right)-\widehat{\sigma}_{\text {min }}^{(t)}\right|<\epsilon_{t}, \mathcal{E}_{1 t} \mid \widehat{\mathcal{A}}_{0}=\mathcal{A}_{0}, \ldots, \widehat{\mathcal{A}}_{t-1}=\mathcal{A}_{t-1}, \mathcal{J}\right) \tag{17}\\
& \quad+P\left(\mathcal{E}_{1 t}^{c} \mid \widehat{\mathcal{A}}_{0}=\mathcal{A}_{0}, \ldots, \widehat{\mathcal{A}}_{t-1}=\mathcal{A}_{t-1}, \mathcal{J}\right) \\
& = \\
& P_{3}+P_{4}+P\left(\mathcal{E}_{1 t}^{c} \mid \widehat{\mathcal{A}}_{0}=\mathcal{A}_{0}, \ldots, \widehat{\mathcal{A}}_{t-1}=\mathcal{A}_{t-1}, \mathcal{J}\right) .
\end{align*}
$$

Note that following the similar treatments as that of P_{1} and P_{2} in the proof of Theorem 3 in the main text and by taking $\epsilon_{t}=\frac{M_{\max }}{2}$, we have $P_{3}=0$ and $P_{4}=0$. Finally, the bound (17) reduces to

$$
\begin{aligned}
& P\left(\widehat{\mathcal{A}}_{t} \neq \mathcal{A}_{t} \mid \widehat{\mathcal{A}}_{0}=\mathcal{A}_{0}, \ldots, \widehat{\mathcal{A}}_{t-1}=\mathcal{A}_{t-1}, \mathcal{J}\right) \\
& \leq P\left(\mathcal{E}_{1 t}^{c} \mid \widehat{\mathcal{A}}_{0}=\mathcal{A}_{0}, \ldots, \widehat{\mathcal{A}}_{t-1}=\mathcal{A}_{t-1}, \mathcal{J}\right) \\
& \leq 2\left(p-\left|\mathcal{S}_{t}\right|\right) \exp \left(-\frac{n M_{\max }^{2}}{2 C_{\mathcal{X}}^{4}}\right)+4\left(p-\left|\mathcal{S}_{t}\right|\right) \exp \left(-\frac{M_{\max } n^{\frac{2 r-1}{2(2 r+1)}}}{8 C_{j t}}\right)
\end{aligned}
$$

This completes the proof.

Proof of Lemma 1. Given the event $\left\{\widehat{\mathcal{A}}_{0}=\mathcal{A}_{0}, \ldots, \widehat{\mathcal{A}}_{t}=\mathcal{A}_{t}\right\}, t \geq 1$, we have $\mathcal{S}_{t}=\widehat{\mathcal{S}}_{t}$. At first, for some positive constant C_{3}, we define the following event

$$
\mathcal{E}_{2 t}=\left\{\max _{j \in \mathcal{A}_{t}, k \in \mathcal{S}_{t}}\left|\left\|\widehat{g}_{j k}\right\|_{n}^{2}-\left\|g_{j k}^{*}\right\|_{2}^{2}\right| \leq C_{3} n^{-\frac{2 r-1}{2(2 r+1)}} \log \left(4\left|\mathcal{S}_{t}\right| \max \left\{n,\left|\mathcal{S}_{t}\right|\right\}\right)\right\}
$$

and use the notation $\mathcal{E}_{2 t}^{c}$ to denote its complementary.
We notice that

$$
\begin{align*}
& P\left(\left\{\mathcal{E}_{j} \neq \widehat{\mathcal{E}}_{j}: j \in \widehat{\mathcal{A}}_{t}\right\} \mid \mathcal{A}_{0}=\widehat{\mathcal{A}}_{0}, \ldots, \mathcal{A}_{t}=\widehat{\mathcal{A}}_{t}, \mathcal{J}\right) \\
& \leq P\left(\left\{\mathcal{E}_{j} \neq \widehat{\mathcal{E}}_{j}: j \in \widehat{\mathcal{A}}_{t}\right\}, \mathcal{E}_{2 t} \mid \mathcal{A}_{0}=\widehat{\mathcal{A}}_{0}, \ldots, \mathcal{A}_{t}=\widehat{\mathcal{A}}_{t}, \mathcal{J}\right) \\
& \quad+P\left(\mathcal{E}_{2 t}^{c} \mid \mathcal{A}_{0}=\widehat{\mathcal{A}}_{0}, \ldots, \mathcal{A}_{t}=\widehat{\mathcal{A}}_{t}, \mathcal{J}\right) \tag{18}
\end{align*}
$$

