
Statistica Sinica: Supplement

LINEAR DISCRIMINANT ANALYSIS

WITH SPARSE AND DENSE SIGNALS

Ning Wang, Shaokang Ren, and Qing Mai

Beijing Normal University, Microsoft, and Florida State University

Supplementary Material

Section S1 contains some additional simulation results, Section S2 contains the detailed deriva-

tion of lemmas, and Section S3 contains the technical proof of the main theorem.

S1 Additional Simulation Results

In this section, we modify Models (D1)-(D3) to test the performance of

the proposed methods when the sample sizes in each class are extremely

unbalanced. We adopt all the parameters in Models (D1)-(D3) except n1 =

10 and n2 = 90. The resulting models are referred to as Models (D1’)-(D3’).

Table S.1 presents the miss-classification error rates. From the table, we

can see that most of the competitors give error rates very close to 0.1, which

indicates that they classify all the samples into one class. As a comparison,

SD-LDA is closer to the Bayes error than all the competitors.
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Table S.1: The prediction accuracy result. The means and standard errors (in the

parentheses) of the prediction error of 100 replicates are reported in percentage.

Models q BE SD-LDA MSDA Lasso elastic-net SVM SOS

D1’
0.1 8.24 9.38 (0.09) 10.68 (0.21) 9.96 (0.03) 9.92 (0.03) 10.07 (0.05) 11.83 (0.26)

0.2 0.71 4.25 (0.11) 10.72 (0.22) 9.96 (0.05) 9.84 (0.04) 10.04 (0.04) 11.62 (0.25)

D2’
0.1 6.35 8.73 (0.11) 10.67 (0.24) 9.85 (0.07) 9.70 (0.07) 10.00 (0.00) 11.16 (0.21)

0.2 1.66 6.08 (0.97) 9.71 (0.21) 9.51 (0.11) 9.02 (0.12) 10.00(0.00) 9.05 (0.24)

D3’
0.1 6.90 9.04 (0.11) 10.57 (0.26) 9.93 (0.04) 9.83 (0.04) 10.00 (0.00) 11.59 (0.24)

0.2 2.85 7.45 (0.10) 10.23 (0.20) 9.79 (0.08) 9.54 (0.08) 10.00 (0.00) 9.77 (0.18)

S2 Algorithm to Solve SD-LDA

In this section, we provide the proof of Lemma 1. The result in Example 1

is a direct result of Lemma 1 by replacing parameters with the certain ones

in the example. Therefore, we will not give additional proof to it.

Proof. To derive the optimizer to 2.7, we have following steps.

1). Assume we know the true value of Σ, and µk, then 2.7 can be

written as

(β̂2, δ̂2, . . . , β̂K , δ̂K) = argmin
βk∈Rp,δk∈Rp

K∑
k=2

{1
2
(βk + δk)

TΣ(βk + δk)− (µk − µ1)
T (βk + δk) + λ2||βk||22}

+λ1

p∑
j=1

||δ·j||2.

(S2.1)

To simplify the notation, denote the ℓ2 norms as ||βk||22 =
∑

k β
2
kj, and
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||δ·j||2 =
√∑K

k=2 δ
2
kj, then λ2||βk||22 and λ1

∑p
j=1 ||δ·j||2 in (S2.1) refer to

the ridge and group lasso penalties respectively. Let δk be fixed for all

k = 2, . . . , K, then (S2.1) is and differentiable function of βk for any given

δk and any certain k. Thus, the optimizer for βk is

β̂k(δk) = (2λ2Ip +Σ)−1(µk − µ1 −Σδk). (S2.2)

by taking the derivative of βk in (S2.1). It shows that βk is only determined

by δk for any certain k.

