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Technical proofs

Proof of Theorem 1. For any t = 0, ..., T − 1, given St, it is always true that E Var(xj|xSt) =

E Var(xj|xpaj) = σ2
j for any j ∈ At, due to the fact that paj ⊂ St if j ∈ At. Moreover, for any

j ∈ V\{St ∪ At}, by total variance, we have

E
[

Var(xj|xSt)
]

= E
[
E[Var(xj|xpaj)|xSt ]

]
+ E

[
Var

(
E[xj|xpaj ]|xSt

)]
= σ2

j + E
[

Var
(
E[xj|xpaj ]|xSt

)]
.

This completes the first part of Theorem 1. Additionally, by Assumption 1 in the main text, for any

j, j′ ∈ At, we have

E
[

Var(xj|xSt)
]

= E
[

Var(xj′|xSt)
]

:= σ2
t,min,

and for any k ∈ V\{St ∪ At}, we have

∗Shaogao Lv is the corresponding author; the authors contributed equally to this paper and their names are listed
in alphabetical ordering.
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E
[

Var(xk|xSt)
]

= σ2
k + E

[
Var

(
E[xk|xpak ]|xSt

)]
> σ2

t,min +Mmax. (1)

Clearly, all the nodes in At can be exactly identified by evaluating the expected conditional

variance. This completes the proof. �

Proof of Theorem 3. Note that the sample variance estimator

V̂ar(xk) =
1

n− 1

n∑
i=1

(
xik −

1

n

n∑
j=1

xjk

)2
=

1(
n
2

)∑
i<j

1

2
(xik − xjk)2

is a U-statistics with kernel 1
2
(xik − xjk)2. By the definition of CX that denotes the diameter of the

support X , then we have 1
2
(xik − xjk)2 ≤ 1

2
C2
X . Then, by McDiarmid’s inequality, for any ζ > 0

and k ∈ V , there holds

P
(∣∣V̂ar(xk)− Var(xk)

∣∣ > ζ
)
≤ 2 exp

(
− nζ2

2C4
X

)
. (2)

Moreover, we define the following event

E0 =
{

max
k∈V

∣∣V̂ar(xk)− Var(xk)
∣∣ ≤ Mmax

4

}
,

and use the notation Ec0 to denote its complementary. By (2), we have

P (Ec0) ≤ 2p exp
(
− nM2

max

32C4
X

)
. (3)
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Note that

P (A0 6= Â0) ≤P (A0 6= Â0, E0) + P (Ec0)

≤P
(
∃ k ∈ A0 such that

∣∣V̂ar(xk)− σ̂(0)
min

∣∣ ≥ ε0, E0
)

+ P
(
∃ k ∈ V\{A0} such that

∣∣V̂ar(xk)− σ̂(0)
min

∣∣ < ε0, E0
)

+ P (Ec0)

=P1 + P2 + P (Ec0), (4)

where σ̂(0)
min = minj∈V V̂ar(xj). For ease notation, we denote k0 = argmink∈V V̂ar(xk), and it

always holds true that k0 ∈ A0. If not, suppose that k0 ∈ V\{A0} and for any j ∈ A0, under the

event E0 and by Theorem 1 in the main text, we have

V̂ar(xk0) > Var(xk0)−
Mmax

2
> Var(xj) +

Mmax

2
> V̂ar(xj),

which contradicts the definition that k0 = argmink∈V V̂ar(xk).

To bound P1, we notice that under the event E0, for any j ∈ A0, there holds

∣∣V̂ar(xj)− V̂ar(xk0)
∣∣ =

∣∣V̂ar(xj)− Var(xj) + Var(xj)− Var(xk0) + Var(xk0)− V̂ar(xk0)
∣∣

≤
∣∣V̂ar(xj)− Var(xj)

∣∣+
∣∣Var(xj)− Var(xk0)

∣∣+
∣∣Var(xk0)− V̂ar(xk0)

∣∣
≤ Mmax

4
+ 0 +

Mmax

4
=
Mmax

2
,

where the last inequity follows from Assumption 1 in the main text and the definition of E0. Thus,

by taking ε0 = Mmax

2
, we have P1 = 0.