Note that by the definition that $\widehat{\mathcal{E}}_{j}=\left\{k \rightarrow j,\left\|\widehat{g}_{j k}\right\|_{n}^{2}>v_{n}^{(t)}\right.$, for any $\left.k \in \widehat{\mathcal{S}}_{t}\right\}$ and by Assumption 4 of the main text, for the first term of (18), there holds

$$
\begin{align*}
& P\left(\left\{\mathcal{E}_{j} \neq \widehat{\mathcal{E}}_{j}: j \in \widehat{\mathcal{A}}_{t}\right\}, \mathcal{E}_{2 t} \mid \mathcal{A}_{0}=\widehat{\mathcal{A}}_{0}, \ldots, \mathcal{A}_{t}=\widehat{\mathcal{A}}_{t}, \mathcal{J}\right) \\
& \leq \\
& P\left(\exists k \in \mathrm{pa}_{j} \text { such that }\left\|\widehat{g}_{j k}\right\|_{n}^{2} \leq \nu_{n}^{(t)}, \mathcal{E}_{2 t} \mid \mathcal{A}_{0}=\widehat{\mathcal{A}}_{0}, \ldots, \mathcal{A}_{t}=\widehat{\mathcal{A}}_{t}, \mathcal{J}\right) \\
& \quad+P\left(\exists k \in \widehat{\mathrm{pa}}_{j} \text { such that }\left\|g_{j k}^{*}\right\|_{2}^{2}=0, \mathcal{E}_{2 t} \mid \mathcal{A}_{0}=\widehat{\mathcal{A}}_{0}, \ldots, \mathcal{A}_{t}=\widehat{\mathcal{A}}_{t}, \mathcal{J}\right) \tag{19}\\
& = \\
& P_{5}+P_{6},
\end{align*}
$$

where $\widehat{\mathrm{pa}}_{j}=\left\{k: k \rightarrow j \in \widehat{\mathcal{E}}_{j}\right\}$.
For the bound of P_{5}, by taking $v_{n}^{(t)}=\frac{C_{2}}{2} n^{-\frac{2 r-1}{2(2 r+1)}}\left(\log \left(4\left|\mathcal{S}_{t}\right| \max \left\{n,\left|\mathcal{S}_{t}\right|\right\}\right)\right)^{\beta}$ and Assumption 3 in the main text, we have

$$
\left|\left\|\widehat{g}_{j k}\right\|_{n}^{2}-\left\|g_{j k}^{*}\right\|_{2}^{2}\right| \geq\left\|g_{j k}^{*}\right\|_{2}^{2}-\left\|\widehat{g}_{j k}\right\|_{n}^{2}>2 \nu_{n}^{(t)}-\nu_{n}^{(t)}=\nu_{n}^{(t)},
$$

which contradicts with $\mathcal{E}_{2 t}$. Precisely, under $\mathcal{E}_{2 t}$, we have

$$
\max _{j \in \mathcal{A}_{t}, k \in \mathcal{S}_{t}}\left|\left\|\widehat{g}_{j k}\right\|_{n}^{2}-\left\|g_{j k}^{*}\right\|_{2}^{2}\right| \leq C_{3} n^{-\frac{2 r-1}{2(2 r+1)}} \log \left(4\left|\mathcal{S}_{t}\right| \max \left\{n,\left|\mathcal{S}_{t}\right|\right\}\right),
$$

and then the different rates of convergence lead to the contradiction. Thus, when n is sufficiently large, $P_{5}=0$. To bound P_{6}, it is obvious that $\left|\left\|\widehat{g}_{j k}\right\|_{n}^{2}-\left\|g_{j k}^{*}\right\|_{2}^{2}\right|>\nu_{n}^{(t)}$, which contradicts with $\mathcal{E}_{2 t}$ again, which yields that $P_{6}=0$.

