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S1 Supplementary theoretical results

S1.1 Asymptotic efficiencies of p-value combination methods

In this subsection, we outline the asymptotic efficiencies of multiple p-value combination

methods mentioned in Section 2: Fisher, Stouffer, Pareto, Cauchy (CA), Berk-Jones (BJ)

and higher criticism (HC). All technical proofs are left to Section S2. For Fisher test,

combined with Lemma 1 and by almost the same argument in Littell and Folks (1973), one

can show that Fisher test attains ABO in the modified partial signal setting. Similarly, by

similar argument as above, the exact slope of Stouffer is

CStouffer(θ⃗) =
1

K

[ ℓ∑
i=1

(λici(θi))
1
2

]2
.

Although generally CStouffer ⩽
∑ℓ

i=1 λici(θi) and Stouffer is not ABO, Stouffer becomes ABO

when all the p-values contain true signals with equal effects λ1c1(θ1) = . . . = λKcK(θK) > 0.

Theorem S1 below describes asymptotic efficiency property of Fisher and Stouffer.

Theorem S1 (extended from Littell and Folks (1973); Fisher is ABO and Stouffer is

generally not ABO). Under the setup in Section 2.1, Fisher is ABO with exact slope

CFisher(θ⃗) =
∑ℓ

i=1 λici(θi). Stouffer is generally not ABO with exact slope CStouffer(θ⃗) =

1
K

[∑ℓ
i=1(λici(θi))

1
2

]2
. Stouffer is ABO when all signals combined have equal sample-size

adjusted exact slope: λ1c1(θ1) = . . . = λKcK(θK) > 0.

We next study two methods by heavy-tailed distribution transformation, Pareto and

CA, as follows

TPareto(η) =
K∑
i=1

1

pηi
with some η > 0, TCA =

1

K

K∑
i=1

tan(π(
1

2
− pi)).
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Methods of this category are in the form of statistics T (p⃗) =
∑n

i=1 g(pi) =
∑n

i=1 F
−1
U (1− pi)

to sum up transformed p-values, where the transformation g(p) is the inverse CDF of U .

Indeed, for Cauchy, U
D∼ CAU(0, 1) (standard Cauchy), and U

D∼ Pareto( 1
η
, 1) for Pareto.

Intuitively, methods by light-tailed distribution transformations (e.g., Stouffer and Fisher)

achieve better asymptotic efficiency as a thin-tailed distribution generates more comparable

contributions from marginally significant p-values with frequent signals, while methods by

heavy-tailed distribution focus more on the extreme effects and downweigh the frequent small

effects. For example, Stouffer test transforms p-values 10−2 and 10−6 to 2.32 and 4.75 while

tan(π(1/2−p)) for Cauchy test transforms the same p-values to 31.82 and 3.82×105, which

makes the contribution from very small p-value (10−6) dominate that from the moderate

one (10−2). The following two theorems show that CA and Pareto are generally not ABO

and they are ABO if and only if there is only one true signal among p-values.

Theorem S2. Under the setup in Section 2.1, TPareto(η) is generally not ABO with exact

slope C
(η)
Pareto(θ⃗) = max1⩽i⩽K λici(θi).

Theorem S3. Under the setup in Section 2.1, TCA is generally not ABO with exact slope

CCA(θ⃗) = max1⩽i⩽K λici(θi).

Both exact slopes of CA and Pareto are max1⩽i⩽K λici(θi), which is also the exact slope

of minP, shown in Littell and Folks (1973). This suggests that CA and Pareto are more

powerful for detecting sparse signals as minP.

We continue investigating the asymptotic efficiencies of BJ and HC, which can be viewed
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as goodness-of-fit tests:

THC = max
1⩽i⩽K

√
K

i/n− p(i)√
p(i)

(
1− p(i)

)
TBJ = max

1⩽i⩽K
I{p(i)< i

K
}

[
i

K
log

(
i/K

p(i)

)
+

(
1− i

K

)
log

(
1− i/K

1− p(i)

)]
.

As goodness-of-fit tests, both test statistics can test whether the underlying distribution is

Unif(0, 1) given K independent observed p-values p1, . . . , pK . Both BJ and HC are mainly

applied to the scenarios of detecting weak and sparse signals (Donoho and Jin, 2004; Berk

and Jones, 1979; Li and Siegmund, 2015). The following theorem shows that BJ is generally

not ABO.

Theorem S4. Under setup in Section 2.1, TBJ is not ABO with exact slope

CBJ(θ⃗) = max
1⩽i⩽K

iλici(θi).

The following proposition shows that HC generally is not ABO even for combining two

p-values with equal effects.

Proposition S1. Suppose p1 and p2 are two independent p-values such that

− 2

n
log(pi) → ci(θi) as n → ∞ for i = 1, 2,

with probability one. Then for c1(θ1) = c2(θ2) = c0 > 0, THC is not ABO with exact slope

CHC(θ⃗) = c0.
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S1.2 Type I error control of FE and FECS

In this subsection, we provide more details on the type I error control of FE and FECS com-

putation using the Pareto(1, 1) distribution. Assume X follows Pareto(1, 1). As suggested

by Theorems 1 and 2 in Fang et al. (2023), under the null, the upper tail of distribution of

the average of 1/p1, . . . , 1/pL with unknown dependence structure can be approximated by

that of Pareto(1, 1), in a sense that for sufficiently large t > 0 (corresponding to sufficiently

small significant level α),

P
(
1
L

∑L
i=1 1/pi > t

)
P
(
X > t

) ≈ 1. (S1.1)

Hence for FE and FECS respectively, one can show that for sufficiently large t > 0 (corre-

sponding to sufficiently small α),

1− FTFE(t)

1− FPareto(1,1)(t)
≈ 1

1− FTFECS
(t)

1− FPareto(1,1)(t)
≈ 1,

which justifies the type I error control procedures for FE and FECS using Pareto(1, 1),

respectively. Table S1 in Section S3.1 numerically justifies accuracy of the above fast-

computing procedure, where we show that type I error control procedures for FE and FECS

are accurate for α = 0.0001 ∼ 0.05 across a broad range of K (5 to 100). Note 1 −

FPareto(1,1)(t) = 1/t, combined with equation (S1.1), one can show that the above procedures

are equivalent to directly using

L∑L
i=1 1/pi

as p-value for statistic 1
L

∑L
i=1 1/pi, which is suggested by Wilson (2019).
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S2 Technical arguments

In this section, we present the technical arguments for proving the theoretical results. For

any random variable X with CDF F , the corresponding survival function is denoted by

F̄ = 1 − F (t). For two positive functions u(·) and v(·), we denote by u(t) ∼ v(t) if

limt→∞
u(t)
v(t)

= 1. Also, u(t) ≳ v(t) if limt→∞
u(t)
v(t)

> 1 and u(t) ≲ v(t) if limt→∞
u(t)
v(t)

< 1.

S2.1 Proof of results of modified Fisher’s methods: Lemma 1 and Theorems

1-6

In this subsection, we prove Theorems 1-6. Before proceeding to the proofs, we first prove

Lemma 1 and introduce Lemma S1-S3.

Proof of Lemma 1. For θ ∈ Θ0, note that − log p(n) follows exponential distribution with

rate parameter 1 (denoted by EXP(1)) since the p-value pn is distributed uniformly in (0, 1).

Consider the sequence of random variables Y1, Y2, . . ., where Y1, Y2 . . . , identically follow

EXP(1). Define event An = {Yn

n
> log(n(n+1))

n
}. Then since

∑+∞
i=1 P(An) < ∞, by the

Borel–Cantelli lemma, we have P
(
lim supn→+∞ An

)
=0. Hence Yn

n
converges to zero with

probability one.

Lemma S1 (Bahadur et al. (1960)). Let Fχk
(x) = P(χk ⩽ x), where χk =

√
χ2
k and χ2

k

follows chi-squared distribution with degrees of freedom k. Then log(F̄χk
(x)) → −1

2
x2(1 +

o(1)) as x → ∞.

Lemma S2 (Savage (1969)). Suppose
{
T (n)

}
is a sequence of test statistics which satisfies

the following two properties:
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1. There exists a function b(θ), 0 < b(θ) < ∞, such that T (n)/
√
n → b(θ) with probability

one.

2. There exists a function f(t), 0 < f(t) < ∞, which is continuous in some open set

containing the range of b(θ) such that for each t in the open set:

− 1

n
log

[
1− Fn(

√
nt)

]
→ f(t),

where Fn is the continuous CDF function of some random variable Xn.

Then

− 2

n
log

[
1− Fn(T

(n))
]
→ 2f(b(θ))

with probability one.

Remark S1. The condition 0 < f(t) < ∞ implicitly puts restrictions on the choice of Xn

(corresponding to Fn). For example, the rate of the upper tail of Xn should not be too

fast. Indeed, Xn
D∼ Unif(0, 1) leads to a too fast rate (FUnif(0,1)(

√
nt) = 0 for any

√
nt > 1),

resulting in f(t) = +∞ that clearly does not satisfy the conditions of Lemma S2.

Remark S2. When Fn is the CDF of T (n), Lemma S2 becomes Theorem 1 in Littell and

Folks (1973), which will be used in the proof of Theorem S2; We will use Lemma S2 in the

proofs of Theorems 1 and 3 to 6, where Fn = F for some F and all n.

Lemma S3. Under the setup in Section 2.1, define the following two index sets:

D∗ = {i : ci(θi) > 0} ; D̂ =
{
i : pi ⩽ p(ℓ)

}
.