Next, we turn to bound P2. Note that for any k ∈ V\{A0}, by Theorem 1 in the main text,

there holds

|Var(xk)− Var(xk0)| ≥Mmax,
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and triangle inequality yields that

∣∣Var(xk)− Var(xk0)
∣∣ ≤ ∣∣Var(xk)− V̂ar(xk)

∣∣+
∣∣V̂ar(xk)− V̂ar(xk0)

∣∣+
∣∣V̂ar(xk0)− Var(xk0)

∣∣.
Then, under the event E0, we have

∣∣V̂ar(xk)− V̂ar(xk0)
∣∣ ≥Mmax −

∣∣Var(xk)− V̂ar(xk)
∣∣− ∣∣V̂ar(xk0)− Var(xk0)

∣∣
≥Mmax −

Mmax

4
− Mmax

4
=
Mmax

2
.

Thus, by taking ε0 = Mmax

2
, there holds P2 = 0.

Clearly, we have

P (A0 6= Â0) ≤ P (Ec0) ≤ 2p exp
(
− nM2

max

32C4
X

)
, (5)

by taking ε0 = Mmax

2
. This completes the proof. �

Lemma S1. Suppose that Assumptions 1– 3 in the main text are satisfied. Given the events {Â0 =

A0, ..., Ât−1 = At−1} and J and assume nλ→∞. Then, with probability at least 1− δn, for any

j ∈ V\{St}, there holds

‖f̂j − f ∗j,St‖∞ ≤
κ1Cj0
λ
√
n

log
2

δn
+ κ1λ

r−1/2‖L−rK,tf
∗
j,St‖2,

where Cj0 = 2κ1 max
{
CX + 2κ1R,

√
2(2κ21R

2 + σ2
j )
}

.

Proof of Lemma S1. To begin with, we define the sampling operator SxSt
: HK → Rn associated

with some copies of xSt ∈ Xt as

SxSt
(f) =

(
f(x1St), ..., f(xnSt)

)T
,
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and the adjoint of the sample operator as STxSt : Rn → HK as

STxSt
c =

n∑
i=1

ciKxiSt
,

where c = (c1, ..., cn)T ∈ Rn. Note that given the events {Â0 = A0, ..., Ât−1 = At−1} and J , we

have St = Ŝt, and ‖f̂j‖K ≤ R, for any j ∈ V\{Ŝt}. Clearly, the solution of (3.2) in Section 3.1 of

the main text can be written as

f̂j =
( 1

n
STxStSxSt

+ λIn

)−1 1

n
STxSt

xj,

where xj = (x1j, ..., xnj)
T and In ∈ Rn×n denotes the identity matrix.

Moreover, we define an immediate function fλ,j as

fλ,j = argmin
fj∈HK

E
[
xj − fj(xSt)

]2
+ λ‖fj‖2K . (6)

Note that solving (6) equals solving the following problem that

fλ,j = argmin
fj∈HK

‖f ∗j,St − fj‖
2
L2(XSt ,ρxSt )

+ λ‖fj‖2K , (7)

by the fact that each node xj is centered with mean zero and Ef(x) = 0 for all f ∈ HK . Thus, the

solution of (6) can be derived as

fλ,j =
(
LK,t + λI

)−1
LK,tf

∗
j,St ,

where the integral operator LK,t is defined in Section 4 of the main text.
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Simple algebra yields that

f̂j − fλ,j =
( 1

n
STxStSxSt

+ λIn

)−1( 1

n
STxSt

xj −
1

n
STxStSxSt

fλ,j − λfλ,j
)

=
( 1

n
STxStSxSt

+ λIn

)−1( 1

n

n∑
i=1

(
xij − fλ,j(xiSt)

)
KxiSt

− LK,t(f ∗j,St − fλ,j)
)
.

Thus, we have

∥∥f̂j − fλ,j∥∥K ≤ 1

λ

∥∥∥ 1

n

n∑
i=1

(
xij − fλ,j(xiSt)

)
KxiSt

− LK,t(f ∗j,St − fλ,j)
∥∥∥
K
.