Now, we turn to bound $P\left(\mathcal{E}_{2 t}^{c} \mid \mathcal{A}_{0}=\widehat{\mathcal{A}}_{0}, \ldots, \mathcal{A}_{t}=\widehat{\mathcal{A}}_{t}, \mathcal{J}\right)$. At first, we define the sample operators for gradients $\widehat{D}_{t, l}: \mathcal{H}_{K} \rightarrow \mathcal{R}^{n}$ as $\left(\widehat{D}_{t, l} f\right)_{i}=\left\langle f, \partial_{l} K_{\mathbf{x}_{i} \mathcal{S}_{t}}\right\rangle_{K}$, their adjoint operators $\widehat{D}_{t, l}^{*}: \mathcal{R}^{n} \rightarrow \mathcal{H}_{K}$ as $\widehat{D}_{t, l}^{*} \mathbf{c}=\frac{1}{n} \sum_{i=1}^{n} \partial_{l} K_{\mathbf{x}_{i} S_{t}} c_{i}$, and define the integral operators for gradients $D_{t, l}: \mathcal{H}_{K} \rightarrow \mathcal{L}^{2}\left(\mathcal{X}_{\mathcal{S}_{t}}, \rho_{\mathbf{x}_{\mathcal{S}_{t}}}\right)$ as $D_{t, l} f=\left\langle f, \partial_{l} K_{\mathbf{x}_{\mathcal{S}_{t}}}\right\rangle_{K}, D_{t, l}^{*}: \mathcal{L}^{2}\left(\mathcal{X}_{\mathcal{S}_{t}}, \rho_{\mathbf{x}_{\mathcal{S}_{t}}}\right) \rightarrow \mathcal{H}_{K}$ as $D_{t, l}^{*} f=$ $\int \partial_{l} K_{\mathbf{x}_{\mathcal{S}_{t}}} f\left(\mathbf{x}_{\mathcal{S}_{t}}\right) d \rho_{\mathbf{x}_{\mathcal{S}_{t}}}$. Then, we have

$$
D_{t, l}^{*} D_{t, l} f_{j, \mathcal{S}_{t}}^{*}=\int \partial_{l} K_{\mathbf{x}_{\mathcal{S}_{t}}} g_{j l}^{*}\left(\mathbf{x}_{\mathcal{S}_{t}}\right) d \rho_{\mathbf{x}_{\mathcal{S}_{t}}} \text { and } \widehat{D}_{t, l}^{*} \widehat{D}_{t, l} f_{j, \mathcal{S}_{t}}^{*}=\frac{1}{n} \sum_{i=1}^{n} \partial_{l} K_{\mathbf{x}_{i S_{t}}} g_{j l}^{*}\left(\mathbf{x}_{i \mathcal{S}_{t}}\right)
$$

Note that $D_{t, l}^{*} D_{t, l}$ and $\widehat{D}_{t, l}^{*} \widehat{D}_{t, l}$ are the Hilbert-Schmidt operators belonging to a Hilbert space endowed with norm $\|\cdot\|_{H S}$.

Moreover, we notice that for any $j \in \mathcal{A}_{t}$ and $k \in \mathcal{S}_{t}$