2). Denote Q = 2λ2Ip + Σ and µdk = µk − µ1, then β̂k(δ) + δk =

Q−1µdk+Q−1(Q−Σ)δk. Bring β̂k(δk) into (S2.1), then for any k, we have

λ2||β̂k(δk)||22 = λ2(µ
T
dkQ

−1Q−1µdk−2µdkQ
−1Q−1Σδk+δT

k ΣQ−1Q−1Σδk),

(S2.3)

(µk − µ1)
T (β̂k(δk) + δk) = µT

dkQ
−1µdk + µT

dkQ
−1(Q−Σ)δk, (S2.4)

and

1

2
(β̂k(δk) + δk)

TΣ(β̂k(δk) + δk)

=
1

2
[µT

dkQ
−1ΣQ−1µdk + 2µT

dkQ
−1ΣQ−1(Q−Σ)δk

+δT
k (Q−Σ)Q−1ΣQ−1(Q−Σ)δk].

(S2.5)
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Thus, (S2.1) becomes

argmin
δ2,...,δK

K∑
k=2

{λ2δ
T
k ΣQ−1δk − 2λ2µ

T
dkQ

−1δk −
1

2
µT

dkQ
−1µdk}+ λ1

p∑
j=1

||δ·j||2.

(S2.6)

3). Remove the constant 1
2
µT

dkQ
−1µdk. Let Σ̃(λ2) = 2λ2ΣQ−1, and

µ̃dk(λ2) = µT
dk(2λ2Q

−1), then the optimizer for (δ̂2, . . . , δ̂K) is

(δ̂2, . . . , δ̂K) = argmin
δ2,...,δK

K∑
k=2

{1
2
[δT

k Σ̃δk]− µ̃dkδk}+ λ1

p∑
j=1

||δ·j||2. (S2.7)

Denote Q̂ = 2λ2Ip + Σ̂, Σ̄ = 2λ2Σ̂Q̂−1, µ̂dk = µ̂k − µ̂1 and µ̄dk =

µ̂T
dk(2λ2Q̂

−1), then the empirical version for S2.2 and S2.7 are

β̂k(δ̂k) = (2λ2Ip + Σ̂)−1(µ̂k − µ̂1 − Σ̂δ̂k), (S2.8)

and

(δ̂2, . . . , δ̂K) = argmin
δ2,...,δK

K∑
k=2

{1
2
[δT

k Σ̄δk]− µ̄dkδk}+ λ1

p∑
j=1

||δ·j||2, (S2.9)

which is the conclusion given in Lemma 1

S3 Proof of Theorem 1

In this section, we give the detailed proof of Theorem 1. To simplify the

notation, we let C and c denote constants that can vary from place to

place. Further define the notations ≂, ≲ and ≳, where A ≂ ξ indicates

that A = Cξ for some constant C > 0, A ≲ ξ indicates that A ≤ Cξ,
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and A ≳ ξ indicates that A ≥ Cξ likewise.Furthermore, define the set of

non-zero elements in δ∗
· as

D = {j | δ∗kj ̸= 0 for some k}, (S3.10)

then the size of D is |D| = s.

For any k ≥ 2, we have the true discriminant directions as

θ∗
k = β∗

k + δ∗
k = Σ−1(µk − µ1). (S3.11)

Meanwhile, θ̂k = β̂k(δ̂k) + δ̂k, where β̂k(δ̂k) is given in (2.12) and δ̂k is

estimated by (2.13). Then we have the following result for ||θ̂k − θ∗
k||2.

Lemma 1. Denote θ∗ = β∗ + δ∗ and θ̂k = β̂k(δ̂k) + δ̂k. For any k ≥ 2, we

have

||θ̂k − θ∗
k||2 ≤ ||δ̂k − δ∗

k||2 + ||β̂k(δ
∗
k)− β∗

k||2, (S3.12)

where δ̂k is given in (2.13) and β̂k is given in (2.12).

Proof. Recall that Q̂ = 2λ2Ip + Σ̂. By (2.12), we have

θ̂k − θ∗
k =β̂k(δ̂k) + δ̂k − β∗

k − δ∗
k

=Q̂−1(µ̂k − µ̂1) + Q̂−1(Q̂− Σ̂)δ̂k − δ∗
k − β∗

k

=Q̂−1(Q̂− Σ̂)(δ̂k − δ∗
k) + Q̂−1(µ̂k − µ̂1)− Q̂−1Σ̂δ∗

k − β∗
k

=Q̂−1(Q̂− Σ̂)(δ̂k − δ∗
k) + β̂k(δ

∗
k)− β∗

k.