For notation simplicity, we denote ξi =
(
xij − fλ,j(xiSt)

)
KxiSt

, which satisfies

E[ξi] = LK,t(f
∗
j,St − fλ,j), ‖ξi‖K ≤

κ1
2

(
CX + 2‖fλ,j‖∞

)
and E[‖ξi‖2K ] ≤ κ21

∫ (
xj − fλ,j(xSt)

)2
dρxSt∪{j} ,

and then by Lemma 2 of Smale and Zhou (2007), for any δn ∈ (0, 1), with probability at least

1− δn, we have

‖f̂j − fλ,j‖K ≤
κ1
(
CX + 2‖fλ,j‖∞

)
log(2/δn)

λn
+
κ1
λ

√
2
∫ (

xj − fλ,j(xSt)
)2

dρxSt∪{j} log(2/δn)

n
.

It is clear that by pluging fj = 0 into (7) , we have ‖fλ,j‖K ≤
κ1‖f∗j,St‖K

λ1/2
, and thus we have

‖fλ,j‖∞ ≤ κ1‖fλ,j‖K <
κ21‖f∗j,St‖K

λ1/2
. To bound

∫ (
xj − fλ,j(xSt)

)2
dρxSt∪{j} , simple calculation

yields that for any f ∈ HK ,

∫ (
xj − f(xSt)

)2
dρxSt∪{j} −

∫ (
xj − f ∗j,St(xSt)

)2
dρxSt∪{j} = ‖f − f ∗j,St‖

2
L2(XSt ,ρxSt )

. (8)
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By taking f = 0, there holds

∫ (
xj − f ∗j,St(xSt)

)2
dρxSt∪{j} + ‖0− f ∗j,St‖

2
L2(XSt ,ρxSt )

= E[f ∗j (xpaj) + nj]
2≤ κ21‖f ∗j,St‖

2
K + σ2

j ,

where the last equality follows from the generating scheme of Model 1 in the main text and the last

inequality follows from Assumption 3 in the main text. Moreover, we notice that from (7) and by

the definition of fλ,j , there holds

‖f ∗j,St − fλ,j‖
2
L2(XSt ,ρxSt )

+ λ‖fλ,j‖2K ≤ ‖f ∗j,St − 0‖2L2(XSt ,ρxSt ) + λ‖0‖2K ≤ κ21‖f ∗j,St‖
2
K ,

and then, by plugging f = fλ,j into (8), we have

∫ (
xj − fλ,j(xSt)

)2
dρxSt∪{j} =

∫ (
xj − f ∗j,St(xSt)

)2
dρxSt∪{j} + ‖fλ,j − f ∗j,St‖

2
2 ≤ 2κ21‖f ∗j,St‖

2
K + σ2

j ,

Therefore, with probability 1− δn, we have

‖f̂j − fλ,j‖K ≤
κ1(CX + 2κ21‖f ∗j,St‖K/λ

1/2) log(2/δn)

λn
+
κ1
λ

√
2(2κ21‖f ∗j,St‖

2
K + σ2

j ) log(2/δn)

n

≤ Cj0 log(2/δn)

λ
√
n

, (9)

whereCj0 = 2κ1 max
{
CX+2κ1‖f ∗j,St‖K ,

√
2(2κ21‖f ∗j,St‖

2
K + σ2

j )
}

and the last inequality follows

from the fact that nλ→∞.

Then, we turn to bound ‖fλ,j − f ∗j,St‖K following similar treatments as in Smale and Zhou

(2005). Specifically, for the integral operator LK,t defined in Section 4 of the main text with

normalized eigenpairs {(µk, φk)}∞k=1, we have

L
1/2
K,tφi =

∑
j≥1

µ
1/2
j 〈φi, φj〉2φj = µ

1/2
i φi ∈ HK ,
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and

‖µ1/2
i φi‖K =

(∑
j≥1

〈µ1/2
i φi, φj〉22
µj

)1/2
= 〈φi, φi〉2 = 1.

