Statistica Sinica: Supplement

LINEAR DISCRIMINANT ANALYSIS

WITH SPARSE AND DENSE SIGNALS

Ning Wang, Shaokang Ren, and Qing Mai

Beiging Normal University, Microsoft, and Florida State University

Supplementary Material

Section S1 contains some additional simulation results, Section S2 contains the detailed deriva-

tion of lemmas, and Section S3 contains the technical proof of the main theorem.

S1 Additional Simulation Results

In this section, we modify Models (D1)-(D3) to test the performance of
the proposed methods when the sample sizes in each class are extremely
unbalanced. We adopt all the parameters in Models (D1)-(D3) except ny =
10 and ny = 90. The resulting models are referred to as Models (D17)-(D37).
Table S.1 presents the miss-classification error rates. From the table, we
can see that most of the competitors give error rates very close to 0.1, which
indicates that they classify all the samples into one class. As a comparison,

SD-LDA is closer to the Bayes error than all the competitors.
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Table S.1: The prediction accuracy result. The means and standard errors (in the

parentheses) of the prediction error of 100 replicates are reported in percentage.

Models | ¢ BE SD-LDA MSDA Lasso elastic-net SVM SOS
0.1 | 824 | 9.38 (0.09) 10.68 (0.21) 9.96 (0.03) 9.92 (0.03) 10.07 (0.05) 11.83 (0.26)
o 0.2 | 0.71 | 4.25 (0.11) 10.72 (0.22) 9.96 (0.05) 9.84 (0.04) 10.04 (0.04) 11.62 (0.25)
0.1 | 6.35 | 873 (0.11) 10.67 (0.24) 9.85 (0.07) 9.70 (0.07) 10.00 (0.00) 11.16 (0.21)
o 0.2 | 1.66 | 6.08 (0.97) 9.71 (0.21) 9.51 (0.11) 9.02 (0.12) 10.00(0.00)  9.05 (0.24)
0.1 | 6.90 | 9.04 (0.11) 10.57 (0.26) 9.93 (0.04) 9.83 (0.04) 10.00 (0.00) 11.59 (0.24)
o 0.2 | 2.85 | 7.45 (0.10) 10.23 (0.20) 9.79 (0.08) 9.54 (0.08) 10.00 (0.00) 9.77 (0.18)

S2 Algorithm to Solve SD-LDA

In this section, we provide the proof of Lemma 1. The result in Example 1
is a direct result of Lemma 1 by replacing parameters with the certain ones

in the example. Therefore, we will not give additional proof to it.

Proof. To derive the optimizer to 2.7, we have following steps.
1). Assume we know the true value of ¥, and py, then 2.7 can be

written as

(/327627“'7BK75K) - argmin
BLERP 5, ERP

K

S 5B+ 807S(Be + 80) — (e — 1) (B + 66) + MallBelD) (52,1

P
ALY 18]
j=1

To simplify the notation, denote the £, norms as |[Bill3 = >, B;, and
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HCSJHZ = 1/2?22 5,%]», then )\QH/BkH% and )\1 ;‘7:1 H(SJHQ in (S21> refer to

the ridge and group lasso penalties respectively. Let d; be fixed for all
k=2,...,K, then (S2.1) is and differentiable function of 3 for any given

45, and any certain k. Thus, the optimizer for Gy is
Bi(6r) = (2%l + )7 (px — pra — T6y). (52.2)

by taking the derivative of 8y in (52.1). It shows that 3 is only determined
by 0y for any certain k.
2). Denote Q = 2X\oI, + X and prgr = pr — p1, then Bk(é) + 0, =

Q 'par+Q (Q —X)dy. Bring By (d;) into (S2.1), then for any k, we have

Mol |Bk (8|12 = (L Q7' Q  ar — 204k Q ' QT4 + 01 QTIQTIES,),

(52.3)

(ke — )7 (Br(0) + 04) = ul.Q ' par + 1, QH(Q — X)8;,,  (52:4)
and

%(:ék((sk) +61)"2(Br(8x) + Ok

1

= BhQEQ e+ 2l Q1SQ Q- R)s, (529)

