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S1. Simulation results for PA-ATVA matrices

In this section, we demonstrate the finite sample performances of Theorem

1 and Theorem 2 by showing that the matrices BM and B∗M have almost

the same empirical spectral distributions as their corresponding sample co-

variance matrices based on i.i.d. samples drawn from the ICV matrix.

We adopt scenarios for the diffusion process (Xt) from Xia and Zheng

(2018) and Lam et al. (2017). We take the following U-shaped stochastic

process (γt) as

dγt = −ρ(γt − µt)dt+ σdW̃t, for t ∈ [0, 1], (S1.1)



where ρ = 10, σ = 0.05, µt =
√

0.0009 + 0.0008 cos(2πt), and the process

W̃t =

p∑
i=1

W
(i)
t /
√
p

with W
(i)
t being the ith component of the Brownian motion (Wt) that drives

the price process. (A.iii) is violated since (γt) depends on all components of

the Brownian motion. However, our estimate still works, as demonstrated

by the simulation studies. We assume that Λ = (0.5|i−j|)i,j=1,...,p and further

rescale it to satisfy the condition tr(ΛΛT) = p when spiked eigenvalues or

factor models are considered. The latent log price process (Xt) follows

dXt = γtΛdWt. (S1.2)

We investigate the finite sample performance of the PA-ATVA ma-

trices BM and B∗M in the presence of microstructure noise. It is rea-

sonable to conjecture that the ESDs of the PA-ATVA matrices BM and

B∗M would have similar behavior to that of the sample covariance matrix

SM = 1/M
∑M

i=1(Σ)1/2ZiZ
T
i (Σ)1/2, where Zi

i.i.d.∼ N(0, Ip), as the LSDs

of BM , B∗M and SM are related through the Marčenko-Pastur equation in

Theorem 1, Theorem 2 and Theorem 1.1 of Silverstein (1995). Hence, the

ESDs of the PA-ATVA matrices BM , B∗M and sample covariance matrix

SM are compared here under various simulation designs. We set p = 100

and n = 23400, which represents the case where transactions are recorded



per second within one trading day. We simulate the observations from the

following additive model Yti = Xti +εti , in which the log price (Xt) follows

from the continuous-time process as in (S1.2) and the noise values (εti)

are drawn independently from N(0, 0.0002Ip). The pre-averaging window

length h is taken to be bn0.55c = 252. We use L
(q)
i to denote the number

of transactions for stock q within time stamp (ti−1, ti], for q = 1, . . . , p and

i = 1, . . . , n. We designed two transaction schemes as follows.

Design I: For simplicity, L
(q)
i = Li for each stock q within time interval

(ti−1, ti], where the ti values are arranged as an equally spaced grid in [0, 1].

The Li’s are generated independently from a Poisson distribution with pa-

rameter 20 for the first and the last hours within 6.5 hours of a trading day,

and from a Poisson distribution with parameter 5 for the remaining trading

hours. According to the simulation results, shown in the left subfigure of

Figure 1, the two ESDs of matrices BM and SM were very closely matched.

Design II: In order to generate high-frequency data such as that com-

monly used in practice, we further simulated observations in a highly asyn-

chronous setting. Based on Design I, we allowed variation of L
(q)
i , which

is generated independently from a discrete uniform distribution within the

interval [1, Li], for each q = 1, . . . , p and i = 1, . . . , n. Right subfigure of

Figure 1 displays the ESDs of matrices B∗M and SM under Design II.
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Figure 1: ESDs of PA-ATVA matrix and sample covariance matrix SM for dimension

p = 100 and observation frequency n = 23400. The pre-averaging window length h was

taken to be bn0.55c = 252, with an effective sample size M = bn/(2h)c = 46. In the

left panel, for each stock q = 1, . . . , p, L
(q)
i = Li were generated independently from a

Poisson distribution with parameter 20 for the first and the last hours within 6.5 hours of

a trading day, and with parameter 5 for the rest of trading hours. In the rightpanel, L
(q)
i

values were generated independently from discrete uniform distribution U [1, Li] where

Lis are generated with the same method in the left panel.



S2. Figure: asynchronous trading

Figure 2 shows a simplified version of true transactions and recording mech-

anism under asynchronous trading.

-
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Figure 2: The true transactions vs. observations. Theoretically, the transactions occur

consecutively for each stock during each time interval as shown in the left panel. However,

in practice, the order of arrival is missing and the number of transaction varies according

to the stock and recording interval as shown in the right panel.