Thus by Assumption 2 of the main text, there exists some function hj,t =
∑

i≥1〈hj,t, φi〉2φi ∈

L2(XSt , ρxSt ) such that f ∗j,St = LrK,thj,t =
∑

i≥1 µ
r
i 〈hj,t, φi〉2φi ∈ HK .

Therefore, we have

fλ,j − f ∗j,St =
(
LK,t + λI

)−1(− λf ∗j,St) = −
∑
i≥1

λ

λ+ µi
µri 〈hj,t, φi〉2φi,

and then, the K-norm of fλ,j − f ∗j,St can be bounded as

∥∥fλ,j − f ∗j,St∥∥2K =
∑

i≥1

( λ

λ+ µi
µ
r−1/2
i 〈hj,t, φi〉2

)2
= λ2r−1

∑
i≥1

( λ

λ+ µi

)3−2r( µi
λ+ µi

)2r−1
〈hj,t, φi〉22

≤ λ2r−1
∑

i≥1
〈hj,t, φi〉22 = λ2r−1‖hj,t‖22 = λ2r−1‖L−rK,tf

∗
j,St‖

2
2. (10)

Combining (9) and (10), under the events {Â0 = A0, ..., Ât−1 = At−1} andJ , with probability

at least 1− δn, we have

‖f̂j − f ∗j,St‖K ≤ ‖f̂j − fλ,j‖K + ‖fλ,j − f ∗j,St‖K

≤ Cj0
λ
√
n

log
2

δn
+ λr−1/2‖L−rK,tf

∗
j,St‖2.

Moreover, we notice that ‖f̂j − f ∗j,St‖∞ ≤ κ1‖f̂j − f ∗j,St‖K by the reproducing property and the

requirement that ‖f ∗j,St‖
2
K ≤ R/2 in Section 4 of the main text. This completes the proof. �

Proof of Theorem 4. Given the event {Â0 = A0, ..., Ât−1 = At−1}, we have St = Ŝt. Then, for
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any j ∈ V\{St}, there holds

∣∣∣ÊV̂ar(xj|xSt)− E Var(xj|xSt)
∣∣∣

=
∣∣∣ 1
n

n∑
i=1

(xij)
2 − 1

n

n∑
i=1

(
f̂j(xiSt)

)2 − E[x2j ] + E
[
E[xj|xSt ]2

]∣∣∣
≤
∣∣∣E[x2j ]−

1

n

n∑
i=1

(xij)
2
∣∣∣+
∣∣∣E[E[xj|xSt ]2

]
− 1

n

n∑
i=1

(
f̂j(xiSt)

)2∣∣∣. (11)

To bound the first term of (11), we notice that each xj is required to be centered with mean

zero in Section 2 of the main text, which implies that zero belong to the support X , and then x2ij

are bounded by C2
X
4

from the definition of CX , which denotes the diameter of the support X . Then

by the Hoeffding’s inequality, for any ζ
2
> 0, there holds

P
(∣∣∣E[x2j ]−

1

n

n∑
i=1

(xij)
2
∣∣∣ > ζ

2

)
≤ 2 exp

(
− 8nζ2

C4
X

)
. (12)

Next, the second term of (11) can be decomposed as

∣∣∣E[E[xj|xSt ]2
]
− 1

n

n∑
i=1

(
f̂j(xiSt)

)2∣∣∣
≤
∣∣∣E[E[xj|xSt ]2 − f̂ 2

j (xSt)
]∣∣∣+

∣∣∣E[f̂ 2
j (xSt)

]
− 1

n

n∑
i=1

(
f̂j(xiSt)

)2∣∣∣
= ∆1 + ∆2,

and thus it suffices to bound ∆1 and ∆2 sequentially under the events {Â0 = A0, ..., Ât−1 = At−1}

and J .
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To bound ∆1, we notice that

∆1 =
∣∣∣E[f ∗j,St(xSt)(f ∗j,St(xSt)− f̂j(xSt))]+ E

[
f̂j(xSt)