Then we have, as n → ∞, D̂ → D∗ with probability one. And if λici(θ) > λi′ci′(θ) > 0,

pi′
pi

→ +∞ with probability one.
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Proof. To prove the first claim, first denote D∗c = {i : i /∈ D∗}. For any i′ ∈ D∗c, and any

i ∈ D∗, by Lemma 1, we have log (pi′/pi) /n → λici(θi)− 0 > 0 with probability one. Hence

pi is smaller order of pi′ as n → ∞, which completes the proof. For the second claim, simply

note for any λici(θ) > λi′ci′(θ) > 0, log (pi′/pi) /n → λici(θ)− λi′ci′(θ) > 0 with probability

one. Then the result follows.

Corollary S1. Under the alternative in Section 2.1, with probability one, we have

− 2

n

j∑
i=1

log p(i) →


∑j

i=1 λici(θi) 1 ⩽ j ⩽ ℓ

∑ℓ
i=1 λici(θi) ℓ < j ⩽ K.

Proof. Combine the results of Lemmas 1 and S3, the results follow.

The proof of Theorem 1 below will use the second equivalent form of AFs to derive the

exact slope:

T ′
AFs = min

w⃗
F̄χ2

2(
∑K

i=1
wi)

(−2
K∑
i=1

wi log pi),

where w⃗ = (w1, . . . , wK) ∈ {0, 1}K is the vector of binary weights that identify the candidate

subset of p-values with true signals. In addition, denote

ˆ⃗w = argmin
w⃗

F̄χ2

2(
∑K

i=1
wi)

(−2
K∑
i=1

wi log pi),

and w⃗∗ = {w⃗ : wk = 1 if θi ∈ Θ0 or 0 if θi ∈ Θ0} as the weight vector identifying the true

signals. Also denote ˆ⃗w = (ŵ1, . . . , ŵK). For the original form

TAFs = max
1⩽j⩽K

− log(F̄χ2
2j
(−2

j∑
i=1

log p(i))),



9

we denote correspondingly ĵ = argmaxj − log F̄χ2
2j

(
− 2

∑j
i=1 log p(i)

)
. Since p1, . . . , pK are

independent with each other, we have

−2

ĵ∑
i=1

log p(i) = −2
K∑
i=1

ŵi log pi.

Proof of Theorem 1. Denote

T (w⃗; p⃗) = −2
K∑
i=1

wi log pi

L(T (w⃗; p⃗)) = F̄χ2
2d(w⃗)

(T (w⃗; p⃗)),

where d(w⃗) =
∑K

i=1wi and p⃗ = (p1, . . . , pK). Essentially, T ′
AFs = minw⃗ L(T (w⃗; p⃗)). Further

denote by Lobs = min
w⃗

L(T (w⃗; p⃗obs)) the observed value of T ′
AFs.

Let P0 be the probability measure of p⃗ = (p1, . . . , pK) under the null and UAFs be the

random variable that follows the same distribution of T ′
AFs under the null. For any fixed

w⃗, denote by U(w⃗, p⃗) the random variable follows the same distribution of F̄χ2
2d(w⃗)

(T (w⃗; p⃗))

under the null. Further denote Ωj = {w⃗ : d(w⃗) = j} for j = 1, . . . , K. Then we have:

pAFs = FUAFs
(Lobs) = 1− F̄UAFs

(Lobs)

= 1− P0

( K⋂
j=1

⋂
w⃗∈Ωj

U(w⃗, p⃗) ⩾ Lobs

)
. (S2.2)

By Bonferroni’s inequality,

(S2.2) ⩽ 1−
[
1−

K∑
j=1

P0

( ⋃
w⃗∈Ωj

U(w⃗, p⃗) ⩽ Lobs

)]

⩽
K∑
j=1

∑
w⃗∈Ωj

F̄χ2
2j

(
F̄−1
χ2
2j

(
Lobs

))
=

(
2K − 1

)
Lobs, (S2.3)
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where F̄−1
χ2
2j
(α) denotes the 1− α quantile of χ2

2j. Further note

− 2

n
log

(
Lobs

)
= − 2

n
log

(
1− Fχ2

2d( ˆ⃗w)

(
− 2

K∑
i=1

ŵi log pi
))

= − 2

n
log F̄χ

2d( ˆ⃗w)

((
−2

K∑
i=1

ŵi log pi
) 1

2
)
.

Since 1 ⩽ d( ˆ⃗w) ⩽ K,

− 2

n
log F̄χ2K

((
−2

K∑
i=1

ŵi log pi
) 1

2
)
⩽ − 2

n
log

(
Lobs

)
⩽ − 2

n
log F̄χ2

((
−2

K∑
i=1

ŵi log pi
) 1

2
)
. (S2.4)

Denote ĵ = argmaxj − log F̄χ2
2j

(
− 2

∑j
i=1 log p(i)

)
, as p1, . . . , pK are independent with each

other, we have

−2
K∑
i=1

ŵi log pi = −2

ĵ∑
i=1

log p(i).

In the proof of Theorem 4 latter, we will show that ĵ ⩾ ℓ with probability one (equation

(S2.11) in the proof of Theorem 4). Hence by Corollary S1, under the alternative, we

have

√
−2

∑K
i=1 ŵi log pi√
n

=

√
−2

∑ĵ
i=1 log p(i)√
n

→ (
∑ℓ

i=1 λici(θi))
1
2 with probability one. Further

combined with and Lemmas S1 and S2 and equation (S2.4), we have

− 2

n
log

(
Lobs

)
→

ℓ∑
i=1

λici(θi).

Combined with (S2.3), we have under the alternative

− 2

n
log pAFs ⩾

ℓ∑
i=1

λici(θi)

with probability one. Then the result follows.

Proof of Theorem 2. Note that by Theorem S1, we have that Fisher is ABO with exact
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slope CFisher(θ⃗) =
∑ℓ

i=1 λici(θi), then combine with Theorem 2.6 in Berk and Jones (1978),

the result follows.

Proof of Theorem 3. Case when ℓ ⩾ 2:

Assume j∗ = argmaxj

∑j
i=1 λici(θi)

Bj
. We first prove that under alternative,

argmax
j

TA → j∗ (S2.5)

with probability one as n → ∞. Indeed, for ∀j′ ̸= j∗, suppose the following event holds:

−2
∑j′

i=1 log p(i) − Aj′

Bj′
>

−2
∑j∗

i=1 log p(i) − Aj∗

Bj∗

⇔ −2Bj∗

j′∑
i=1

log p(i) + Aj∗Bj′ > −2Bj′

j∗∑
i=1

log p(i) + Aj′Bj∗

⇔
−2Bj∗

∑j′

i=1 log p(i)/n+ Aj∗Bj′/n

−2Bj′
∑j∗

i=1 log p(i)/n+ Aj′Bj∗/n
> 1. (S2.6)

Here without loss of generality we assume both Aj∗Bj′ and Aj′Bj∗ in the second inequality

are positive. Otherwise one can always move the smaller term to the other side of the

inequality and still use almost the same arguments as follows. However, under the setup

in Section 2.1, note that by Lemmas 1 and S3 and j∗ = argmaxj

∑j
i=1 λici(θi)

Bj
, under the

alternative we have

−2Bj∗
∑j′

i=1 log p(i)/n+ Aj∗Bj′/n

−2Bj′
∑j∗

i=1 log p(i)/n+ Aj′Bj∗/n
→ Bj∗

Bj′
·
∑j′

i=1 λici(θi)∑j∗

i=1 λici(θi)
< 1

as n → ∞ with probability one, which contradicts to equation (S2.6). Hence (S2.5) holds.

Let UA be the random variable that follows the same distribution of TA under the null.
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Denote by FUA
the CDF of the UA and F̄UA

= 1 − FUA
as the corresponding survival

function, respectively. Similarly, for the following test statistic

TAj
=

−2
∑j

i=1 log p(i) − Aj

Bj

,

let UAj
be the random variable that follows the same distribution of TAj

under the null. And

define FUAj
and F̄UAj

as the CDF and survival function of UAj
, respectively. Furthermore,

define the test statistic

Tj = −2

j∑
i=1

log p(i)

and Uj as the random variable that follows the same distribution of Tj under the null and

let FUj
and F̄Uj

be the CDF and survival function of Uj, respectively. Pick j = 1, then we

have:

F̄UA
(TA) ⩾ F̄UA1

(TA) = F̄U1(B1TA + A1),

Denote T (n) =
√
B1TA + A1, with (S2.5) holds, by Lemmas 1 and S3, under the alternative,

we have,

T (n)

√
n

= n− 1
2 (B1TA + A1)

1
2 →

[
(B1/Bj∗)

j∗∑
i=1

λici(θi)
] 1

2

with probability one. Note for t > 0 we have

F̄χ2(
√
nt) = F̄χ2

2
(nt2) ⩽ F̄U1(nt

2) ⩽ F̄χ2
2K
(nt2) = F̄χ2K

(
√
nt).

Hence by Lemma S1,

− 1

n
log F̄U1(nt

2) = − 1

n
log F̄√

U1
(
√
nt) → t2

2
.
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Hence by Lemma S2, under the alternative, we have

− 2

n
log

(
F̄UA

(TA)
)
⩽ − 2

n
log F̄U1

(
(T (n))2

)
= − 2

n
log F̄√

U1
(T (n))

→ B1

Bj∗

j∗∑
i=1

λici(θi) <
ℓ∑

i=1

λici(θi) (S2.7)

with probability one. Here the last inequality is due to ℓ ⩾ 2 and Bj is a strictly increasing

function. Hence TA is still not ABO.