$$
\begin{aligned}
\left|\left\|\widehat{g}_{j k}\right\|_{n}^{2}-\left\|g_{j k}^{*}\right\|_{2}^{2}\right|= & \left|\frac{1}{n} \sum_{i=1}^{n}\left(\widehat{g}_{j k}\left(\mathbf{x}_{i \mathcal{S}_{t}}\right)\right)^{2}-\int\left(g_{j k}^{*}\left(\mathbf{x}_{\mathcal{S}_{t}}\right)\right)^{2} d \rho_{\mathbf{x}_{\mathcal{S}_{t}}}\right| \\
= & \left|\left\langle\widehat{f}_{j}, \frac{1}{n} \sum_{i=1}^{n} \widehat{g}_{j k}\left(\mathbf{x}_{i \mathcal{S}_{t}}\right) \partial_{k} K_{\mathbf{x}_{i S_{t}}}\right\rangle_{K}-\left\langle f_{j, \mathcal{S}_{t}}^{*}, \int g_{j k}^{*}\left(\mathbf{x}_{\mathcal{S}_{t}}\right) \partial_{k} K_{\mathbf{x}_{\mathcal{S}_{t}}} d \rho_{\mathbf{x}_{\mathcal{S}_{t}}}\right\rangle_{K}\right| \\
= & \mid\left\langle\widehat{f}_{j}-f_{j, \mathcal{S}_{t}}^{*}, \widehat{D}_{t, k}^{*} \widehat{D}_{t, k}\left(\widehat{f}_{j}-f_{j, \mathcal{S}_{t}}^{*}\right)\right\rangle_{K}+\left\langle\widehat{D}_{t, k}^{*} \widehat{D}_{t, k} f_{j, \mathcal{S}_{t}}^{*}, \widehat{f}_{j}-f_{j, \mathcal{S}_{t}}^{*}\right\rangle_{K} \\
& +\left\langle f_{j, \mathcal{S}_{t}}^{*}, \widehat{D}_{t, k}^{*} \widehat{D}_{t, k}\left(\widehat{f}_{j}-f_{j, \mathcal{S}_{t}}^{*}\right)\right\rangle_{K}+\left\langle f_{j, \mathcal{S}_{t}}^{*},\left(\widehat{D}_{t, k}^{*} \widehat{D}_{t, k}-D_{t, k}^{*} D_{t, k}\right) f_{j, \mathcal{S}_{t}}^{*}\right\rangle_{K} \mid \\
\leq & \left\|\widehat{f}_{j}-f_{j, \mathcal{S}_{t}}^{*}\right\|_{K}^{2}\left\|\widehat{D}_{t, k}^{*} \widehat{D}_{t, k}\right\|_{H S}+2\left\|\widehat{f}_{j}-f_{j, \mathcal{S}_{t}}^{*}\right\|_{K}\left\|f_{j, \mathcal{S}_{t}}^{*}\right\| \widehat{D}_{K}\left\|\widehat{D}_{t, k}^{*} \widehat{D}_{t, k}\right\|_{H S} \\
& +\left\|\widehat{D}_{t, k}^{*} \widehat{D}_{t, k}-D_{t, k}^{*} D_{t, k}\right\|_{H S}\left\|f_{j, \mathcal{S}_{t}}^{*}\right\|_{K}^{2} .
\end{aligned}
$$

By Assumption 3 in the main text, direct calculation yields that

$$
\max _{k \in \mathcal{S}_{t}}\left\|\widehat{D}_{t, k}^{*} \widehat{D}_{t, k}\right\|_{H S}=\max _{k \in \mathcal{S}_{t}}\left\|\partial_{k} K_{\mathbf{x}_{\mathcal{S}_{t}}}\right\|_{K}^{2} \leq \kappa_{2}^{2}
$$

Moreover, by Lemma 18 of Rosasco et al. (2013), for any $\delta_{n} \in(0,1)$, with probability at least $1-\delta_{n} / 2$, we have

$$
\max _{k \in \mathcal{S}_{t}}\left\|\widehat{D}_{t, k}^{*} \widehat{D}_{t, k}-D_{t, k}^{*} D_{t, k}\right\|_{H S} \leq \frac{2 \sqrt{2} \kappa_{2}^{2}}{\sqrt{n}} \log \frac{4\left|\mathcal{S}_{t}\right|}{\delta_{n}}
$$

given $\left\{\widehat{\mathcal{A}}_{0}=\mathcal{A}_{0}, \ldots, \widehat{\mathcal{A}}_{t}=\mathcal{A}_{t}\right\}$. Thus, by taking $\delta_{n}=\left(\max \left\{n,\left|\mathcal{S}_{t}\right|\right\}\right)^{-1}$, with probability at least $1-\delta_{n} / 2$, there holds

$$
\max _{k \in \mathcal{S}_{t}}\left\|\widehat{D}_{k}^{*} \widehat{D}_{k}-D_{k}^{*} D_{k}\right\|_{H S} \leq \frac{2 \sqrt{2} \kappa_{2}^{2}}{\sqrt{n}} \log \left(4\left|\mathcal{S}_{t}\right| \max \left\{n,\left|\mathcal{S}_{t}\right|\right\}\right)
$$