(
f ∗j,St(xSt)− f̂j(xSt)

)]∣∣∣
≤ ‖f ∗j,St − f̂j‖∞

∣∣∣ ∫ |f ∗j,St(xSt)|dρxSt +

∫
|f̂j(xSt)|dρxSt

∣∣∣
≤ 2κ1 max{‖f̂j‖K , ‖f ∗j,St‖K}‖f

∗
j,St − f̂j‖∞ ≤ 2κ1R‖f ∗j,St − f̂j‖∞,

where the last inequality follows from the reproducing property of RKHS, the requirement that

‖f ∗j,St‖K ≤ R/2 in Section 4 of the main text and and under the event J that ‖f̂j‖K ≤ R. Then,

by Lemma S1, with probability at least 1− δn/2, we have

∆1 ≤ 2κ21R
( Cj0
λ
√
n

log
4

δn
+ λr−1/2‖L−rK,tf

∗
j,St‖2

)
. (13)

To bound ∆2, we notice that

∆2 =
∣∣∣ ∫ f̂j(xSt)〈f̂j, KxSt

〉KdρxSt −
1

n

n∑
i=1

f̂j(xiSt)〈f̂j, KxiSt
〉K
∣∣∣

=
∣∣∣〈f̂j,∫ f̂j(xSt)KxSt

dρxSt

〉
K
− 1

n

〈
f̂j, S

T
xSt
SxSt

f̂j

〉
K

∣∣∣
=
∣∣∣〈f̂j, ∫ f̂j(xSt)KxSt

dρxSt −
1

n
STxStSxSt

f̂j

〉
K

∣∣∣
=
∣∣∣〈f̂j, (LK,t − 1

n
STxStSxSt

)
f̂j

〉
K

∣∣∣ ≤ ‖f̂j‖K∥∥LK,t − 1

n
STxStSxSt

∥∥
HS
,

where STxSt and SxSt
denote the sampling operators defined in Lemma S1, and ‖ · ‖HS denotes

the norm endowed with a Hilbert space HS(K) containing all the Hilbert-Schmidt operators on

HK and satisfying ‖T‖K ≤ ‖T‖HS for any T ∈ HS(K). Note that under the event J , we have

‖f̂j‖K ≤ R. Moreover, by Lemma 18 of Rosasco et al. (2013), with probability at least 1− δn/2,
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we have

∥∥∥LK,t − 1

n
STxStSxSt

∥∥∥
HS
≤ 2
√

2κ21√
n

log
4

δn
.

Clearly, with probability at least 1− δn/2, we have ∆2 ≤ 2R
√
2κ21√
n

log 4
δn

.

Combining the upper bounds of ∆1 and ∆2, with probability at least 1− δn, there holds

∣∣∣E[E[xj|xSt ]2
]
− 1

n

n∑
i=1

(
f̂j(xiSt)

)2∣∣∣
≤ 2κ21R

( Cj0
λ
√
n

log
4

δn
+ λr−1/2‖L−rK,tf

∗
j,St‖2

)
+

2R
√

2κ21√
n

log
4

δn

≤ 2κ21R
(Cj0 +

√
2

λ
√
n

log
4

δn
+ λr−1/2‖L−rK,tf

∗
j,St‖2

)
.

Then, by taking λ = n−
1

2r+1 , for any δn ∈ (0, 1), with probability at least 1− δn there holds

∣∣∣E[E[xj|xSt ]2
]
− 1

n

n∑
i=1

(
f̂j(xiSt)

)2∣∣∣ ≤ Cjtn
− 2r−1

2(2r+1) log
4

δn
,

where Cjt = 6κ21Rmax
{
Cj0,

√
2, ‖L−rK,tf ∗j,St‖2

}
. Correspondingly, for any ζ > 0, we have

P
(∣∣∣E[E[xj|xSt ]2

]
− 1

n

n∑
i=1

(
f̂j(xiSt)

)2∣∣∣ > ζ

2
| Â0 = A0, ..., Ât−1 = At−1,J

)
≤ 4 exp

(
− ζ

2Cjt
n

2r−1
2(2r+1)