+0; (Q —2)Q7'EQTH(Q — )4y ).
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Thus, (S2.1) becomes

%rgfgmz{/\zfsng 1Oy — 20opy, Q70 — Mde Hdk}+>\12||5 |2
20K =9

(32.6)

3). Remove the constant 1ul Q 'pa. Let (o) = 2X,XQ !, and

far(A2) = 1 (220Q 1), then the optimizer for (s, ..., dx) is

p
(83,....,0 )—argman{ (6126 — frandi} + M Y |[8]l (S2.7)

62 ----- 6K k=2 ]:1

~

Denote Q@ = 2\ I, + f], s = 2)\22(2_1, Lae = i — 1 and fage =

Adi(2)\2Q_1), then the empirical version for S2.2 and S2.7 are

Bi(8r) = 2hod, + ) (1 — f11 — 36y,), (S2.8)

p
(85,...,0k —argman{ (0126 — fran0i} + M Y |[04]l2,  (S2.9)

52 77777 6K k=2 7j=1

which is the conclusion given in Lemma 1 O]

S3 Proof of Theorem 1

In this section, we give the detailed proof of Theorem 1. To simplify the
notation, we let C' and ¢ denote constants that can vary from place to
place. Further define the notations =, < and 2, where A < ¢ indicates

that A = C¢ for some constant C' > 0, A < ¢ indicates that A < C¢,



S3. PROOF OF THEOREM 1

and A 2 ¢ indicates that A > C¢ likewise.Furthermore, define the set of

non-zero elements in 8* as
D ={j | 6;; # 0 for some k}, (S3.10)

then the size of D is |D| = s.

For any k& > 2, we have the true discriminant directions as
05, = By, + 61 = X7 (1, — ). (S3.11)

Meanwhile, 8, = B4(8;) + 8x, where B4(8)) is given in (2.12) and Jj, is

estimated by (2.13). Then we have the following result for ||6) — 6;][».

Lemma 1. Denote 8* = B* + 8* and 0, = ,ék(ék) + 6. For any k > 2, we
have
110k — 6512 < 1161 — 85l]2 + 11B(8%) — Billo. (S3.12)

where 8y, is given in (2.13) and By is given in (2.12).

Proof. Recall that Q = 2\, I, + 3. By (2.12), we have

(S3.13)
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Therefore,

16 — 6;l12 <[1Q™H(Q — 2)(8k — 67)I2 + [18x(87) — Bill2
(93.14)
=1Q7HQ — X)|l2[10x — &;l|2 + [1B4(d5) — Billa-
Since [|Q 1 (Q —2)||2 = ||(2A2I, + ) '2), 1| |, and the eigenvalues of the

positive definite matrix (2Xo1, + 2)_12)\2Ip are all smaller than or equal to

1, we have

||(2/\2Ip + 2A3>_12)‘21p| |2

S\/max eig{[(2hoI, + ) 120,17 (2). I, + )~ 12X, 1} (S3.15)
<l1.

Thus,

165 = 612 < 1181 — &1z + [181(67) — Bil2- (53.16)

O

We will then focus on the event {||8; — 0;||> < €}. Before specifying its
theoretical properties, we first introduce some general results of the estima-
tors for the class means and covariance matrix, as well as some necessary

propositions.

Proposition 1. (Hoeffding’s inequality) Let ny be the sum of n independent

and identically distributed Bernoulli random wvariables with probability my
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and T, = %’“ be the estimator for . Then we have
Pr(ny < nm/2) < exp{—nni/4}, (S3.17)
and
niR€e

Pr(|my — x| > mre) < 2exp{— 3 1 (S3.18)

for any k and € > 0.

Lemma 2. Let py, and iy, be defined as in Section 2, then when Assumption

(A3) holds, we have

Pr({||tx — forllmae = €}) < Cpexp{—Cne®}, (S3.19)

and

Pr({[[pr — fulls S €}) > 1 = Cpexp{~Cne?/p} (53.20)
for any k and any € = o(1).