Case when ℓ = 1:

First we prove that j∗ → 1 with probability one under the alternative. Note here we assume

ℓ = 1 and Bj increases as j increases. Note that ci(θi) = 0 with probability one for all i > 1,

hence

max
j

∑j
i=1 λici(θi)

Bj

→ λ1c1(θ)

B1

(S2.8)

with probability one. Hence j∗ → 1 with probability one. Then we have:

F̄UA
(TA) ⩽

K∑
j=1

F̄UAj
(TA) =

K∑
j=1

F̄Tj
(BjTA + Aj) ⩽ K · F̄χ2

2K

(
B1TA +min

j
Aj

)
.

By combining (S2.8) and Lemmas 1 and S3, under the alternative, we have√
B1TA +minj Aj√

n
→

√
λ1c1(θ)

with probability one. And by Lemma S1

− 1

n
log

(
1− Fχ2K

(
√
nt)

)
→ 1

2
t2.

In addition,

− 2

n
log F̄UA

(TA) ⩾ − 2

n

[
log F̄χ2

2K

(
B1TA +min

j
Aj

)
+ logK

]
. (S2.9)
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Hence by Lemma S2, under alternative, (S2.9) → λ1c1(θ) with probability one. Then we

conclude that when ℓ = 1, TA is ABO.

Remark S3. It can be shown that TA generally does not has signal selection consistency.

Recall that TA picks j∗ = argmaxj

∑j
i=1 λici(θi)

Bj
with probability one as shown in the proof.

To give a counter example, we consider Bj =
√∑K

i=1 w(i, j) (corresponding to TAFz), where

K = 2. We assume there is only two signals, with λ1c1(θ1) = 9 and λ2c2(θ2) = 1. Then one

can show j∗ = 1 here, i.e., TA picks the wrong subset of p-values with probability one. Since

Bj is a strictly increasing function, we can easily show that j∗ ≤ ℓ always holds and j∗ < ℓ

in general.

The proof of Theorem 4 will use the first equivalent form of AFs,

TAFs = max
1⩽j⩽K

− log F̄χ2
2j
(−2

j∑
i=1

log p(i)).

Proof of Theorem 4. The goal is to prove ˆ⃗w → w⃗∗ in probability as n → ∞ under the

alternative. Recall by Corollary S1, we have, under the alternative,

− 2

n

j∑
i=1

log p(i) →


∑j

i=1 λici(θi) 1 ⩽ j ⩽ ℓ

∑ℓ
i=1 λici(θi) ℓ < j ⩽ K

(S2.10)

with probability one as n → +∞. Define index sets

S1 = {i : w∗
i = 1 and ŵi = 0} ; S2 = {i : w∗

i = 0 and ŵi = 1} .

Recall that we assume the first ℓ ⩽ K studies are with exact slopes ci(θ) > 0. The following

arguments are based on the first equivalent form of AFs, denoted by TAFs.
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We first prove S1 → ∅ in probability. Indeed, we claim a stronger result that S1 → ∅

with probability one under the alternative. By Lemmas 1 and S3, as n → +∞, the first

smallest ℓ p-values converge to the first ℓ p-values with exact slopes strictly greater than 0.

Hence it suffices to prove that for

ĵ = argmax
j

− log F̄χ2
2j

(
− 2

j∑
i=1

log p(i)
)
,

as n → +∞, we have ĵ ⩾ ℓ with probability one. Indeed, for any j′ < ℓ, by Lemmas S2 and

S3 and equation (S2.10),

− log F̄χ2
2j′

(
− 2

∑j′

i=1 log p(i)
)

− log F̄χ2
2ℓ

(
− 2

∑ℓ
i=1 log p(i)

) =
−(1/n) log F̄χ2

2j′

(
− 2

∑j′

i=1 log p(i)
)

−(1/n) log F̄χ2
2ℓ

(
− 2

∑ℓ
i=1 log p(i)

)
=

−(1/n) log F̄χ2j′

(
(−2

∑j′

i=1 log p(i))
1
2

)
−(1/n) log F̄χ2ℓ

(
(−2

∑ℓ
i=1 log p(i))

1
2

)
→

∑j′

i=1 λici(θ)∑ℓ
i=1 λici(θ)

< 1

with probability one. Hence as n → +∞,

ĵ ⩾ ℓ (S2.11)

with probability one, i.e., S1 → ∅ with probability one.

We then prove S2 → ∅ in probability under the alternative, which is essentially to prove

ĵ ⩽ ℓ in probability. To prove this, pick arbitrary j > ℓ, and note event ĵ = j is equivalent

to event

F̄χ2
2j

(
− 2

∑j
i=1 log p(i)

)
F̄χ2

2ℓ

(
− 2

∑ℓ
i=1 log p(i)

) ⩽ 1. (S2.12)
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Then we have

(S2.12) ⇔
j−1∑
i=0

1

i!

(
−

j∑
k=1

log p(k)
)i
exp

( j∑
k=1

log p(k)
)

⩽
ℓ−1∑
i=0

1

i!

(
−

ℓ∑
k=1

log p(k)
)i
exp

( ℓ∑
k=1

log p(k)
)

(S2.13)

⇔ exp
{ j∑

k=ℓ+1

log p(k)
}
⩽

∑ℓ−1
i=0

1
i!

(
−
∑ℓ

k=1 log p(k)
)i∑j−1

i=0
1
i!

(
−
∑j

k=1 log p(k)
)i

⇔
j∏

k=ℓ+1

p(k)︸ ︷︷ ︸
I

⩽

∑ℓ−1
i=0

1
i!

(
−
∑ℓ

k=1 log p(k)
)i∑j−1

i=0
1
i!

(
−
∑j

k=1 log p(k)
)i︸ ︷︷ ︸

II

. (S2.14)

(S2.13) is due to relationship between Poisson distribution and chi-squared distribution.

Note

II =

∑ℓ−1
i=0

1
i!

(
−

∑ℓ
k=1 log p(k)

)i
/
(
n
2

)ℓ−1∑j−1
i=0

1
i!

(
−

∑j
k=1 log p(k)

)i
/
(
n
2

)j−1︸ ︷︷ ︸
III

· 1(
n
2

)j−ℓ
,

and

III → (j − 1)!

(ℓ− 1)!
· 1(∑ℓ

k=1 λici(θi)
)j−ℓ

with probability one. Hence II = O
(

1
nj−ℓ

)
with probability one. While for I, with proba-

bility one, it is the product of the first (j − ℓ)-th smallest p-values of K − ℓ i.i.d. p-values

following Unif(0, 1) as n → +∞. Hence I = Op(1) under the alternative. Hence the proba-

bility that event (S2.14) holds converges to zero as n → +∞. Then the result follows.

Let Rj = −
∑j

i=1 log p(i) =
Tj

2
, to prove Theorem 5, we need the following Lemma to

carefully quantify the upper tails of Rj when 1 < j < K and under the null:

Lemma S4 (Nagaraja (2006)). Let FRj
(t) and F̄Rj

(t) be the CDF and survival function of
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Rj under the null, separately. For 1 < j < K, we have:

F̄Rj
(t) =

K−j∑
i=1

wi exp {−cit/cK−j+1}
1

(j − 1)!

∫ t

0

exp (diy) y
j−1dy +

j−1∑
k=0

e−t t
k

k!
,

where ci = K − i+ 1, di =
ci

cK−j+1
− 1. And

wi =

K−j∏
k=1;k ̸=i

K − k + 1

i− k
.

Further calculation leads to

F̄Rj
(t) =

K−j∑
i=1

wi exp {−t} 1

(j − 1)!

{
j−1∑
m=0

(−1)mtj−1−m 1

dm+1
i

(j − 1)!

(j − 1−m)!

}

+

j−1∑
k=0

e−t t
k

k!
. (S2.15)

Proof of Theorem 5. We consider the TAFp = maxj∈S − log Ḡj(−2
∑j

i=1 log p(i)), where

Ḡj = 1−Gj(t) and Gj(t) denotes the CDF function of Tj = −2
∑j

i=1 log p(i) under the null.

Let

ĵ = argmax
j

− log Ḡj

(
− 2

j∑
i=1

log p(i)
)
.

By Lemma S3, it suffices to show ĵ → ℓ in probability. We First show that the choice of

ĵ ⩾ ℓ with probability one as n diverges under the alternative. Indeed, by the following

inequality

P(χ2
2j > t) ⩽ Ḡj(t) ⩽ P(χ2

2K > t), (S2.16)

we have

−2 log Ḡj

(
− 2

j∑
i=1

log p(i)
)
⩽ −2 log F̄χ2

2j

(
− 2

j∑
i=1

log p(i)
)

−2 log Ḡj

(
− 2

j∑
i=1

log p(i)
)
⩾ −2 log F̄χ2

2K

(
− 2

j∑
i=1

log p(i)
)
.
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Then by Lemma 1, Lemmas S1-S3, and Corollary S1, we have:

− 2

n
log Ḡj

(
− 2

j∑
i=1

log p(i)
)
→

{ ∑j
i=1 λici(θi) j < ℓ∑ℓ
i=1 λici(θi) j ⩾ ℓ

with probability one. Hence ĵ ⩾ ℓ with probability one as n goes to infinity under the

alternative. Now we show ĵ ⩽ ℓ in probability as n goes to infinity. Indeed, for any j > ℓ,

consider the following event:

A

B
=

Ḡj

(∑j
i=1 −2 log p(i)

)
Ḡℓ

(∑ℓ
i=1−2 log p(i)

) ⩽ 1. (S2.17)

It suffices to show probability of the above event goes to zero under the alternative.