(S3.13)
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Therefore,

||θ̂k − θ∗
k||2 ≤||Q̂−1(Q̂− Σ̂)(δ̂k − δ∗

k)||2 + ||β̂k(δ
∗
k)− β∗

k||2

=||Q̂−1(Q̂− Σ̂)||2||δ̂k − δ∗
k||2 + ||β̂k(δ

∗
k)− β∗

k||2.
(S3.14)

Since ||Q̂−1(Q̂− Σ̂)||2 = ||(2λ2Ip+ Σ̂)−12λ2Ip||2, and the eigenvalues of the

positive definite matrix (2λ2Ip+ Σ̂)−12λ2Ip are all smaller than or equal to

1, we have

||(2λ2Ip + Σ̂)−12λ2Ip||2

≤
√

max eig{[(2λ2Ip + Σ̂)−12λ2Ip]T (2λ2Ip + Σ̂)−12λ2Ip}

≤1.

(S3.15)

Thus,

||θ̂k − θ∗
k||2 ≤ ||δ̂k − δ∗

k||2 + ||β̂k(δ
∗
k)− β∗

k||2. (S3.16)

We will then focus on the event {||θ̂k−θ∗
k||2 ≲ ϵ}. Before specifying its

theoretical properties, we first introduce some general results of the estima-

tors for the class means and covariance matrix, as well as some necessary

propositions.

Proposition 1. (Hoeffding’s inequality) Let nk be the sum of n independent

and identically distributed Bernoulli random variables with probability πk
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and π̂k =
nk

n
be the estimator for πk. Then we have

Pr(nk ≤ nπk/2) ≤ exp{−nπ2
k/4}, (S3.17)

and

Pr(|π̂k − πk| ≥ πkϵ) ≤ 2 exp{−nπkϵ
2

3
}, (S3.18)

for any k and ϵ > 0.

Lemma 2. Let µk and µ̂k be defined as in Section 2, then when Assumption

(A3) holds, we have

Pr({||µk − µ̂k||max ≳ ϵ}) ≤ Cp exp{−Cnϵ2}, (S3.19)

and

Pr({||µk − µ̂k||2 ≲ ϵ}) ≥ 1− Cp exp{−Cnϵ2/p} (S3.20)

for any k and any ϵ = o(1).

Proof. Because

X | Y = k ∼ N(µk,Σ), (S3.21)

we have µ̂jk−µk ∼ N(0, 1
nk
σ2
jj) for any j, with σ2

jj being the (j, j)th element

of Σ. Therefore, Pr({|µ̂jk − µk| ≥ ϵ | nk}) ≤ C exp{−nkϵ
2/σ2

jj} according

to the properties of sub-Gaussian distribution.

To handle the random variable nk, we define A = {nk: nk ≥ nπk/2}.
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Then we have

Pr({|µ̂jk − µk| ≥ ϵ}) =E[Pr({|µ̂jk − µk| ≥ ϵ | nk})]

≤E[C exp{−nkϵ
2

σ2
jj

}IA] + E[C exp{−nkϵ
2

σ2
jj

}IAc ]

≤C exp{−nπkϵ
2

σ2
jj

}+ CE[IAc ]

(S3.22)

By Proposition 1, we can show that E[IAc ] ≤ Pr(nk ≤ nπk/2) ≤ exp{−nπ2
k

4
}.

By Assumption (A3), we can bound πk away from 0 and 1. Then

exp{−nπ2
k

4
} < C exp{−Cnϵ2/σ2

jj} (S3.23)

when ϵ = o(1). Then we have

Pr({|µ̂jk − µk| ≥ ϵ}) ≤ C exp{−Cnϵ2/σ2
jj} (S3.24)

for any ϵ = o(1).

Since σjj are bounded for any j by Assumption (A1), we can directly

show that

Pr({||µk − µ̂k||max ≳ ϵ}) ≤
p∑

j=1

Pr({|µ̂jk − µk| ≥ ϵ}) ≤ Cp exp{−Cnϵ2}.