When $\left\|\widehat{f}_{j}-f_{j, \mathcal{S}_{t}}^{*}\right\|_{K}$ is sufficiently small and by taking $\lambda=n^{-\frac{1}{2 r+1}}$, with probability at least $1-\delta_{n}$, we have

$$
\begin{aligned}
& \max _{j \in \mathcal{A}_{t}, k \in \mathcal{S}_{t}}\left|\left\|\widehat{g}_{j k}\right\|_{n}^{2}-\left\|g_{j k}\right\|_{2}^{2}\right| \\
& \leq \max \left\{\kappa_{2}^{2}, \kappa_{2}^{2}\left\|f_{j, \mathcal{S}_{t}}^{*}\right\|_{K},\left\|f_{j, \mathcal{S}_{t}}^{*}\right\|_{K}^{2}\right\}\left(3 \max _{j \in \mathcal{A}_{t}, k \in \mathcal{S}_{t}}\left\|\widehat{f}_{j}-f_{j, \mathcal{S}_{t}}^{*}\right\|_{K}+\max _{k \in \mathcal{S}_{t}}\left\|\widehat{D}_{k}^{*} \widehat{D}_{k}-D_{k}^{*} D_{k}\right\|_{H S}\right) \\
& \leq \max \left\{\kappa_{2}^{2}, \kappa_{2}^{2}\left\|f_{j, \mathcal{S}_{t}}^{*}\right\|_{K},\left\|f_{j, \mathcal{S}_{t}}^{*}\right\|_{K}^{2}\right\}\left(3 \max _{j \in \mathcal{A}_{t}, k \in \mathcal{S}_{t}}\left\{C_{j 0}+\left\|L_{K, t}^{-r} f_{j, \mathcal{S}_{t}}^{*}\right\|_{2}\right\} n^{\left.-\frac{2 r-1}{2(2 r+1)} \log \frac{4\left|\mathcal{S}_{t}\right|}{\delta_{n}}+\frac{2 \sqrt{2} \kappa_{2}^{2}}{\sqrt{n}} \log \frac{4\left|\mathcal{S}_{t}\right|}{\delta_{n}}\right)}\right. \\
& \leq C_{3} n^{-\frac{2 r-1}{2(2 r+1)}} \log \left(4\left|\mathcal{S}_{t}\right| \max \left\{n,\left|\mathcal{S}_{t}\right|\right\}\right),
\end{aligned}
$$

where $C_{3}=3 \max \left\{\kappa_{2}^{2}, \kappa_{2}^{2}\left\|f_{j, \mathcal{S}_{t}}^{*}\right\|_{K},\left\|f_{j, \mathcal{S}_{t}}^{*}\right\|_{K}^{2}\right\} \max _{j \in \mathcal{A}_{t}, k \in \mathcal{S}_{t}}\left\{3 C_{j 0}, 3\left\|L_{K, t}^{-r} f_{j, \mathcal{S}_{t}}^{*}\right\|_{2}, 2 \sqrt{2} \kappa_{2}^{2}\right\}$. Thus,
we have

$$
P\left(\mathcal{E}_{2 t}^{c} \mid \widehat{\mathcal{A}}_{0}=\mathcal{A}_{0}, \ldots, \widehat{\mathcal{A}}_{t}=\mathcal{A}_{t}, \mathcal{J}\right) \leq \frac{1}{\max \left\{n,\left|\mathcal{S}_{t}\right|\right\}}
$$

Finally, by (18) and (19), we have

$$
P\left(\left\{\mathcal{E}_{j}=\widehat{\mathcal{E}}_{j}: j \in \widehat{\mathcal{A}}_{t}\right\} \mid \mathcal{A}_{0}=\widehat{\mathcal{A}}_{0}, \ldots, \mathcal{A}_{t}=\widehat{\mathcal{A}}_{t}, \mathcal{J}\right) \geq 1-\frac{1}{\max \left\{n,\left|\mathcal{S}_{t}\right|\right\}}
$$

This completes the proof.
Proof for Theorem 5. Note that

$$
P(\widehat{\mathcal{G}} \neq \mathcal{G})=P(\widehat{\mathcal{G}} \neq \mathcal{G}, \mathcal{J})+P\left(\widehat{\mathcal{G}} \neq \mathcal{G}, \mathcal{J}^{c}\right)
$$