Proof. Because

X|Y =k~ Np3), (93.21)

we have [ij, —u ~ N (0, n—lkajzj) for any j, with o3, being the (j, j)th element
of 3. Therefore, Pr({|ir — px| > € | ni}) < Cexp{—npe*/o3;} according
to the properties of sub-Gaussian distribution.

To handle the random variable ny, we define A = {ng: n, > nm,/2}.
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Then we have

Pr({lin — pel = €}) =E[Pr({lijn — p| = €[ ni})]

2 2
<E[Cexp —nk—;}IA} + E[C exp —nk—;}[Ac]
95 95
nLe>

<Cexp{— = }+ CE[1 4]

Jj

(S3.22)

By Proposition 1, we can show that E[/ 4| < Pr(n, < nmg/2) < exp{—nTﬂ’%}.

By Assumption (A3), we can bound 7 away from 0 and 1. Then
nj, 2/ 2
exp{—T} < Cexp{—Cne”/o3;} (S3.23)
when € = o(1). Then we have
Pr({lji — ] = }) < Cexp{~Cne/o?} (53.21)

for any € = o(1).
Since o;; are bounded for any j by Assumption (Al), we can directly

show that

p
Pr({|[r = fillmas 2 €}) < Y Pr({lie — ml = €}) < Cpexp{—Cné’}.

J=1

(S3.25)

Furthermore, as {|[px — firll2 > €} C U_ {ljn — pu| > €/\/p}, we also



S3. PROOF OF THEOREM 1

have

Pr({llp—fulls Z €}) < D Pr({l e — il = ¢/y/p}) < Opexp{~Cné*/p}.

J=1

(S3.26)

]

As for the estimator for the covariance matrix, we utilize the following

proposition to show its convergence result with respect to the ¢ norm.

Proposition 2. (Proposition 2.1 in Vershynin (2012)) Assume that X =
{Xi1,...,X,} follows the multivariate normal distribution with covariance

A, and A is its sample estimator with sample size m, then we have
Pr(||A — Alls > €) < 2exp{2p — Cme*} (83.27)
for some constant C'.

With this conclusion, we could show the asymptotic result of the co-

variance estimator in our proposal.

Corollary 1. Let X and 3 be defined in Section 2 and Assumptions (A1)

& (A3) hold. Then we have

~ 1
1 - 2|l S (/280 ($3.28)
n

with probability at least 1 — O(p™!).
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N R A AT L

Proof. As £ = 1%, 1 Fseq, FEIX 5 7,5, we have ||E -
By < S0, 7l[Zk — 2|2, which indicates that {||Z — 2|y > €} C
U {l|= — Zill2 > ¢}. Then following the same strategy as we use in

(S3.22), with A = {ny: nx > nm/2}, we can show that

Pr(||Z — ||z > €) =E[Pr(||Z = 2| > € | nq, ..., ng)]

E[Pr(|[2 — Zillz > ¢ | ny)]

]~

<

i
I

(S3.29)
nm?
<Cexp{2p — Cnmpe’} + Cexp{_Tk}

<Cexp{2p — Cne*}
when € = o(1), according to Propositions 1 & 2. As pointed out by Ver-

shynin (2012), let €2 = (4/C) log(2p)p/n = O(Z%2), and we can eventually

~ 1
1 - 2l S (/280 ($3.30)
n

with probability at least 1 — O(p™1). O

obtain

Lemma 3. Let ¥ and 3 be defined in Section 2 and p < n, || — 3| S e
indicates that

IS <C (93.31)
for some constant C' and any 0 < € < u/C if Assumption (A1) holds.

Proof. Denote that the eigenvalues of 3 are {D;;} and the eigenvalues of

3 are {ﬁjj} for 1 < j < p. Without loss of generality, we assume that
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~

Dy > ...Djj... > D, and 1511 > 15]] > D,,. We could show
that DLW = [|Z7Y]s < U if Assumption (A1) holds. Therefore, we have
0<u<D,, <Dy <U for some constants v and U.