For the case 1 < ℓ < j < K, by Lemma S4,

A

B
⩽ 1

⇔
F̄Rj

(∑j
i=1 − log p(i)

)
F̄Rℓ

(∑ℓ
i=1− log p(i)

) ⩽ 1

⇔
j∏

i=ℓ+1

p(i)︸ ︷︷ ︸
I

⩽

∑K−ℓ
i=1 wi

1
(ℓ−1)!

{∑ℓ−1
m=0(−1)mRℓ−1−m

ℓ
1

dm+1
i

(ℓ−1)!
(ℓ−1−m)!

}
+
∑ℓ−1

k=0

Rk
ℓ

k!∑K−j
i=1 wi

1
(j−1)!

{∑j−1
m=0(−1)mRj−1−m

j
1

dm+1
i

(j−1)!
(j−1−m)!

}
+
∑j−1

k=0

Rk
j

k!︸ ︷︷ ︸
II

.

Note that

II ·
(
n
2

)j−1(
n
2

)ℓ−1
= II ·

(n
2

)j−ℓ → CK,j,ℓ

( ℓ∑
i=1

λici(θi)
)j−ℓ

with probability one, where CK,i,ℓ is some constant that depends on K, i and ℓ. Hence

II → 0 with probability one as n diverges. By Lemma S3, we note I is the product of the

first (j − ℓ)-th smallest p-values of K − ℓ i.i.d. p-values following Unif(0, 1) as n → +∞.

Hence I = Op(1). And the probability of event A/B ⩽ 1 goes to 0 in probability. For the
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case 1 < ℓ < i = K, we note that

A

B
⩽ 1

⇔
F̄χ2

2K

(∑K
i=1− log p(i)

)
F̄Rℓ

(∑ℓ
i=1− log p(i)

) ⩽ 1

⇔
K∏

i=ℓ+1

p(i)︸ ︷︷ ︸
III

⩽

∑K−ℓ
i=1 wi

1
(ℓ−1)!

{∑ℓ−1
m=0(−1)mRℓ−1−m

ℓ
1

dm+1
i

(ℓ−1)!
(ℓ−1−m)!

}
+
∑ℓ−1

k=0

Rk
ℓ

k!∑K−1
i=0

1
i!

(
RK

)i︸ ︷︷ ︸
IV

.

Note that

IV ·
(
n
2

)K−1(
n
2

)ℓ−1
= IV ·

(n
2

)K−ℓ → CK,ℓ

( ℓ∑
i=1

λici(θi)
)K−ℓ

with probability one, where CK,ℓ is some constant that depends on K and ℓ. Hence IV → 0

with probability one as n diverges. By Lemma S3, we note III is the product of K− ℓ i.i.d.

p-values following Unif(0, 1) as n → +∞. Hence III = Op(1). And the probability of event

A/B ⩽ 1 goes to 0 in probability.

Now we consider the case 1 = ℓ < j < K. By inequality (1+ x)K ≥ 1+Kx for x > −1,

we have

P(A/B ⩽ 1) = P
( F̄Rj

(
∑j

i=1− log p(i))

F̄R1(− log p(1))
⩽ 1

)
= P

( F̄Rj
(
∑j

i=1 − log p(i))

1− (1− exp(log p(1)))K
⩽ 1

)
≤ P

( F̄Rj
(
∑j

i=1− log p(i))

K exp(−R1)
⩽ 1

)
.

Hence it suffices to show P
(

F̄Rj
(
∑j

i=1 − log p(i))

K exp(−R1)
⩽ 1

)
→ 0 as n diverges. Note that by Lemma
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S4, we have

F̄Rj
(
∑j

i=1− log p(i))

K exp(−R1)
⩽ 1

⇔
j∏

i=2

p(i)︸ ︷︷ ︸
V

⩽
K∑K−j

i=1 wi
1

(j−1)!

{∑j−1
m=0(−1)mRj−1−m

j
1

dm+1
i

(j−1)!
(j−1−m)!

}
+
∑j−1

k=0

Rk
j

k!︸ ︷︷ ︸
V I

Note that

V I ·
(n
2

)K−1 → CK

(
λ1c1(θ1)

)K−1

with probability one, where CK is some constant that depends on K. Hence V I → 0 with

probability one as n diverges. By Lemma S3, we note V is the product of j − 1 smallest

p-values of K − 1 i.i.d. p-values following Unif(0, 1) as n → +∞. Hence V = Op(1). And

the probability of event A/B ⩽ 1 goes to 0 in probability. The arguments for the case

1 = ℓ < j = K is quite similar, hence we omit the details. Combine the above results, we

have ĵ ≤ ℓ in probability as n diverges. Then the conclusion follows.

We prove Theorem 6 by proving the following test statistic in a more general form is

ABO:

T (τ1, τ2) =
K∑
i=1

(−2 log (pi) + 2 log (τ2)) I{pi≤τ1} with 0 ⩽ τ1, τ2 ⩽ 1.

When τ1 = τ and τ2 = 1, T (τ1, τ2) = TTFhard(τ); and when τ1 = τ2 = τ , T (τ1, τ2) =

TTFsoft(τ). The proof of the Theorem 6 requires the following additional lemma:

Lemma S5 (Zhang et al. (2020)). Assume p1, . . . , pK ∼ Unif(0, 1) independently and identi-

cally. Denote by U(τ1, τ2) the random variable that follows the same distribution of T (τ1, τ2)
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under the null. Then

F̄U(τ1,τ2)(t) =
(
1− τ1

)K
I{t⩽0} +

K∑
i=1

(
K

i

)
τ i1
(
1− τ1

)K−i
F̄χ2

2i

(
t+ 2i log

(
τ1/τ2

))
(S2.18)

Proof of Theorem 6. We only prove the case of τ2 ⩽ τ1 as the case of τ2 > τ1 can

be proved by similar arguments. Let FU(τ1,τ2)(t) and F̄U(τ1,τ2)(t) be the CDF and survival

function of U(τ1, τ2). Consider test statistic
√
T (τ1, τ2). Under the setup in Section 2.1 and

the alternative, by Lemmas 1 and S3, we have

√
T (τ1, τ2)√

n
=

√∑K
i=1

(
− 2 log pi + 2 log τ2

)
I{pi≤τ1}√

n
→

( ℓ∑
i=1

λici(θi)
) 1

2 (S2.19)

with probability one as n → ∞. In addition, by Lemma S1, for each i = 1, . . . , K,

− 1

n
log F̄χ2

2i

(
nt2 + 2i log (τ1/τ2)

)
= − 1

n
log F̄χ2i

(√
nt2 + 2i log (τ1/τ2)

)
→ t2

2

as n → ∞. Note by Lemma S5, for t > 0 we have

F̄√
U(τ1,τ2)

(
√
nt) = F̄U(τ1,τ2)(nt

2)

⩾ F̄χ2
2

(
nt2 + 2K log(τ1/τ2)

) K∑
i=1

(
K

i

)
τ i1 (1− τ1)

K−i

F̄√
U(τ1,τ2)

(
√
nt) = F̄U(τ1,τ2)(nt

2)

⩽ F̄χ2
2K

(
nt2 + 2 log (τ1/τ2)

) K∑
i=1

(
K

i

)
τ i1 (1− τ1)

K−i .

Hence

− 1

n
log F̄√

U(τ1,τ2)

(√
nt
)
→ t2

2
(S2.20)

with probability one as n → ∞. By combining (S2.19) and (S2.20) and applying Lemma
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S2, we have for the exact slope of T (τ1, τ2),

CT (τ1,τ2) = − 2

n
log F̄U(τ1,τ2)

(
T (τ1, τ2)

)
= − 2

n
log F̄√

U(τ1,τ2)

(√
T (τ1, τ2)

)
→

ℓ∑
i=1

λici(θi).

Hence T (τ1, τ2) is ABO.

S2.2 Proof of Theorem 7

Proof of Theorem 7. Let URV(γ) be the random variable that follows the same distribu-

tion of TRV(γ) under the null. Denote by FURV(γ)(t) and F̄URV(γ)(t) the CDF and survival

function of TRV(γ) under the null. Furthermore, under the null, let U(γ) be the random

variable such that U(γ) ∈ R−γ. Hence gγ(pTi
) = F−1

U(γ)(1−pTi
) follows the same distribution

of U(γ) under the null. Let ti = F−1
U(γ)(1 − pTi

). Consequently, under the alternative, for i

such that Ci(θ⃗) > 0, pTi
= F̄U(γ)(ti) and F̄U(γ)(ti)/(L(ti)t

−γ
i ) → 1 with probability one. We

have, under the alternative, as n → +∞,

− 2

n
log

(
F̄U(γ)(ti)/(L(ti)t

−γ
i )

)
− 2

n
log

(
L(ti)t

−γ
i

)
= − 2

n
log(pTi

) → Ci(θ⃗)

with probability one. Hence − 2
n
log

(
L(ti)t

−γ
i

)
→ Ci(θ⃗) with probability one. By the basic

property of slowly varying function, we have L(ti) = o(tγi ) with probability one for any γ.