(S3.25)

Furthermore, as {||µk − µ̂k||2 ≥ ϵ} ⊂
⋃p

j=1{|µ̂jk − µk| ≥ ϵ/
√
p}, we also
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have

Pr({||µk−µ̂k||2 ≳ ϵ}) ≤
p∑

j=1

Pr({|µ̂jk−µk| ≥ ϵ/
√
p}) ≤ Cp exp{−Cnϵ2/p}.

(S3.26)

As for the estimator for the covariance matrix, we utilize the following

proposition to show its convergence result with respect to the ℓ2 norm.

Proposition 2. (Proposition 2.1 in Vershynin (2012)) Assume that X =

{X1, . . . , Xp} follows the multivariate normal distribution with covariance

Λ, and Λ̂ is its sample estimator with sample size m, then we have

Pr(||Λ− Λ̂||2 > ϵ) ≤ 2 exp{2p− Cmϵ2} (S3.27)

for some constant C.

With this conclusion, we could show the asymptotic result of the co-

variance estimator in our proposal.

Corollary 1. Let Σ and Σ̂ be defined in Section 2 and Assumptions (A1)

& (A3) hold. Then we have

||Σ− Σ̂||2 ≲
√

p log p

n
(S3.28)

with probability at least 1−O(p−1).
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Proof. As Σ̂ =
∑K

k=1 π̂k

∑
i∈Ck

(Xi−µ̂k)(Xi−µ̂k)
T

nk−1
=

∑K
k=1 π̂kΣ̂k, we have ||Σ−

Σ̂||2 ≤
∑K

k=1 π̂k||Σ̂k − Σ||2, which indicates that {||Σ − Σ̂||2 > ϵ} ⊂⋃K
k=1{||Σ − Σ̂k||2 > ϵ}. Then following the same strategy as we use in

(S3.22), with A = {nk: nk ≥ nπk/2}, we can show that

Pr(||Σ− Σ̂||2 > ϵ) =E[Pr(||Σ− Σ̂||2 > ϵ | n1, . . . , nK)]

≤
K∑
k=1

E[Pr(||Σ− Σ̂k||2 > ϵ | nk)]

≤C exp{2p− Cnπkϵ
2}+ C exp{−nπ2

k

4
}

≤C exp{2p− Cnϵ2}

(S3.29)

when ϵ = o(1), according to Propositions 1 & 2. As pointed out by Ver-

shynin (2012), let ϵ2 = (4/C) log(2p)p/n = O(p log p
n

), and we can eventually

obtain

||Σ− Σ̂||2 ≲
√

p log p

n
(S3.30)

with probability at least 1−O(p−1).

Lemma 3. Let Σ and Σ̂ be defined in Section 2 and p < n, ||Σ− Σ̂||2 ≲ ϵ

indicates that

||Σ̂−1||2 ≤ C (S3.31)

for some constant C and any 0 < ϵ < u/C if Assumption (A1) holds.

Proof. Denote that the eigenvalues of Σ are {Djj} and the eigenvalues of

Σ̂ are {D̂jj} for 1 ≤ j ≤ p. Without loss of generality, we assume that
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D11 ≥ . . . Djj . . . ≥ Dpp and D̂11 ≥ . . . D̂jj . . . ≥ D̂pp. We could show

that 1
Dpp

= ||Σ−1||2 ≤ U if Assumption (A1) holds. Therefore, we have

0 < u ≤ Dpp ≤ D11 ≤ U for some constants u and U .

Similarly, as ||Σ̂−1||2 = 1

D̂pp
, it is sufficient to show that D̂pp ≥ C > 0

for some constant C. By equation (11) in Fulton (2000), we know

Dpp − D̂pp ≤ max eig{Σ− Σ̂} = ||Σ− Σ̂||2. (S3.32)

Then, if ||Σ− Σ̂||2 ≲ ϵ, we have

D̂pp ≥ Dpp − ||Σ− Σ̂||2 ≥ u− C1ϵ ≥ C (S3.33)

for some constant C1 and C with probability at least 1−O(p−1).