)
. (14)

Combining (12) and (14), for any ζ > 0, there holds

P
( ∣∣∣EVar(xj|xSt)− ÊV̂ar(xj|xSt)

∣∣∣ > ζ | Â0 = A0, ..., Ât−1 = At−1,J
)

≤ 2 exp
(
− 8nζ2

C4
X

)
+ 4 exp

(
− ζ

2Cjt
n

2r−1
2(2r+1)

)
. (15)

This completes the proof of the first part of Theorem 4.
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Next, we define the following event

E1t =
{

max
j∈V\{St}

∣∣EVar(xj|xSt)− ÊV̂ar(xj|xSt)
∣∣ ≤ Mmax

4

}
,

and use the notation Ec1t to denote its complementary. Then, by (15), we have

P (Ec1t | Â0 = A0, ..., Ât−1 = At−1,J )

≤ 2(p− |St|) exp
(
− nM2

max

2C4
X

)
+ 4(p− |St|) exp

(
− Mmaxn

2r−1
2(2r+1)

8Cjt

)
. (16)

Note that

P (Ât 6= At | Â0 = A0, ..., Ât−1 = At−1,J )

≤ P (Ât 6= At, E1t | Â0 = A0, ..., Ât−1 = At−1,J ) + P (Ec1t | Â0 = A0, ..., Ât−1 = At−1,J )

≤ P
(
∃ j ∈ At such that|ÊV̂ar(xj|xSt)− σ̂

(t)
min| ≥ εt, E1t | Â0 = A0, ..., Ât−1 = At−1,J

)
+ P

(
∃ j ∈ V\{St ∪ At} such that |ÊV̂ar(xj|xSt)− σ̂

(t)
min| < εt, E1t | Â0 = A0, ..., Ât−1 = At−1,J

)
+ P (Ec1t | Â0 = A0, ..., Ât−1 = At−1,J )

= P3 + P4 + P (Ec1t | Â0 = A0, ..., Ât−1 = At−1,J ). (17)

Note that following the similar treatments as that of P1 and P2 in the proof of Theorem 3 in the

main text and by taking εt = Mmax

2
, we have P3 = 0 and P4 = 0. Finally, the bound (17) reduces to

P (Ât 6= At | Â0 = A0, ..., Ât−1 = At−1,J )

≤ P (Ec1t | Â0 = A0, ..., Ât−1 = At−1,J )

≤ 2(p− |St|) exp
(
− nM2

max

2C4
X

)
+ 4(p− |St|) exp

(
− Mmaxn

2r−1
2(2r+1)

8Cjt

)
.

This completes the proof. �
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Proof of Lemma 1. Given the event {Â0 = A0, ..., Ât = At}, t ≥ 1, we have St = Ŝt. At first,

for some positive constant C3, we define the following event

E2t =
{

max
j∈At,k∈St

∣∣‖ĝjk‖2n − ‖g∗jk‖22∣∣ ≤ C3n
− 2r−1

2(2r+1) log
(
4|St|max{n, |St|}

)}
,

and use the notation Ec2t to denote its complementary.

We notice that

P
({
Ej 6= Êj : j ∈ Ât

}
| A0 = Â0, ...,At = Ât,J

)
≤ P

({
Ej 6= Êj : j ∈ Ât

}
, E2t | A0 = Â0, ...,At = Ât,J

)
+ P

(
Ec2t | A0 = Â0, ...,At = Ât,J

)
. (18)

Note that by the definition that Êj =
{
k → j, ‖ĝjk‖2n > v

(t)
n , for any k ∈ Ŝt

}
and by Assump-

tion 4 of the main text, for the first term of (18), there holds

P
({
Ej 6= Êj : j ∈ Ât

}
, E2t | A0 = Â0, ...,At = Ât,J

)
≤P
(
∃ k ∈ paj such that ‖ĝjk‖2n ≤ ν(t)n , E2t | A0 = Â0, ...,At = Ât,J

)
+ P

(
∃ k ∈ p̂aj such that ‖g∗jk‖22 = 0, E2t | A0 = Â0, ...,At = Ât,J

)
=P5 + P6, (19)

where p̂aj = {k : k → j ∈ Êj}.