S3. Proof of Theorem 1

Theorem 1 is a direct consequence of the following two propositions.

Proposition 1. Under the assumptions of Theorem 1, the ESD of Ξ̃ con-

verges almost surely, and the limit F Ξ̃ is determined by H̆ in that its Stieltjes

transform mΞ̃(z) satisfies the following equation:

mΞ̃(z) =

∫
τ∈R

1

τ(1− c(1 + zmΞ̃(z)))− z
dH̆(τ), for z ∈ C+. (S3.3)

Proposition 2. Under the assumptions of Theorem 1, the ESD of the ICV

matrix converges almost surely in distribution to a probability distribution

H as p→∞ defined by

H(x) = H̆(x/θ), (S3.4)

where θ =
∫ 1

0
(γ∗t )

2dt. Moreover,

lim
p→∞

3

∑M
i=1 |∆Ỹ2i|2

p
= θ, almost surely. (S3.5)

Proof of Proposition 1. To prove the convergence of F Ξ̃, we fistly show that

Ξ̃ =
p

M

M∑
i=1

∆Ỹ2i(∆Ỹ2i)
T

|∆Ỹ2i|2
and

˜̃
Ξ :=

p

M

M∑
i=1

∆X̃2i∆X̃
T

2i

|∆X̃2i|2

have the same LSD. Following the same arguments as in the proof of Propo-

sition C.1 of Xia and Zheng (2018), it suffices to show that

max
1≤i≤M,1≤j≤p

√
p|∆ε̃(j)

2i |

|∆X̃2i|
→ 0, almost surely. (S3.6)



We start by showing that there exists a constant C̃ > 0 for large M , such

that

min
1≤i≤M

|∆X̃2i|2 ≥ C̃. (S3.7)

Recall Vi = (1/Li)
∑Li

j=1 VTi−1+j, the average of the multiple observations

at recording time ti given in (2.6). We decompose its increments as follows:

∆Vi : = Vi −Vi−1

=
1

Li

Li∑
j=1

VTi−1+j −
1

Li−1

Li−1∑
j=1

VTi−2+j

=
1

Li

Li∑
j=1

(VTi−1+j −VTi−2
)− 1

Li−1

Li−1∑
j=1

(VTi−2+j −VTi−2
)

=

Li∑
j=1

ai,j∆i,jV +

Li−1∑
j=1

bi−1,j∆i−1,jV, (S3.8)

where ai,j = 1− j−1
Li

, bi,j = j−1
Li

, and

∆i,jV := VTi−1+j −VTi−1+j−1, for j = 1, . . . , Li, i = 2, . . . , n,

which is an asymmetric triangular form of ∆i,jV. Following (S3.8), the log

return based on the averaged log prices becomes

∆X2i =

L2i∑
j=1

a2i,j∆2i,jX +

L2i−1∑
j=1

b2i−1,j∆2i−1,jX,

where ∆i,jX = XTi−1+j −XTi−1+j−1. Thus, the latent pre-averaged return



∆X̃2i is written as

∆X̃2i =
1

h

h∑
j=1

(
X(2i−1)h+j −X(2i−2)h

)
− 1

h

h∑
j=1

(
X(2i−2)h+j −X(2i−2)h

)
=

2h∑
l=1

(
1− |h− l + 1|

h

)
∆X(2i−2)h+l

=
2h∑
l=1

(
1− |h− l + 1|

h

) L(2i−2)h+l∑
j=1

a(2i−2)h+l,j∆(2i−2)h+l,jX

+
2h−1∑
l=1

(
1− |h− l|

h

) L(2i−2)h+l∑
j=1

b(2i−2)h+l,j∆(2i−2)h+l,jX.