Hence for i such that Ci(θ⃗) > 0,

− 2

n
log(t−γ

i ) → Ci(θ⃗) (S2.21)

with probability one. Let t0 =
∑L

i=1 F
−1
U(γ)(1−pTi

) =
∑L

i=1 ti, then by Bonferroni’s inequality,

we have F̄URV(γ)(t0) ⩽ L · F̄U(γ)(
t0
L
) with probability one. then we have
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− 2

n
log F̄URV(γ)(TRV(γ))

⩾ − 2

n
log

(
LF̄U(γ)(

t0
L
)/(L(t0)L

γ+1t−γ
0 )

)
− 2

n
log(L(t0)L

γ+1t−γ
0 )

= − 2

n
log

(
F̄U(γ)(

t0
L
)/(L(t0)L

γt−γ
0 )

)︸ ︷︷ ︸
(A)

+
2γ log t0 − 2 logLγ+1L(t0)

n︸ ︷︷ ︸
(B)

.

Under the alternative, for (A), with max1⩽i⩽L Ci(θ⃗) > 0 and either Conditions (C1) or

(C2) holds, we have t0 → +∞ with probability one. Then we have

F̄U(γ)(
t0
L
)/(L(t0)L

γt−γ
0 ) =

[
F̄U(γ)(

t0
L
)/[L(

t0
L
)(
t0
L
)−γ]

]
·
[
L(

t0
L
)/L(t0)

]
→ 1

with probability one, where the first term converges to 1 by the regularly varying tailed

distribution definition and the second term converges to 1 by the definition of slow-varying

distribution. Hence we have (A) → 0 with probability one. For (B), we first assume

Condition (C2) holds. Let Ci∗(θ⃗) = max1⩽i⩽LCi(θ⃗), then under the alternative, by (S2.21)

we have

2γ

n
log t0 =

2γ

n
log

( L∑
i=1

ti
)
⩾

2γ

n
max
1⩽i⩽L

{log(ti)} → Ci∗(θ⃗)

2γ

n
log t0 =

2γ

n
log

( L∑
i=1

ti
)
⩽

2γ

n
max
1⩽i⩽L

{log(ti)}+
2γ logL

n
→ Ci∗(θ⃗)

with probability one. Suppose Condition (C1) holds and Condition (C2) does not hold, it

suffices to consider the worst case that F−1
U(γ)(1 − p) ⩾ ν for some ν < 0 and ∀p ∈ (0, 1].

Denote by index set B = {i : Ci(θ⃗) > 0}. Then under the alternative, with probability one



24

we have

2γ

n
log t0 =

2γ

n
log

(∑
i∈B

ti +
∑
i∈Bc

ti
)
=

2γ

n
log

(∑
i∈B

ti
)
+

2γ

n
log

(
1 +

∑
i∈Bc ti∑
i∈B ti

)
⩾

2γ

n
log

(∑
i∈B

ti
)

︸ ︷︷ ︸
(C)

+
2γ

n
log

(
1 +

|Bc|ν∑
i∈B ti

)
︸ ︷︷ ︸

(D)

,

where |Bc| denotes the cardinality of index set Bc. For term (C), by (S2.21), under the

alternative we have

2γ

n
log

(∑
i∈B

ti
)
⩾

2γmaxi∈B{log(ti)}
n

=
2γmax1⩽i⩽L{log(ti)}

n
→ Ci∗(θ⃗)

2γ

n
log

(∑
i∈B

ti
)
⩽

2γmaxi∈B{log(ti)}
n

+
2γ log |B|

n

=
2γmax1⩽i⩽L{log(ti)}

n
+

2γ log |B|
n

→ Ci∗(θ⃗)

with probability one. Here we can also show that term (D) converges to zero with probability

one as n → +∞. Hence 2γ
n
log t0 = Ci∗(θ⃗) with probability one under the alternative.

Further note L(t0) = o(tγ0) with probability one, then we have (B) = Ci∗(θ⃗) with probability

one. Hence under the alternative

− 2

n
log F̄URV(γ)(TRV(γ)) = Ci∗(θ⃗)

as n → +∞ with probability one.

Remark S4. The result of Theorem 7 also holds for the weighted version of TRV(γ) by the

similar arguments in the above proof:

T ϵ
RV(γ) =

L∑
i=1

ϵigγ(pTi
) =

L∑
i=1

ϵiF
−1
U(γ)(1− pTi

)

with
∑L

i=1 ϵi = 1 and ϵi > 0 for each i = 1, . . . , L.
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S2.3 Proofs of Theorems S2-S4 and Proposition S1

Lemma S6 (Mikosch (1999)). Assume U1(γ), . . . , UK(γ) are i.i.d. random variables with

distribution function F ∈ R−γ. Then as t → ∞, we have

P (U1(γ) + . . .+ UK(γ) > t) /(KP (U1(γ) > t)) → 1. (S2.22)

proof of Theorem S2. Denote Tη =
√
(1/η) log

(∑K
i=1 1/p

η
i

)
. Let U(η) be the random

variable that follows the same distribution of Tη under the null. Denote by FU(η)(t) and

F̄U(η)(t) the CDF and the survival function of Tη under the null. Further denote by P0

the probability measure of p⃗ = (p1, . . . , pK) under the null. First note that F̄U(η)(
√
nt) =

P0

(∑K
i=1 1/p

η
i > exp(ηnt2)

)
. Further note that 1

pηi

D∼ Pareto( 1
η
, 1) ∈ R− 1

η
under the null,

where the explicit form of survival function of Pareto distribution is F̄Pareto( 1
η
,1)(t) = t−

1
η .

Hence by Lemma S6 we have

F̄U(η)(
√
nt)/(KF̄Pareto( 1

η
,1)(exp(ηnt

2))

= P0

( K∑
i=1

1/pηi > exp(ηnt2)
)
/(K(exp(ηnt2))−

1
η ) → 1,

as n → +∞. Then we have,

− 1

n
log

(
1− FU(η)(

√
nt)

)
→ t2, (S2.23)

as n → ∞. We further claim under the alternative,

Tη√
n
→

√
max
1⩽i⩽K

{λici(θi)} /2 (S2.24)

with probability one. Indeed, note

max
1⩽i⩽K

{log(1/pηi )} ⩽ log
( K∑

i=1

1/pηi
)
⩽ logK + max

1⩽i⩽K
{log(1/pηi )} .
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Hence under the alternative, we have

1

n
log

( K∑
i=1

1/pηi
)
→ η max

1⩽i⩽K
λici(θ)/2 (S2.25)

with probability one. Then we have

Tη√
n
=

√
(1/η) log

(∑K
i=1 1/p

η
i

)
√
n

→
√

max
1⩽i⩽K

λici(θ)/2

with probability one. Hence (S2.24) holds. Combining (S2.23) and (S2.24) and by Lemma

S2, the result follows.

Proof of Theorem S3. Note TCA = 1
K

∑K
i=1 cot (πpi). Under the alternative, recall with-

out loss of generality we assume that the first ℓ p-values correspond to non-zero exact slopes

ci(θi) > 0 (1 ⩽ i ⩽ ℓ), while the remaining p-values correspond to the zero exact slopes

(pi ∼ Unif(0, 1) for ℓ + 1 ⩽ i ⩽ K). For the p-values with non-zero exact slopes, by the

Taylor’s expansion x cotx− 1 = −x2

3
+ o(x2), under the alternative we have,

1

K

ℓ∑
i=1

[ 1

πpi
− 2πpi

3

]
⩽

1

K

ℓ∑
i=1

cot (πpi) ⩽
1

K

ℓ∑
i=1

1

πpi

with probability one. Note 1
K

∑ℓ
i=1

[
1

πpi
− 2πpi

3

]
= 1

K

(
1−

∑K
i=1 2πpi/3∑K
i=1 1/πpi

)∑ℓ
i=1

1
πpi

and under the

alternative, with probability one,(
1−

∑ℓ
i=1 2πpi/3∑ℓ
i=1 1/πpi

)
→ 1

1

n
log

( 1

K

ℓ∑
i=1

1/πpi
)
→ 1

2
max
1⩽i⩽ℓ

λici(θ), (S2.26)

where (S2.26) is due to similar arguments for (S2.25) in the proof of Theorem S2 for η = 1.

Hence we have

1

n
log

( 1

K

ℓ∑
i=1

cot (πpi)
)
→ 1

2
max
1⩽i⩽ℓ

λici(θ) (S2.27)
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with probability one.

Note that cot(πpℓ+1), . . . , cot(πpK)
i.i.d.∼ CAU(0, 1). Hence we have

1

K

K∑
i=ℓ+1

cot (πpi)
D∼ K − ℓ

K
UCAU(0,1),

where UCAU(0,1) denotes standard Cauchy random variable. Note that under the null, TCA
D∼

CAU(0, 1). Hence FCAU(0,1)(t) and F̄CAU(0,1)(t) are the CDF and survival function of TCA

under the null. Hence under the alternative, we have

F̄CAU(0,1)(TCA) = P(UCAU(0,1) >
1

K

ℓ∑
i=1

cot(πpi) +
1

K

K∑
i=ℓ+1

cot(πpi))

= P
((

1 +
K − ℓ

K

)
UCAU(0,1) >

1

K

ℓ∑
i=1

cot(πpi)
)

= P
(
UCAU(0,1) >

K

2K − ℓ
· 1

K

ℓ∑
i=1

cot(πpi)
)
. (S2.28)

In addition, for t > 1,

F̄CAU(0,1) (t) =
1

2
− 1

π
arctan t =

1

π
· arctan (1/t) ⩽ 1

πt

F̄CAU(0,1) (t) =
1

π
arctan

1

t
⩾

1

πt
· t2

1 + t2
.

By combining the above two inequalities with (S2.27) and (S2.28), under the alternative we

have

− 2

n
log

(
F̄CAU(0,1)(TCA)

)
→ max

1⩽i⩽ℓ
λici(θ) = max

1⩽i⩽K
λici(θ)

with probability one.