With these preparations, we can now stick to ||θ̂k − θ∗
k||2 and its con-

vergence. We first show the following decomposition so that a sufficient

condition could be later introduced to bound its convergence rate.

Lemma 4. When Assumptions (A1) and (A2) hold, p < n, and λ2 ≤ ϵ for

any ϵ that satisfies the condition in Lemma 3, we have

Pr(||θ̂k − θ∗
k||2 ≳ ϵ)

≤Pr({||δ̂k − δ∗
k||2 ≳ ϵ}) + Pr({||µ̂k − µk||2 ≳ ϵ})

+Pr({||µ̂1 − µ1||2 ≳ ϵ}) + Pr({||Σ̂−Σ||2 ≳ ϵ}).

(S3.34)
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Proof. By Lemma 1, we could show that

Pr({||θ̂k − θ∗
k||2 ≳ ϵ})

≤Pr({||δ̂k − δ∗
k||2 + ||β̂k(δ

∗
k)− β∗

k||2 ≳ ϵ})

≤Pr({||δ̂k − δ∗
k||2 ≳ ϵ} ∪ {||β̂k(δ

∗
k)− β∗

k||2 ≳ ϵ}).

(S3.35)

We first consider the term ||β̂k(δ
∗
k) − β∗

k||2. Recall that the true β∗
k

satisfies the expression β∗
k = Σ−1(µk − µ1 −Σδ∗

k), and we have

||β̂k − β∗
k||2 ≤||((2λ2Ip + Σ̂)−1 −Σ−1)(µ̂k − µ̂1 − Σ̂δ∗

k)||2

+||Σ−1[(µ̂k − µk)− (µ̂1 − µ1) + (Σ̂−Σ)δ∗
k)]||2

≤||(2λ2Ip + Σ̂)−1 −Σ−1||2||µ̂k − µ̂1 − Σ̂δ∗
k||2

+||Σ−1||2(||µ̂k − µk||2 + ||µ̂1 − µ1||2 + ||Σ̂−Σ||2||δ∗
k||2).

(S3.36)

For the term ||(2λ2Ip+ Σ̂)−1−Σ−1||2, as ||Σ−1||2 is bounded if Assumption

(A1) holds, and ||Σ̂−1||2 ≤ C if {||Σ̂−Σ||2 ≲ ϵ} according to Lemma 3, we

have

||(2λ2Ip + Σ̂)−1 −Σ−1||2

=||(2λ2Ip + Σ̂)−1(2λ2Ip + Σ̂−Σ)Σ−1||2

≤||(2λ2Ip + Σ̂)−1||2(2λ2 + ||Σ̂−Σ||2)||Σ−1||2

≤||Σ̂−1||2(2λ2 + ||Σ̂−Σ||2)||Σ−1||2

≲||Σ̂−Σ||2

(S3.37)
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when {||Σ̂−Σ||2 ≲ ϵ} holds and λ2 ≲ ϵ.

Furthermore, ||δ∗
k||2 is finite when Assumptions (A1) & (A3) hold, and

||µ̂k − µ̂1 − Σ̂δ∗
k||2 will be finite when all estimators are sufficiently close to

the truth. Intuitively, the scale of ||β̂k(δ
∗
k) − β∗

k||2 can be controlled when

µ̂k, µ̂k, and Σ̂ are sufficiently close to the truth and λ2 is sufficiently small.

To be specific, denote the event

Bk = {||µ̂k − µk||2 ≲ ϵ} ∩ {||µ̂1 − µ1||2 ≲ ϵ} ∩ {||Σ̂−Σ||2 ≲ ϵ}. (S3.38)

Then Bk is a sufficient condition for {||β̂k(δ
∗
k)− β∗

k||2 ≲ ϵ} when Assump-

tions (A1) & (A3) hold and λ2 ≤ ϵ. Inversely, we have

Pr(||θ̂k − θ∗
k||2 ≳ ϵ)

≤Pr({||δ̂k − δ∗
k||2 ≳ ϵ}) + Pr({||β̂k(δ

∗
k)− β∗

k||2 ≳ ϵ})

≤Pr({||δ̂k − δ∗
k||2 ≳ ϵ}) + Pr({||µ̂k − µk||2 ≳ ϵ})

+Pr({||µ̂1 − µ1||2 ≳ ϵ}) + Pr({||Σ̂−Σ||2 ≳ ϵ})

(S3.39)

when Assumptions (A1) & (A3) hold and λ2 ≤ ϵ for any ϵ that satisfies the

condition in Lemma 3.