Similarly, as |||, = D%p’ it is sufficient to show that D,, > C' > 0

for some constant C. By equation (11) in Fulton (2000), we know
D,y — D,y < maxeig{® — 3} = [|Z — ||, (S3.32)

Then, if ||= — 2||; < ¢, we have

DPPZDPP_HE_EHQZU—C&EEC (S3.33)

for some constant C; and C' with probability at least 1 — O(p™1).

]

With these preparations, we can now stick to Hék — 0;|]> and its con-
vergence. We first show the following decomposition so that a sufficient

condition could be later introduced to bound its convergence rate.
Lemma 4. When Assumptions (A1) and (A2) hold, p < n, and As < € for
any € that satisfies the condition in Lemma 3, we have
Pr(|[6) — 05[> % €)
<Pr({[[6x = &ill> 2 e}) + Pr({llf — pall2 Z €}) (83.34)

+Pr({]lf — pulle 2 €) + Pr{[|£ — Tl 2 &}).
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Proof. By Lemma 1, we could show that
Pr({]|6x — 6;]l> = €})
< Pr({|1d — &la + 118u(6) — Bill2 2 ) (53.35)
< Pr({]|dx — 6ill2 Z €} U{[1B(87) — Bill: Z €}).
We first consider the term ||Bx(8;) — Bf||. Recall that the true g
satisfies the expression B} = X7 (puy — p1 — X68;), and we have
1B — Bl <@L, + )7 = £7) (i — o — 67
IS (o — ) — (i — ) + (5 — )]l
<[|2ed, + ) = 7o [ — frr — 262
IS (e — wallo + 181 = pall + 113 = 22167 ]2)-
(93.36)
For the term |[(2A\,1, +3) "' = 371||5, as ||Z7!]|, is bounded if Assumption

(A1) holds, and ||Z7!||, < C'if {||Z = 2|, < €} according to Lemma 3, we

have
122, + )71 = =7
=[|2XeI, + )7 (201, + 3 - Z)B 7|,
<[[(20I, + 2) 2202 + ||Z = Z|2)[1Z 72 (S3.37)
<IISH(2% + (13 = SIS,

SIIE -3,
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when {||2 — 2|, < €} holds and A, < e.

Furthermore, ||0;||2 is finite when Assumptions (A1) & (A3) hold, and
|| ey, — fo1 — 3687]|> will be finite when all estimators are sufficiently close to
the truth. Intuitively, the scale of ||B(87) — B:||2 can be controlled when
L, [, and 3 are sufficiently close to the truth and A, is sufficiently small.

To be specific, denote the event

B = {Hﬂk - ,U'kH2 N E}ﬂ {Hﬂl —MH2 5 6} N {Hﬁl - EHz 5 6}- (83'38>

Then B, is a sufficient condition for {||8(8;) — Bf||2 < €} when Assump-

tions (A1) & (A3) hold and Ay < e. Inversely, we have
Pr(||6: — 6;ll: = ¢)
< Pr({116x — &l Z €}) + Pr({1|B(87) — Bill Z €})
(93.39)
<Pr({[|0s = d;lla 2 €}) + Pr({[[fn — pall2 2 €})

+Pr({[lfn — palls 2 €) + Pr({||E — =2 Z €})
when Assumptions (A1) & (A3) hold and Ay < € for any e that satisfies the

condition in Lemma 3. O

The bound for Pr({||fx — pr|l2 = €}) for any k is given in Lemma 2
and the bound for Pr({||% — ||, > €}) is given in Corollary 1. Hence, we
only need to consider the event {||8;, — 87|z = €} so as to derive the bound

of Pr(|[6; — 0|2 2 o).
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We start with the following proposition.

Proposition 3. (Lemma A.1 in Min et al. (2023) when s = p) Let fuy, fi,

Y, and X denoted as in (52.7) and (2.13). Assume that % <C, and

choose A\; = O(4/ k’%). If S and fug satisfy

1. Hﬂ'dk - ﬂ'dk”max f, \/ lo%;

2. [[(Z = £)8tlmaw S 4/ 22
3. tr((8 — 65) T8y — 87)) = |10k — 6713

with probability at least 1 — O(p~'), then we also have

< 1
18 = 8]l S 4/ F=2E (33.40)

with probability at least 1 — O(p~1).