To prove Theorem S4, we introduce the following notations adopted from Zhang et al.

(2020). Define

fϕ
1 (x, y) = x log(

x

y
) + (1− x) log(

1− x

1− y
).
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Further define

f(x, y) =

√
2Kfϕ

1 (x, y) if y ⩽ x

= −
√

2Kfϕ
1 (x, y) if y > x.

Note that f(x, y) is strictly decreasing in y. When TBJ > 0, we have

√
2KTBJ = max

1⩽i⩽K
f(

i

K
, p(i)).

For each fixed x, define the inverse function of f(x, ·) as g(x, ·), i.e.,

g(x, ·) = f−1(x, ·).

Proof of Theorem S4 . Let i∗ = argmaxi iλici(θ) and note that by Lemma 1, i∗ ⩽ ℓ. We

first show that under the alternative,

2KTBJ/n → i∗λi∗ci∗(θ) (S2.29)

with probability one. Denote

î = argmax
i

{ i

K
log

(i/K
p(i)

)
+
(
1− i

K

)
log

(1− i/K

1− p(i)

)}
I{p(i)< i

K
}.

We show that under the alternative î → i∗ with probability one. Indeed, for any i ̸= i∗ and

i ⩽ ℓ, by Lemma S3, we have

(1/n)
[

i
K
log

(
i/K
p(i)

)
+
(
1− i

K

)
log

(
1−i/K
1−p(i)

)]
I{p(i)< i

K
}

(1/n)
[
i∗

K
log

(
i∗/K
p(i∗)

)
+
(
1− i∗

K

)
log

(
1−i∗/K
1−p(i∗)

)]
I{p(i∗)< i∗

K
}

→ iλici(θ)

i∗λi∗ci∗(θ)
< 1

with probability one. For any i > ℓ, note that 1 − pi still follows Unif(0, 1). Hence for

any i′ > ℓ, by Lemmas 1 and S3, we have − 1
n
log p(i′) → 0 and − 1

n
log(1 − p(i′)) → 0 with
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probability one. Hence

(1/n)
[
i′

K
log

(
i′/K
p(i′)

)
+
(
1− i′

K

)
log

(
1−i′/K
1−p(i′)

)]
I{p(i′)< i′

K
}

(1/n)
[
i∗

K
log

(
i∗/K
p(i∗)

)
+
(
1− i∗

K

)
log

(
1−i∗/K
1−p(i∗)

)]
I{p(i∗)< i∗

K
}

⩽
(1/n)

[
i′

K
log

(
i′/K
p(i′)

)
+
(
1− i′

K

)
log

(
1−i′/K
1−p(i′)

)]
(1/n)

[
i∗

K
log

(
i∗/K
p(i∗)

)
+
(
1− i∗

K

)
log

(
1−i∗/K
1−p(i∗)

)]
I{p(i∗)< i∗

K
}

→ 0

with probability one. Hence under the alternative 2KTBJ/n → i∗λi∗ci∗(θi∗) with probability

one.

Denote by UBJ the random variable follows the same distribution of
√
2KTBJ under the

null, and let

µi = g(
i

K
, b) = f−1(

i

K
, b), i = 1, 2, . . . , K.

Let FUBJ
, F̄UBJ

be the CDF and survival function of UBJ, respectively. Also let FBeta(α,β) and

F̄Beta(α,β) be the CDF and survival function of Beta(α, β), respectively. By Theorem 5.1 in

Zhang et al. (2020), we have,

FUBJ
(b) = F̄Beta(K,1)(µK)−

K−1∑
i=1

µi
i

i!
ai+1, (S2.30)

where

aK = K!F̄Beta(1,1)(µK)

ai =
K!

(K − i+ 1)!
F̄Beta(K−i+1,1)(µK)−

K−i∑
j=1

µj
i+j−1

j!
ai+j

for i = K − 1, K − 2, . . . , 1.

Since µi = g( i
K
, b) = f−1( i

K
, b), for sufficiently large b, we have

b =

√
2Kfϕ

1 (
i

K
, µi).
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Hence

b2

2K
= fϕ

1 (
i

K
, µi) =

i

K
log

i
K

µi

+ (1− i

K
) log

1− i
K

1− µi

.

Then

e−[ b2

2K
− i

K
log i

K
−(1− i

K
log(1− i

K
))] = µ

i
K
i (1− µi)

1− i
K . (S2.31)

Note f(x, y) is strictly decreasing in y, for b → ∞, µi → 0. Denote

µi = Ci,be
− b2

2i ,

where Ci,b depends on i and b. We show that there exist Ci > 0 only depending on i, such

that

lim
b→∞

Ci,b = Ci. (S2.32)

Indeed, from equation (S2.31), we have

lim
b→∞

e−[ b2

2K
− i

K
log i

K
−(1− i

K
log(1− i

K
))]

(Ci,be
− b2

2i )
i
K (1− Ci,be

− b2

2i )1−
i
K

= 1.

Hence

lim
b→∞

e
i
K

log i
K
+(1− i

K
log(1− i

K
))

C
i
K
i,b

= 1.

Hence we have limb→∞Ci,b = Ci > 0 for i = 1, . . . , K. Hence for sufficiently large b, we have

µi = (Ci + o(1))e−
b2

2i .

As limb→∞ µi = 0, for sufficiently large b, we have

ak = K!F̄Beta(1,1)(µK) = K! + o(1).
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Similarly, for i = 1, . . . , K − 1 and sufficiently large b,

ai =
K!

(K − i+ 1)!
+ o(1).

For F̄UBJ
= 1− FUBJ

, we have

F̄UBJ
(b) = FBeta(K,1)(µK)︸ ︷︷ ︸

I

+
K−1∑
i=1

µi
i

i!
ai+1︸ ︷︷ ︸

II

. (S2.33)

As µi
i = Ci

i,be
− b2

2 = (Ci
i + o(1))e−

b2

2 for sufficiently large b, we have

I = FBeta(K,1)(µK) =

∫ µK

0

KxK−1dx = µK
K = (CK

K + o(1))e−
b2

2 .

Similarly,

II =
K−1∑
i=1

µi
i

i!
ai+1 =

K−1∑
i=1

(Ci
i + o(1))e−

b2

2

i!

[ K!

(K − i+ 1)!
+ o(1)

]
.

Hence for sufficiently large b,

(S2.33) = I + II =
[
CK

K +
K−1∑
i=1

Ci
i

i!

K!

(K − i+ 1)!
+ o(1)

]
e−

b2

2

= (C(K) + o(1))e−
b2

2 , (S2.34)

where C(K) only depends on K. Let b =
√
2KTBJ, combine equations (S2.29) and (S2.34),

under the alternative, we have

−
2 log F̄UBJ

(√
2KTBJ

)
n

→ i∗λi∗ci∗(θi∗)

with probability one.

Remark S5. It can be shown that TBJ generally does not has signal selection consistency.

Recall that TBJ picks i∗ = argmaxi iλici(θi) with probability one as shown in the proof.
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Consider K = 2 and there is only two signals, with λ1c1(θ1) = 9 and λ2c2(θ2) = 1. Then

one can show i∗ = 1 here, i.e., TBJ picks the wrong subset of p-values with probability one.

Below we use a counter example to show that higher criticism is generally not ABO.

Let UHC be the random variable that follows the same distribution of THC under the null.

Denoted by FUHC
and F̄UHC

the CDF and survival function of UHC, respectively. To prove

Proposition S1, we need the following Lemma to derive the survival function F̄UHC
under

the finite-sample case.

Lemma S7 (Barnett and Lin (2014)). For each k = 1, . . . , K, let

tk = Φ−1

[
1− 2(K − k + 1) + h2 − h {h2 + 4(K − k + 1)− 4(K − k + 1)2/K}1/2

4 (h2 +K)

]
.

Denote q1,a = P(S(t1) = a) for a = 0, 1, . . . , K − 1. Here S(t) =
∑K

j=1 I{(|Zj |⩾t)} is the

binomial random variable with Z1, . . . , ZK
i.i.d.∼ N(0, 1). Let

qk,a =
K−k+1∑
m=0

I{a⩽m}

(
m

a

){
Φ̄ (tk) /Φ̄ (tk−1)

}a

×
{
1− Φ̄ (tk) /Φ̄ (tk−1)

}m−a qk−1,m∑K−k+1
ℓ=0 qk−1,ℓ

for k = 2, . . . , K and a = 0, 1, . . . , K − k. Then we have

F̄UHC
(h) = 1−

K∏
k=1

K−k∑
a=0

qk,a.

Proof of Proposition S1. We first derive the exact form of F̄UHC
(h) for K = 2. By

Lemma S7,

F̄UHC
(h) = 1−

2∏
k=1

2−k∑
a=0

qk,a = 1− (q1,0 + q1,1)q2,0. (S2.35)
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We note

t1 = Φ−1

[
1− 2(2− 1 + 1) + h2 − h{h2 + 8− 4 · 4/2} 1

2

4(h2 + 2)

]
= Φ−1

[
1− 4

4(h2 + 2)

]
.

And

q1,0 = P(S(t1) = 0) = [1− 2(1− Φ(t1))]
2 =

[
1− 2

h2 + 2

]2
.

Also

q1,1 = P(S(t1) = 1) =
4

h2 + 2
(1− 2

h2 + 2
).