The bound for Pr({||µ̂k − µk||2 ≳ ϵ}) for any k is given in Lemma 2

and the bound for Pr({||Σ̂−Σ||2 ≳ ϵ}) is given in Corollary 1. Hence, we

only need to consider the event {||δ̂k − δ∗
k||2 ≳ ϵ} so as to derive the bound

of Pr(||θ̂k − θ∗
k||2 ≳ ϵ).
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We start with the following proposition.

Proposition 3. (Lemma A.1 in Min et al. (2023) when s = p) Let µ̃k, µ̄k,

Σ̃, and Σ̄ denoted as in (S2.7) and (2.13). Assume that
√

p log p
n

≤ C, and

choose λ1 = O(
√

log p
n

). If Σ̃ and µ̃dk satisfy

1. ||µ̃dk − µ̄dk||max ≲
√

log p
n

;

2. ||(Σ̃− Σ̄)δ∗
k||max ≲

√
log p
n

;

3. tr((δ̂k − δ∗
k)

T Σ̃(δ̂k − δ∗
k)) ≳ ||δ̂k − δ∗

k||22

with probability at least 1−O(p−1), then we also have

||δ̂k − δ∗
k||2 ≲

√
p log p

n
(S3.40)

with probability at least 1−O(p−1).

Proposition 3 shows that we simply need to check the three conditions

to derive the bound for {||δ̂k−δ∗
k||2 ≳ ϵ}. We introduce the following lemma

to verify first two conditions.

Lemma 5. Continue to use the notations and settings in Proposition 3.

With probability at least 1−O(p−1), we have

1. ||µ̃dk − µ̄dk||max ≲
√

log p
n

,

2. ||(Σ̃− Σ̄)δ∗
k||max ≲

√
log p
n

,
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when Assumptions (A1)–(A3) hold and λ2 = O(
√

log p
n

).

Proof. We start with the first condition. By the definition given in Section

2.3, we have

||µ̃dk − µ̄dk||max ≤2λ2||µ̂T
dk((2λ2Ip + Σ̂)−1 − (2λ2Ip +Σ)−1)||max

+2λ2||(µdk − µ̂dk)
T (2λ2Ip +Σ)−1||max

≤2λ2||µ̂dk(2λ2Ip + Σ̂)−1(Σ̂−Σ)(2λ2Ip +Σ)−1||2

+2λ2||(µdk − µ̂dk)
T (2λ2Ip +Σ)−1||2

≤2λ2||µ̂dk||2||(2λ2Ip + Σ̂)−1||2||Σ̂−Σ||2||(2λ2Ip +Σ)−1||2

+2λ2||µdk − µ̂dk||2||(2λ2Ip +Σ)−1||2.

(S3.41)

We now prove that these terms of ℓ2 norm are finite with high proba-

bility. Firstly, by Corollary 1, ||Σ̂ − Σ||2 ≲
√

p log p
n

≤ C with probability

at least 1 − O(p−1). We have that ||(2λ2Ip + Σ)−1||2 ≤ ||Σ−1||2 ≤ C

when Assumption (A1) holds. Similarly, by Lemma 3, we could show that

||(2λ2Ip+Σ̂)−1||2 ≤ ||Σ̂−1||2 ≤ C with probability at least 1−O(p−1) when

||Σ̂−Σ||2 ≲
√

p log p
n

. Furthermore, we have

||µ̂dk||2 ≤ ||µdk − µ̂dk||2 + ||µdk||2 ≤ ||µk − µ̂k||2 + ||µ1 − µ̂1||2 + ||µdk||2,

(S3.42)

which is finite with probability at least 1 − O(p−1) according to Lemma 2
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when Assumptions (A1) & (A3) hold by letting ϵ = O(
√

p log p
n

).