For $P\left(\widehat{\mathcal{G}} \neq \mathcal{G}, \mathcal{J}^{c}\right)$, we have

$$
\begin{equation*}
P\left(\widehat{\mathcal{G}} \neq \mathcal{G}, \mathcal{J}^{c}\right) \leq P\left(\mathcal{J}^{c}\right) \leq T p \max _{1 \leq t \leq T-1, j \in \mathcal{V} \backslash\left\{\mathcal{S}_{t}\right\}} P\left(\left\|\widehat{f}_{j}\right\|_{K}>R\right) \tag{20}
\end{equation*}
$$

Note that by Theorem 1 and Lemma 3 of Smale and Zhou (2007), for any t and $j \in \mathcal{V} \backslash\left\{\mathcal{S}_{t}\right\}$, we have $P\left(\left\|\widehat{f}_{j}\right\|_{K}>R\right) \leq \frac{1}{n}$ if the sample size satisfies $n \geq\left(\frac{C_{4}}{R} \log 2 n\right)^{\frac{2(2 r+1)}{2 r-1}}$ for some positive constant C_{4} and the K-norm of the target function is upper bounded by $R / 2$ as assumed in Section 4 of the main text, and thus $P\left(\widehat{\mathcal{G}} \neq \mathcal{G}, \mathcal{J}^{c}\right) \rightarrow 0$ as $n \rightarrow \infty$.

For $P(\widehat{\mathcal{G}} \neq \mathcal{G}, \mathcal{J})$, we have

$$
\begin{aligned}
& P(\widehat{\mathcal{G}} \neq \mathcal{G}, \mathcal{J}) \leq P\left(\cup_{t=0}^{T-1}\left\{\widehat{\mathcal{A}}_{t} \neq \mathcal{A}_{t}\right\} \cup\{\widehat{\mathcal{E}} \neq \mathcal{E}\}, \mathcal{J}\right) \\
& \leq P\left(\widehat{\mathcal{A}}_{0} \neq \mathcal{A}_{0}\right)+\sum_{t=1}^{T-1} P\left(\widehat{\mathcal{A}}_{t} \neq \mathcal{A}_{t} \mid \widehat{\mathcal{A}}_{0}=\mathcal{A}_{0}, \ldots, \widehat{\mathcal{A}}_{t-1}=\mathcal{A}_{t-1}, \mathcal{J}\right)+ \\
& P\left(\widehat{\mathcal{E}} \neq \mathcal{E} \mid \widehat{\mathcal{A}}_{0}=\mathcal{A}_{0}, \ldots, \widehat{\mathcal{A}}_{T-1}=\mathcal{A}_{T-1}, \mathcal{J}\right) \\
& \leq P\left(\widehat{\mathcal{A}}_{0} \neq \mathcal{A}_{0}\right)+\sum_{t=1}^{T-1} P\left(\widehat{\mathcal{A}}_{t} \neq \mathcal{A}_{t} \mid \widehat{\mathcal{A}}_{0}=\mathcal{A}_{0}, \ldots, \widehat{\mathcal{A}}_{t-1}=\mathcal{A}_{t-1}, \mathcal{J}\right)+ \\
& \sum_{t=1}^{T-1} P\left(\left\{\mathcal{E}_{j}=\widehat{\mathcal{E}}_{j}: j \in \widehat{\mathcal{A}}_{t}\right\} \mid \mathcal{A}_{0}=\widehat{\mathcal{A}}_{0}, \ldots, \mathcal{A}_{t}=\widehat{\mathcal{A}}_{t}, \mathcal{J}\right) .
\end{aligned}
$$

Clearly, combining with Theorem 4 and Lemma 1 in the main text, we have $P(\widehat{\mathcal{G}} \neq \mathcal{G}, \mathcal{J}) \rightarrow 0$ as $n \rightarrow \infty$. This completes the proof.

References

Rosasco, L., S. Villa, S. Mosci, M. Santoro, and A. Verri (2013). Nonparametric sparsity and regularization. Journal of Machine Learning Research 14, 1665-1714.

Smale, S. and D. Zhou (2005). Shannon sampling ii: Connections to learning theory. Applied and Computational Harmonic Analysis 19(3), 285-302.

Smale, S. and D. Zhou (2007). Learning theory estimates via integral operators and their approximations. Constructive Approximation 26(2), 153-172.

[^0]: *Shaogao Lv is the corresponding author; the authors contributed equally to this paper and their names are listed in alphabetical ordering.