For the bound of P5, by taking v(t)n = C2

2
n−

2r−1
2(2r+1)

(
log
(
4|St|max{n, |St|}

))β
and Assumption

3 in the main text, we have

∣∣‖ĝjk‖2n − ‖g∗jk‖22∣∣ ≥ ‖g∗jk‖22 − ‖ĝjk‖2n > 2ν(t)n − ν(t)n = ν(t)n ,

13



which contradicts with E2t. Precisely, under E2t, we have

max
j∈At,k∈St

∣∣‖ĝjk‖2n − ‖g∗jk‖22∣∣ ≤ C3n
− 2r−1

2(2r+1) log
(
4|St|max{n, |St|}

)
,

and then the different rates of convergence lead to the contradiction. Thus, when n is sufficiently

large, P5 = 0. To bound P6, it is obvious that
∣∣‖ĝjk‖2n − ‖g∗jk‖22∣∣ > ν

(t)
n , which contradicts with E2t

again, which yields that P6 = 0.

Now, we turn to bound P
(
Ec2t | A0 = Â0, ...,At = Ât,J

)
. At first, we define the sample

operators for gradients D̂t,l : HK → Rn as (D̂t,lf)i =
〈
f, ∂lKxiSt

〉
K

, their adjoint operators

D̂∗t,l : Rn → HK as D̂∗t,lc = 1
n

∑n
i=1 ∂lKxiSt

ci, and define the integral operators for gradients

Dt,l : HK → L2(XSt , ρxSt ) as Dt,lf = 〈f, ∂lKxSt
〉K , D∗t,l : L2(XSt , ρxSt ) → HK as D∗t,lf =∫

∂lKxSt
f(xSt)dρxSt . Then, we have

D∗t,lDt,lf
∗
j,St =

∫
∂lKxSt

g∗jl(xSt)dρxSt and D̂∗t,lD̂t,lf
∗
j,St =

1

n

n∑
i=1

∂lKxiSt
g∗jl(xiSt).

Note that D∗t,lDt,l and D̂∗t,lD̂t,l are the Hilbert-Schmidt operators belonging to a Hilbert space en-

dowed with norm ‖ · ‖HS .

Moreover, we notice that for any j ∈ At and k ∈ St

∣∣‖ĝjk‖2n − ‖g∗jk‖22∣∣ =
∣∣∣ 1
n

n∑
i=1

(
ĝjk(xiSt)

)2 − ∫ (g∗jk(xSt))2dρxSt ∣∣∣
=
∣∣∣〈f̂j, 1

n

n∑
i=1

ĝjk(xiSt)∂kKxiSt

〉
K
−
〈
f ∗j,St ,

∫
g∗jk(xSt)∂kKxSt

dρxSt
〉
K

∣∣∣
=
∣∣∣〈f̂j − f ∗j,St , D̂∗t,kD̂t,k(f̂j − f ∗j,St)

〉
K

+ 〈D̂∗t,kD̂t,kf
∗
j,St , f̂j − f

∗
j,St〉K

+ 〈f ∗j,St , D̂
∗
t,kD̂t,k(f̂j − f ∗j,St)〉K +

〈
f ∗j,St , (D̂

∗
t,kD̂t,k −D∗t,kDt,k)f

∗
j,St

〉
K

∣∣∣
≤ ‖f̂j − f ∗j,St‖

2
K‖D̂∗t,kD̂t,k‖HS + 2‖f̂j − f ∗j,St‖K‖f

∗
j,St‖K‖D̂

∗
t,kD̂t,k‖HS

+ ‖D̂∗t,kD̂t,k −D∗t,kDt,k‖HS‖f ∗j,St‖
2
K .

14



By Assumption 3 in the main text, direct calculation yields that

max
k∈St
‖D̂∗t,kD̂t,k‖HS = max

k∈St
‖∂kKxSt

‖2K ≤ κ22.