Proposition 3 shows that we simply need to check the three conditions
to derive the bound for {||8;—&7||2 = €}. We introduce the following lemma

to verify first two conditions.

Lemma 5. Continue to use the notations and settings in Proposition 3.

With probability at least 1 — O(p~1), we have
logp,

L || frar — Barllmaz S

2. H(i o 2)51:”mam S 10%7

~Y
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when Assumptions (A1)-(A3) hold and Ay = O(4/ 10%).

Proof. We start with the first condition. By the definition given in Section

2.3, we have

1Bk = Farllmar <200l fig (20, +3) 71 = AL, + 2) ) [mac
22| (ar — frar)" 202Dy + 2) 7 [naa
<2 |frar (2T, + 2)7H(E = ) (20 L, + ) 2
22| |(par — frar)" (20T, + ) 71|
<2 |lftarl 21| (202 L, + 33) 7 [a]|2 = B[220 L, + 2) 7o
220 par = foarl 2] (2N L, + 32) 7o
(S3.41)
We now prove that these terms of /5 norm are finite with high proba-
bility. Firstly, by Corollary 1, ||ﬁ] —3l; < % < C with probability
at least 1 — O(p™'). We have that [[(2X\o, + X)7 |2 < [|Z7Y] < C
when Assumption (A1) holds. Similarly, by Lemma 3, we could show that
122D, +3) |5 < ||E7Y], < C with probability at least 1 —O(p™) when

1= =3, < %. Furthermore, we have

faell2 < [lptar — Baell2 + || pearlle < |k — fll2 + 11y — all2 + || pear] 2,
(53.42)

which is finite with probability at least 1 — O(p™') according to Lemma 2
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when Assumptions (A1) & (A3) hold by letting € = O(/282),

n

We then obtain that

[k — Bak||lmae S X2 (S3.43)
with probability at least 1 — O(p~!). Hence,

log p
n

[ Far — Pak|maz < (S3.44)

with probability at least 1 — O(p™") for Ay = O(y/%2).

n

Now we consider the second condition, the bound of ||(Z — )& |maz-

Let e; to be the orthonormal basis with ith element being 1, and we have

1(2 )8 lmac

— max{e; (£ - £)57)

< max \/eJT(f] — 2)e;6T (X — )6 (S3.45)
j

<max | eig{X — 3}

—2)\y max | eig{Z(2\ 1, + )" — B2\ I, + )1},

According to Corollary 1 and Lemma 3, eig{3(2\oI, + 3)~'} is bounded

with probability at least 1 — O(p~!) when ||& — 2| < pl"%j by setting



S3. PROOF OF THEOREM 1

e=0(4/ %). We thus have

2\ max | eig{T (2o I, + X)7! — B2\ 1, + X) 71}
<2 (| maxeig{ =2\ 1, + £) 71} + | max eig{Z(2Ao I, + )7 1})
<)o

Y

(S3.46)

with probability at least 1 — O(p™1).

(SR AMEE ($3.47)

with probability at least 1 — O(p~!) for Ay = O(y/82). O

Then we obtain

Recall that D is defined as the set of the sparse signal, as given in

(S3.10). Then the two conditions in Lemma 5 imply following result.

Proposition 4. (Lemma A.4. in Min et al. (2023)) Continue to use the

notations and settings in Proposition 3. If

1|k — Barlmar S 4/ lsp,
2. 1(E = )¢ lmar S \/ 22,

with some A\ = O(4/'%52), we have that

D12 < Y116l (53.48)

jeDe Jj€D
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We now check the third condition in Proposition 3. This can be done

by directly generalizing the result of Lemma A.6 in Min et al. (2023).

Lemma 6. For X, under the condition given in Proposition 3, with proba-

bility at least 1 — O(p~'), we have
1/C — ce < mineig{X} < maxeig{Z} < C + ce (S3.49)

for some € = O(\/%) and any Ay = O(\/lo%’) when Assumptions (A1)
& (A3) hold.