Hence q1,1 + q1,0 =
(
1− 2

h2+2

) (
1 + 2

h2+2

)
. Further more,

t2 = Φ−1

[
1− 2 + h2 − h{h2 + 4− 4/2} 1

2

4(h2 + 2)

]
= Φ−1

[
3

4
+

h

4
√
h2 + 2

]
.

Then we have Φ̄(t2) =
1
4
− h

4
√
h2+2

, also Φ̄(t1) =
1

h2+2
. Hence

q2,0 =
1∑

m=0

I{0⩽m}

(
m

0

)[
Φ̄(t2)

Φ̄(t1)

]0 [
1− Φ̄(t2)

Φ̄(t1)

]m
· q1,m
q1,0 + q1,1

= I1 + I2,

where

I1 =
q1,0

q1,0 + q1,1
=

1− 2
h2+2

1 + 2
h2+2

I2 =

[
1− h2 + 2− h

√
h2 + 2

4

]
q1,1

q1,0 + q1,1
=

[
1

2
− h2

4
+

h
√
h2 + 2

4

]
4

h2+2

1 + 2
h2+2

.

Hence

I1 + I2 =
1 + 2

(h2+2)(
√
h2+2+h)

1 + 2
h2+2

.
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By plugging in all the quantities into (S2.35), we have,

F̄UHC
(h) = 1−

(
1− 2

h2 + 2

)(
1 +

2

h2 + 2

) 1 + 2
(h2+2)(

√
h2+2+h)

1 + 2
h2+2

=
2

h2 + 2
− 2

(h2 + 2)(
√
h2 + 2 + h)

+
4

(h2 + 2)2(
√
h2 + 2 + h))

. (S2.36)

Recall

THC = max
1⩽i⩽2

√
2

i
2
− p(i)√

p(i)(1− p(i))
= max

1⩽i⩽2

i√
2p(i)(1− p(i))

−
√

p(i)
1− p(i)

.

Under the alternative, note THC/(
√
2 exp(nc0/4)) → 1 with probability one given c1(θ1) =

c2(θ2) = c0 > 0. Plugging into (S2.36), we have under the alternative in Proposition S1,

− 2

n
log F̄UHC

(THC) → c0

with probability one as n → ∞.

Remark S6. One can note that under the alternative of combining two p-values with

c1(θ1) = 2c2(θ2) = 2c0 > 0, î = argmaxi
√
2

i
2
−p(i)√

p(i)(1−p(i))
→ 1 with probability one. Hence,

HC is not consistent for selecting the subset of p-values with true signals.

S3 Supplementary simulation results

S3.1 Type I error control of FE and FECS

In this subsection, we numerically evaluate accuracy of type I error control using fast algo-

rithm of independent Cauchy for the two methods proposed in Sections 4 and 5, FE and

FECS. We simulate K p-values p1, . . . , pK
D∼ Unif(0, 1), and calculate the test statistics

for the two methods respectively, where 1 − p1, . . . , 1 − pK with the previously generated
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Table S1: Accuracy of type I error control for FE and FECS

Methods K 0.05 0.01 5× 10−3 1× 10−3

5 5.02×10−2 1.02×10−2 5.23×10−3 1.07×10−3

10 5.12×10−2 9.96×10−3 5.05×10−3 1.17×10−3

20 5.12×10−2 1.02×10−2 4.90×10−3 9.40×10−4

FE 40 5.11×10−2 9.80×10−3 5.15×10−3 1.02×10−3

60 5.15×10−2 1.01×10−2 5.13×10−3 1.17×10−3

80 5.31×10−2 1.10×10−2 5.72×10−3 1.05×10−3

100 5.36×10−2 1.06×10−2 5.37×10−3 1.04×10−3

5 5.39×10−2 1.03×10−2 5.16×10−3 1.02×10−3

10 5.51×10−2 1.02×10−2 5.23×10−3 1.15×10−3

20 5.50×10−2 1.01×10−2 4.95×10−3 9.30×10−4

FECS 40 5.52×10−2 1.06×10−2 5.02×10−3 9.80×10−4

60 5.35×10−2 1.04×10−2 5.55×10−3 1.13×10−3

80 5.78×10−2 1.13×10−2 5.25×10−3 9.90×10−4

100 5.70×10−2 1.15×10−2 5.77×10−3 1.17×10−3

p-values are used as one-sided p-values for FECS. We vary K = 5, 10, 20, 40, 60, 80, 100 for a

wide range of numbers of combined p-values. Table S1 shows type I error control for the two

methods under different significance levels α =0.05, 0.01, 0.001, 0.005, 0.001 using 105 times

of simulations. Across wide ranges of K and α ⩽ 0.01, type I error by the fast computing

has less than 10% inflation, with improved accuracy for smaller α. As the worst case, the

type I error control of FECS when α = 0.05 is slightly anti-conservative but acceptable (in

the range of 0.0539∼0.0578 for different K).

S3.2 Statistical power comparison for modified Fisher methods in the case of

combining a small group of strong signals

In this subsection, we demonstrate the statistical power of Stouffer, Fisher, and 5 modified

Fisher methods for combining a small group of strong signals. We simulate the alternatives

with fixed numbers of true signals ℓ = 1, 2, . . . , 6 for K = 20, 40, 80 following the same
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simulation scheme in Section 3.3. For a given K and ℓ, we choose the smallest µ0 such that

the best method has at least 0.9 statistical power at α = 0.05. The results are shown in

Figure S1.

S3.3 Statistical power comparison for 12 existing p-value combination methods

In this subsection, we demonstrate the statistical power of 12 p-value combination methods:

Fisher, AFp, AFz, oTFsoft, oTFhard, HC, minP, HM, BJ, Cauchy (CA), and Stouffer.

For Figure S2, the signal strength µ0 is chosen the same as Figure 1 in Section 3.3 for

a given proportion of signals ℓ/K and number of combined p-values K. As expected, 4

added methods (HC, minP, HM, CA) that are designed for sparse signals and have very

weak power for frequent signals. Although BJ is also designed for sparse signal scenarios,

it has relatively higher power, comparable to AFz but much lower than Fisher and AFp.

For Figure S3, the signal strength µ0 is chosen the same as Figure S1 for a given number of

signals ℓ and number of combined p-values K. 4 added methods (HC, minP, HM, CA) that

are designed for sparse signals outperform Fisher and Stouffer, but still are comparative

with modified Fisher’s methods such as AFp and AFz.

S3.4 Statistical power comparison for FE in the case of combining a small

group of strong signals

In this subsection, we demonstrate the statistical power of Fisher, AFp, and FE for combin-

ing a small group of strong signals. We simulate the alternatives with fixed numbers of true

signals ℓ = 1, 2, . . . , 6 for K = 20, 40, 80 following the same simulation scheme in Section
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3.3. For a given K and ℓ, we choose the smallest µ0 such that the best method has at least

0.9 statistical power at α = 0.05. The results are shown in Figure S4.

S3.5 Statistical power comparison for FE and FE2

In this subsection, we evaluate the statistical power of Fisher, AFp, FE, and the following

FE2 that integrates Fisher, AFp and minP:

TFE2 = [1/pFisher + 1/pAFp + 1/pminP]/3.

The following Figures S5 and S6 present the results in settings similar to that of Figures

2 and S4, respectively. For Figure S5, we choose the smallest µ0 that allows the best

method to have power larger than 0.5 for a given proportion of signals ℓ/K and a number of

combined p-values K. For Figure S6, we choose the smallest µ0 that allows the best method

to have power larger than 0.5 for a given proportion of signals ℓ and a number of combined

p-values K. Although FE2 improves power over FE when the signal is very sparse, its

power is much reduced when the signal is frequent, which is an important scenario in most

applications. As a result, FE combining Fisher and AFp but not minP is recommended for

general applications.

S3.6 Statistical power comparison for FECS in the case of combining a small

group of strong signals

In this subsection, we demonstrate the statistical power of Pearson, FE, and FECS for

combining a small group of strong signals. We simulate the alternatives with fixed numbers

of true signals ℓ = 1, 2, . . . , 6 for K = 20, 40, 80 following the same simulation scheme in
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Section 3.3. For a given K and ℓ, we choose the smallest µ0 such that the best method has

at least 0.9 statistical power at α = 0.05. The results are shown in Figure S7.
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S3.7 Numeric examples that harmonic mean outperforms Cauchy for Fisher

ensemble

This subsection provides numeric examples that using harmonic mean is better than Cauchy

in the FE and FECS construction (Equation (2) in the manuscript). Below, we follow

the simulation scheme in Section 5.2 to generate data and the combined p-values, where

we evaluate the power of FECS (using the harmonic mean), Pearson, and FECauchy
CS (using

Cauchy). Figures S8 and S9 show the empirical power of the three methods. For figure

S8, we choose the smallest µ0 that allows the best method to have power larger than 0.5 at

significance level α = 0.01 for a given proportion of signals ℓ/K and a number of combined

p-values K. For figure S9, we choose the smallest µ0 that allows the best method to have

power larger than 0.9 at significance level α = 0.05 for a given proportion of signals ℓ and a

number of combined p-values K. The results show that FECS largely outperforms the latter

for ℓ/K ⩾ 0.4 in Figure S8, as a consequence of the “−∞ score” issue when using Cauchy.
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Figure S1: Statistical power of Fisher, Stouffer, and 5 modified Fisher’s methods at significance level

α = 0.05 across varying numbers of true signals ℓ = 1, 2, . . . , 6 and varying numbers of combined p-values

K = 20, 40, 80. For each ℓ and K, we choose the smallest µ0 such that the best performer has at least 0.9

statistical power. The standard errors are negligible compared to the scale of the mean power (smaller than