We then obtain that

||µ̃dk − µ̄dk||max ≲ λ2
(S3.43)

with probability at least 1−O(p−1). Hence,

||µ̃dk − µ̄dk||max ≲

√
log p

n
(S3.44)

with probability at least 1−O(p−1) for λ2 = O(
√

log p
n

).

Now we consider the second condition, the bound of ||(Σ̃− Σ̄)δ∗
k||max.

Let ei to be the orthonormal basis with ith element being 1, and we have

||(Σ̃− Σ̄)δ∗
k||max

=max
j

{ej(Σ̃− Σ̄)δ∗
k}

≤max
j

√
eT
j (Σ̃− Σ̄)ejδ∗T

k (Σ̃− Σ̄)δ∗
k

≤max | eig{Σ̃− Σ̄}|

=2λ2max | eig{Σ(2λ2Ip +Σ)−1 − Σ̂(2λ2Ip + Σ̂)−1}|.

(S3.45)

According to Corollary 1 and Lemma 3, eig{Σ̂(2λ2Ip + Σ̂)−1} is bounded

with probability at least 1 − O(p−1) when ||Σ̂ −Σ||2 ≲
√

p log p
n

by setting
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ϵ = O(
√

p log p
n

). We thus have

2λ2max | eig{Σ(2λ2Ip +Σ)−1 − Σ̂(2λ2Ip + Σ̂)−1}|

≤2λ2(|max eig{Σ(2λ2Ip +Σ)−1}|+ |max eig{Σ̂(2λ2Ip + Σ̂)−1}|)

≲λ2

(S3.46)

with probability at least 1−O(p−1).

Then we obtain

||(Σ̃− Σ̄)δ∗
k||max ≲

√
log p

n
(S3.47)

with probability at least 1−O(p−1) for λ2 = O(
√

log p
n

).

Recall that D is defined as the set of the sparse signal, as given in

(S3.10). Then the two conditions in Lemma 5 imply following result.

Proposition 4. (Lemma A.4. in Min et al. (2023)) Continue to use the

notations and settings in Proposition 3. If

1. ||µ̃dk − µ̄dk||max ≲
√

log p
n

,

2. ||(Σ̃− Σ̄)δ∗
k||max ≲

√
log p
n

,

with some λ1 = O(
√

log p
n

), we have that

∑
j∈DC

||δ̂·j||2 ≤
∑
j∈D

||δ̂·j||2. (S3.48)
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We now check the third condition in Proposition 3. This can be done

by directly generalizing the result of Lemma A.6 in Min et al. (2023).

Lemma 6. For Σ̄, under the condition given in Proposition 3, with proba-

bility at least 1−O(p−1), we have

1/C − cϵ ≤ min eig{Σ̄} ≤ max eig{Σ̄} ≤ C + cϵ (S3.49)

for some ϵ = O(
√

p log p
n

) and any λ2 = O(
√

log p
n

) when Assumptions (A1)

& (A3) hold.

Proof. Recall that Σ̄ = 2λ2Σ̂(2λ2Ip+ Σ̂)−1. When the condition
√

p log p
n

=

o(1) in Proposition 3 holds, we have n > p and thus, Σ̂ is positive definite.

Let P and P̂ be some orthogonal matrices such that Σ = P TDP and

Σ̂ = P̂ TD̂P̂ , where D = {Djj} and D̂ = {D̂jj} are diagonal matrices.

Following this decomposition, we have

Σ̄ = 2λ2P̂
TD̂(2λ2Ip + D̂)−1P̂ . (S3.50)

Then,

min eig{Σ̄} ≥ min
j
{D̂jj}/(2λ2 +max

j
{D̂jj}), (S3.51)

and

max eig{Σ̄} ≤ max
j

{D̂jj}/(2λ2 +min
j
{D̂jj}). (S3.52)

We start with bounding all eigenvalues of Σ̂ away from 0 and infinity.
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When Assumption (A1) holds, we have 0 < 1/U ≤ ||Σ||2 ≤ u, and