Proof. Recall that & = 20,33 (2001, + ). When the condition \/@ —
o(1) in Proposition 3 holds, we have n > p and thus, 3 is positive definite.
Let P and P be some orthogonal matrices such that ¥ = PTDP and
3 = PTDP, where D = {Dj;} and D = {Dj;} are diagonal matrices.

Following this decomposition, we have

3 =20, PTD(2)\I, + D) P. (S3.50)
Then,
min eig{ X} > min{D;;}/(2\s + max{D;;}), (S3.51)
J J
and
max eig{ =} < max{Dj;}/(2)\s + min{D,;}). (S3.52)
J J

We start with bounding all eigenvalues of 3 away from 0 and infinity.
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When Assumption (A1) holds, we have 0 < 1/U < ||X||]z < u, and

0<1/u < [|Z7Y|y < U. Hence, for 3, we have
max eig{3} = mjax{ﬁjj} = [1Zl: < 1Z — o + [|Z]fe. (53.53)

According to Corollary 1, we have ||3 — 3|y < P8P with probability at
least 1 — O(p~Y) if we let € = O(y/2%2). Therefore, with probability at

least 1 — O(p~!), we have

~ 1
max eig{3} < C + ¢4/ P8P (S3.54)
n

On the other hand, (S3.33) in the proof of Lemma 3 show that

~ 1
min eig{3} > Cy — CQUp L) (S3.55)
n

for some constant Cy and cs.

Then both min;{D;;} and max;{D;;} are bounded away from 0 and
infinite, and we have

pIng>
n M

mineig{ X} > C,, min{D;;} > C,,(Cy — ¢ (S3.56)
j

and

max eig{ £} < Oy max{D;;} < Cp(Cy + 14/ pl(:lgp). (S3.57)
j

Thus, by taking C' = max{C,,C1,CyCs}, and ¢ = max{C,,c1, Cprca}, we

eventually get

1/C — ce < mineig{E} < maxeig{Z} < C + ce (S3.58)
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for some constants C' and ¢ and some € = O(4/ 1Lngp) with probability at

least 1 — O(p™1). O

Combining the results in Proposition 4 and Lemma 6, we can evaluate

the third condition in Proposition 3 by the following property.

Proposition 5. (Result of Lemma A.G in Min et al. (2023)) Continue to

use the notations and settings in Proposition 3. If

1 Ejepe 105112 < Ziep 16112

2. 1/C — ce < mineig{3} < maxeig{E} < C + ce for some € = o(1),
then we have
tr(( — 8;)" 2 (0 — 7)) 2 1165 — 6515 (53.59)

Combining the results in Propositions 3 & 5, Lemmas 2 & 5, and Corol-

lary 1, we could eventually obtain the consistency result of 0y..

Proof of Theorem 1. If Assumptions (A1), (A2) and (A3) hold and let Ay =
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O(\/lo%) and A\ = O( 105”), we have

Pr(||0x — 6;[l2 2 €)
<Pr({116x — &ill> 2 €}) + Pr({llie — pull2 2 €})
+Pr({[ln — plls 2 €}) + Pr({|[E — 22 Z €}) (53.60)
SPr({116x — &ill: 2 € APr({]| . — puell2 Z €})

APr({[|fin = puall2 2 e}) APr({IIS — Zll2 2 €})

By Lemma 4.

By Propositions 2, 3, and 5, Lemmas 2&5, and Corollary 1, we set

n n

€ = O(y/2222) and let Ay = O(y/'22) and)\le(\/lo%),then

& . plogp . plogp
Pr({[[6x — 0;]]2 2 - B APr({|| o — pell2 2 - })

- plogp & plogp
APr({lln = mlls 2\ =—==D APr{[EZ == 2 /=1 (S3.61)

<1/p.

We eventually have

A . lo
16, ;1. < /=2 (33.62)

with probability at least 1 — O(p~!) for any Ay = O(\/lo%’) and \; =

O(y/=52) 0
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