0.1% of the power) and hence omitted. The results of Stouffer and Fisher with a power smaller than 0.55

are omitted.
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Figure S2: Statistical power of Fisher, AFs, AFp, AFz, oTFsoft, oTFhard, HC, minP, HM, BJ, Cauchy (CA),

and Stouffer at significance level α = 0.01 across varying proportions of signals ℓ/K = 0.05, 0.1, 0.2, . . . , 0.9

and varying numbers of combined p-values K = 10, 20, 40, 80. For each ℓ and K, we choose the smallest µ0

such that the best performer has at least 0.5 statistical power. The standard errors are negligible and hence

omitted.
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Figure S3: Statistical power of Fisher, AFs, AFp, AFz, oTFsoft, oTFhard, HC, minP, HM, BJ, Cauchy

(CA), and Stouffer at significance level α = 0.05 across varying numbers of signals ℓ = 1, 2, 3, . . . , 6 and

varying numbers of combined p-values K = 20, 40, 80. For each ℓ and K, we choose the smallest µ0 such

that the best performer has at least 0.9 statistical power. The standard errors are negligible and hence

omitted.
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Figure S4: Statistical power of FE, Fisher, and AFp at significance level α = 0.05 across varying numbers

of signals ℓ = 1, 2, . . . , 6 and varying numbers of combined p-values K = 20, 40, 80. For each ℓ and K, we

choose the smallest µ0 such that the best performer has at least 0.9 statistical power. The standard errors

are negligible and hence omitted. Dots smaller than 0.55 are also omitted.
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Figure S5: Statistical power of Fisher, AFp, FE, and FE2 at significance level α = 0.01 across varying

frequencies of signals ℓ/K = 0.05, 0.2, . . . , 0.9 and varying numbers of combined p-values K = 10, 20, 40, 80.

For each ℓ and K, we choose the smallest µ0 such that the best performer has at least 0.5 statistical power.

The standard errors are negligible and hence omitted.



45

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5 6
Numbers

P
ow

er

K=20

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5 6
Numbers

P
ow

er

K=40

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5 6
Numbers

P
ow

er

K=80

Methods

Fisher

AFp

FE

FE2

Figure S6: Statistical power of Fisher, AFp, FE, and FE2 at significance level α = 0.05 across varying

numbers of signals ℓ = 1, 2, . . . , 6 and varying numbers of combined p-values K = 20, 40, 80. For each ℓ and

K, we choose the smallest µ0 such that the best performer has at least 0.9 statistical power. The standard

errors are negligible and hence omitted. results of Fisher smaller than 0.55 are omitted.
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Figure S7: Statistical power of FE, FECS, and Pearson at significance level α = 0.05 across varying numbers

of signals ℓ = 1, 2, . . . , 6 and varying numbers of combined p-values K = 20, 40, 80. The standard errors are

negligible and hence omitted.
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Figure S8: Statistical power of FECS, FE
Cauchy
CS , and Pearson at significance level α = 0.01 across varying fre-

quencies of signals ℓ/K = 0.05, 0.1, 0.2, . . . , 0.9 and varying numbers of combined p-values K = 10, 20, 40, 80.

For each ℓ and K, we choose the smallest µ0 such that the best performer has at least 0.5 statistical power.

The standard errors are negligible and hence omitted.
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Figure S9: Statistical power of FECS, FE
Cauchy
CS , and Pearson at significance level α = 0.05 across varying

numbers of signals ℓ = 1, 2, . . . , 6 and varying numbers of combined p-values K = 20, 40, 80. For each ℓ and

K, we choose the smallest µ0 such that the best performer has at least 0.9 statistical power. The standard

errors are negligible and hence omitted.
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S4 Supplementary real application results

This section contains supplementary table and figures for the AGEMAP application result.

Table S2: Up-regulated/down-regulated age-related pathways detected in one-sided design by FECS with

significance level p ⩽ 0.01. The reference columns of the 2 tables lists literature that supports the relation-

ships between the pathways and aging/early development processes.

(a): Pathways by up-regulated genes

Pathways p-values References
Phagosome Maturation 0.0005 Vieira et al. (2002)

Glutathione Redox Reactions I 0.00085 Mandal et al. (2015); Erden-İnal et al. (2002)
Tryptophan Degradation III (Eukaryotic) 0.0006 Van der Goot and Nollen (2013)
FAT10 Cancer Signaling Pathway 0.0041 Canaan et al. (2014); Aichem and Groettrup (2016)
Isoleucine Degradation I 0.0058 Canfield and Bradshaw (2019); Salcedo et al. (2021)
Glutamine Biosynthesis I 0.0065 Meynial-Denis (2016); Canfield and Bradshaw (2019)
Histamine Biosynthesis 0.0065 Mazurkiewicz-Kwilecki and Nsonwah (1989); Terao et al. (2004)
Tumor Microenvironment Pathway 0.0060 Mori et al. (2018); Sandiford et al. (2018)
Glutaryl-CoA Degradation 0.0065 Porcellini et al. (2007)
Valine Degradation I 0.0079 Canfield and Bradshaw (2019); Salcedo et al. (2021)
Androgen Signaling 0.0047 He et al. (2018); Rey (2021); Zhou et al. (2015)

(b): Pathways by down-regulated genes

Pathways p-values References
EIF2 Signaling 0.00001 Ma et al. (2013)
Remodeling of Epithelial Adherens Junc-

tions

0.0019 Parrish (2017)

Tight Junction Signaling 0.00028 Parrish (2017); Ren et al. (2014)
NER (Nucleotide Excision Repair, En-

hanced Pathway)

0.0087 Maynard et al. (2009)
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Figure S10: Distributions of numbers of p-values pjk ⩽ 0.05 of each gene j in gene Categories I, II, and III

in Figure 4.
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Figure S11: Distributions of quantities Ssign,j =
∑16

k=1 sign(βage,jk)I{min{p̃L
jk,p̃

R
jk}}

each gene j in gene Cate-

gories I(A), I(B), II(A), II(B), and III in Figure 5.
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S5 Additional simulation results
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Figure S12: Statistical power of Fisher, AFs, AFp, AFz, oTFsoft, oTFhard, HC, minP, HM, BJ,

Cauchy (CA), and Stouffer at significance level α = 0.01 across varying proportions of signals ℓ/K =

0.05, 0.1, 0.2, . . . , 0.9 and varying numbers of combined p-values K = 10, 20, 40, 80. For each proportion

ℓ/K and K, we choose the smallest µ0 such that the best performer has at least 0.9 statistical power. The

standard errors are negligible and hence omitted.
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Figure S13: Statistical power of Fisher, Stouffer, and 5 modified Fisher’s methods at significance level

α = 0.05 across varying numbers of true signals ℓ = 1, 2, . . . , 6 and varying numbers of combined p-values

K = 20, 40, 80. For each ℓ and K, we choose the smallest µ0 such that the best performer has at least 0.5

statistical power. The standard errors are negligible compared to the scale of the mean power and hence

omitted.
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Figure S14: Statistical power of Fisher, AFs, AFp, AFz, oTFsoft, oTFhard, HC, minP, HM, BJ,

Cauchy (CA), and Stouffer at significance level α = 0.01 across varying proportions of signals ℓ/K =

0.05, 0.1, 0.2, . . . , 0.9 and varying numbers of combined p-values K = 10, 20, 40, 80. For each ℓ/K and K, we

choose the smallest µ0 such that the best performer has at least 0.9 statistical power. The standard errors

are negligible and hence omitted.
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Figure S15: Statistical power of Fisher, AFs, AFp, AFz, oTFsoft, oTFhard, HC, minP, HM, BJ, Cauchy

(CA), and Stouffer at significance level α = 0.05 across varying numbers of signals ℓ = 1, 2, 3, . . . , 6 and

varying numbers of combined p-values K = 20, 40, 80. For each ℓ and K, we choose the smallest µ0 such

that the best performer has at least 0.5 statistical power. The standard errors are negligible and hence

omitted.
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Figure S16: Statistical power of FE, Fisher, and AFp at significance level α = 0.01 across varying proportions

of signals ℓ/K = 0.05, 0.1 . . . , 0.9 and varying numbers of combined p-values K = 10, 20, 40, 80. For each

ℓ/K and K, we choose the smallest µ0 such that the best performer has at least 0.9 statistical power. The

standard errors are negligible and hence omitted.
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Figure S17: Statistical power of FE, Fisher, and AFp at significance level α = 0.05 across varying numbers

of signals ℓ = 1, 2, . . . , 6 and varying numbers of combined p-values K = 20, 40, 80. For each ℓ and K, we

choose the smallest µ0 such that the best performer has at least 0.5 statistical power. The standard errors

are negligible and hence omitted.
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Figure S18: Statistical power of FE, FECS, and Pearson at significance level α = 0.01 across varying

proportions of signals ℓ/K = 0.05, 0.1, . . . , 0.9 and varying numbers of combined p-values K = 10, 20, 40, 80.

For each ℓ/K and K, we choose the smallest µ0 such that the best performer has at least 0.9 statistical

power. The standard errors are negligible and hence omitted.
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Figure S19: Statistical power of FE, FECS, and Pearson at significance level α = 0.05 across varying numbers

of signals ℓ = 1, 2, . . . , 6 and varying numbers of combined p-values K = 20, 40, 80. For each ℓ and K, we

choose the smallest µ0 such that the best performer has at least 0.5 statistical power. The standard errors

are negligible and hence omitted.
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