0 < 1/u ≤ ||Σ−1||2 ≤ U . Hence, for Σ̂, we have

max eig{Σ̂} = max
j

{D̂jj} = ||Σ̂||2 ≤ ||Σ− Σ̂||2 + ||Σ||2. (S3.53)

According to Corollary 1, we have ||Σ− Σ̂||2 ≲
√

p log p
n

with probability at

least 1 − O(p−1) if we let ϵ = O(
√

p log p
n

). Therefore, with probability at

least 1−O(p−1), we have

max eig{Σ̂} ≤ C1 + c1

√
p log p

n
. (S3.54)

On the other hand, (S3.33) in the proof of Lemma 3 show that

min eig{Σ̂} ≥ C2 − c2

√
p log p

n
> 0. (S3.55)

for some constant C2 and c2.

Then both minj{D̂jj} and maxj{D̂jj} are bounded away from 0 and

infinite, and we have

min eig{Σ̄} ≥ Cm min
j
{D̂jj} ≥ Cm(C2 − c2

√
p log p

n
), (S3.56)

and

max eig{Σ̄} ≤ CM max
j

{D̂jj} ≤ CM(C1 + c1

√
p log p

n
). (S3.57)

Thus, by taking C = max{CmC1, CMC2}, and c = max{Cmc1, CMc2}, we

eventually get

1/C − cϵ ≤ min eig{Σ̄} ≤ max eig{Σ̄} ≤ C + cϵ (S3.58)
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for some constants C and c and some ϵ = O(
√

p log p
n

) with probability at

least 1−O(p−1).

Combining the results in Proposition 4 and Lemma 6, we can evaluate

the third condition in Proposition 3 by the following property.

Proposition 5. (Result of Lemma A.6 in Min et al. (2023)) Continue to

use the notations and settings in Proposition 3. If

1.
∑

j∈DC ||δ̂·j||2 ≤
∑

j∈D ||δ̂·j||2,

2. 1/C − cϵ ≤ min eig{Σ̄} ≤ max eig{Σ̄} ≤ C + cϵ for some ϵ = o(1),

then we have

tr((δ̂k − δ∗
k)

T Σ̃(δ̂k − δ∗
k)) ≳ ||δ̂k − δ∗

k||22. (S3.59)

Combining the results in Propositions 3 & 5, Lemmas 2 & 5, and Corol-

lary 1, we could eventually obtain the consistency result of θ̂k.

Proof of Theorem 1. If Assumptions (A1), (A2) and (A3) hold and let λ2 =
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O(
√

log p
n

) and λ1 = O(
√

log p
n

), we have

Pr(||θ̂k − θ∗
k||2 ≳ ϵ)

≤Pr({||δ̂k − δ∗
k||2 ≳ ϵ}) + Pr({||µ̂k − µk||2 ≳ ϵ})

+Pr({||µ̂1 − µ1||2 ≳ ϵ}) + Pr({||Σ̂−Σ||2 ≳ ϵ})

≲Pr({||δ̂k − δ∗
k||2 ≳ ϵ} ∧ Pr({||µ̂k − µk||2 ≳ ϵ})

∧Pr({||µ̂1 − µ1||2 ≳ ϵ}) ∧ Pr({||Σ̂−Σ||2 ≳ ϵ})

(S3.60)

By Lemma 4.

By Propositions 2, 3, and 5, Lemmas 2&5, and Corollary 1, we set

ϵ = O(
√

p log p
n

), and let λ2 = O(
√

log p
n

) and λ1 = O(
√

log p
n

), then

Pr({||δ̂k − δ∗
k||2 ≳

√
p log p

n
}) ∧ Pr({||µ̂k − µk||2 ≳

√
p log p

n
})

∧Pr({||µ̂1 − µ1||2 ≳
√

p log p

n
}) ∧ Pr({||Σ̂−Σ||2 ≳

√
p log p

n
})

≲1/p.

(S3.61)

We eventually have

||θ̂k − θ∗
k||2 ≲

√
p log p

n
(S3.62)

with probability at least 1 − O(p−1) for any λ2 = O(
√

log p
n

) and λ1 =

O(
√

log p
n

).
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