Moreover, by Lemma 18 of Rosasco et al. (2013), for any δn ∈ (0, 1), with probability at least

1− δn/2, we have

max
k∈St
‖D̂∗t,kD̂t,k −D∗t,kDt,k‖HS ≤

2
√

2κ22√
n

log
4|St|
δn

,

given {Â0 = A0, ..., Ât = At}. Thus, by taking δn = (max{n, |St|})−1, with probability at

least 1− δn/2, there holds

max
k∈St
‖D̂∗kD̂k −D∗kDk‖HS ≤

2
√

2κ22√
n

log
(
4|St|max{n, |St|}

)
.

When ‖f̂j − f ∗j,St‖K is sufficiently small and by taking λ = n−
1

2r+1 , with probability at least

1− δn, we have

max
j∈At,k∈St

∣∣‖ĝjk‖2n − ‖gjk‖22∣∣
≤ max{κ22, κ22‖f ∗j,St‖K , ‖f

∗
j,St‖

2
K}
(

3 max
j∈At,k∈St

‖f̂j − f ∗j,St‖K + max
k∈St
‖D̂∗kD̂k −D∗kDk‖HS

)
≤ max{κ22, κ22‖f ∗j,St‖K , ‖f

∗
j,St‖

2
K}
(

3 max
j∈At,k∈St

{
Cj0 + ‖L−rK,tf

∗
j,St‖2

}
n−

2r−1
2(2r+1) log

4|St|
δn

+
2
√

2κ22√
n

log
4|St|
δn

)
≤ C3n

− 2r−1
2(2r+1) log

(
4|St|max{n, |St|}

)
,

where C3 = 3 max{κ22, κ22‖f ∗j,St‖K , ‖f
∗
j,St‖

2
K}maxj∈At,k∈St

{
3Cj0, 3‖L−rK,tf ∗j,St‖2, 2

√
2κ22
}

. Thus,
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we have

P
(
Ec2t|Â0 = A0, ..., Ât = At,J

)
≤ 1

max{n, |St|}
,

Finally, by (18) and (19), we have

P
({
Ej = Êj : j ∈ Ât

}
| A0 = Â0, ...,At = Ât,J

)
≥ 1− 1

max{n, |St|}
.

This completes the proof. �

Proof for Theorem 5. Note that

P (Ĝ 6= G) = P (Ĝ 6= G,J ) + P (Ĝ 6= G,J c).

For P (Ĝ 6= G,J c), we have

P (Ĝ 6= G,J c) ≤ P (J c) ≤ Tp max
1≤t≤T−1, j∈V\{St}

P
(
‖f̂j‖K > R

)
. (20)

Note that by Theorem 1 and Lemma 3 of Smale and Zhou (2007), for any t and j ∈ V\{St}, we

have P
(
‖f̂j‖K > R

)
≤ 1

n
if the sample size satisfies n ≥

(
C4

R
log 2n

) 2(2r+1)
2r−1

for some positive

constant C4 and the K-norm of the target function is upper bounded by R/2 as assumed in Section

4 of the main text, and thus P (Ĝ 6= G,J c)→ 0 as n→∞.
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For P (Ĝ 6= G,J ), we have

P (Ĝ 6= G,J ) ≤ P
(
∪T−1t=0 {Ât 6= At} ∪ {Ê 6= E},J

)
≤ P (Â0 6= A0) +

T−1∑
t=1

P (Ât 6= At | Â0 = A0, ..., Ât−1 = At−1,J )+

P (Ê 6= E | Â0 = A0, ..., ÂT−1 = AT−1,J )

≤ P (Â0 6= A0) +
T−1∑
t=1

P (Ât 6= At | Â0 = A0, ..., Ât−1 = At−1,J )+

T−1∑
t=1

P
({
Ej = Êj : j ∈ Ât

}
| A0 = Â0, ...,At = Ât,J

)
.

Clearly, combining with Theorem 4 and Lemma 1 in the main text, we have P (Ĝ 6= G,J )→ 0 as

n→∞. This completes the proof. �
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