From the fact that ai,j + bi,j = 1, we can further write ∆X̃2i as

∆X̃2i =
1

h

L2ih∑
j=1

a2ih,j∆2ih,jX

+
2h−1∑
l=1

L(2i−2)h+l∑
j=1

(
1− |h− l + 1|

h

)
∆(2i−2)h+l,jX

+
2h−1∑
l=1

L(2i−2)h+l∑
j=1

[
|h− l + 1| − |h− l|

h
b(2i−2)h+l,j

]
∆(2i−2)h+l,jX

:=Ṽi +
√
ψiΛZ̃i, (S3.9)



where

Ṽi =
1

h

L2ih∑
j=1

a2ih,j

∫ sT2ih−1+j

sT2ih−1+j−1

µtdt

+
2h−1∑
l=1

L(2i−2)h+l∑
j=1

[(
1− |h− l + 1|

h

)
+
|h− l + 1| − |h− l|

h
b(2i−2)h+l,j

]

·
∫ sT(2i−2)h+l−1+j

sT(2i−2)h+l−1+j−1

µtdt,

ψi =
1

h2

L2ih∑
j=1

a2
2ih,j

∫ sT2ih−1+j

sT2ih−1+j−1

γ2
t dt

+
2h−1∑
l=1

L(2i−2)h+l∑
j=1

[(
1− |h− l + 1|

h

)
+
|h− l + 1| − |h− l|

h
b(2i−2)h+l,j

]2

·
∫ sT(2i−2)h+l−1+j

sT(2i−2)h+l−1+j−1

γ2
t dt,

and

Z̃i :=
1√
ψi

1

h

L2ih∑
j=1

a2ih,j

∫ sT2ih−1+j

sT2ih−1+j−1

γtdWt

+
2h−1∑
l=1

L(2i−2)h+l∑
j=1

[(
1− |h− l + 1|

h

)
+
|h− l + 1| − |h− l|

h
b(2i−2)h+l,j

]

·
∫ sT(2i−2)h+l−1+j

sT(2i−2)h+l−1+j−1

γtdWt.

Without loss of generality, we may assume that γt and Wt are independent,

which leads to the fact that each entry of Z̃i is i.i.d. standard normal.

Otherwise, by using a similar trick as in the proof of (3.34) of Zheng and



Li (2011), we have

max
1≤i≤M

|1
p
|ΛZ̃i|2 − 1| → 0, almost surely. (S3.10)

Combining this with the fact that all the entries of Ṽi are of order O(h/n) =

o(1/
√
p), we have∑M
i=1 |∆X̃2i|2

p
=

∑M
i=1 |Ṽi +

√
ψiΛZ̃i|2

p
=

M∑
i=1

ψi + oa.s.(1). (S3.11)

On the other hand, from equation (S3.9), we get

|∆X̃2i|2 = |Ṽi +
√
ψiΛZ̃i|2 ≥ |Ṽi|2 + |ψi| · |ΛZ̃i|2 − 2|Ṽi||

√
ψiΛZ̃i|.

Assumption (A.iii) implies that for all i, there exists C ′ > 0 such that

|ψi| ≥ C ′h/n. Taking this together with Assumption (A.ix) and Equation

(S3.10), there exists C∗ > 0 such that for all n large enough,

min
1≤i≤M

|ψi| · |ΛZ̃i|2 ≥ C∗.

Moreover, maxi |Ṽi| = O(
√
p×h/n) = o(1) follows from Assumption (A.ii).

Therefore (S3.7) follows.

Next, we will show that

max
1≤i≤M,1≤q≤p

√
p|∆ε̃(q)

2i | → 0, almost surely. (S3.12)

By the boundedness of Li from Assumption (A.xi), (ε̄
(q)
i ) = (1/Li

∑Li

k=1 ε
(q)
Ti−1+k)

is also a ρ-mixing sequence, and the ρ-mixing coefficients based on (ε̄
(q)
i )



have the same order as ρq(r). Thus, (S3.12) follows by the same proof pro-

cess used in (C.7) of Xia and Zheng (2018). Togethering with (S3.7), (S3.6)

holds.

Finally, following a similar argument to the last part of the proof of

Proposition 8 in Zheng and Li (2011), we have that the LSD of
˜̃
Ξ is deter-

mined by (S3.3). �

Proof of Proposition 2. The convergence of FΣ follows from Assumption

(A.vii) and the fact that

FΣ(x) = F Σ̆

(
x∫ 1

0
γ2
t dt

)
for all x ≥ 0.

Note that

M∑
i=1

|∆Ỹ2i|2 =
M∑
i=1

|∆X̃2i|2 + 2
M∑
i=1

∆X̃
T

2i∆ε̃2i +
M∑
i=1

|∆ε̃2i|2.

The convergence of (S3.6) and inequlity (S3.7) imply that
∑M

i=1 |∆ε̃2i|2/p→

0 almost surely. It remains to prove that

lim
p→∞

3

∑M
i=1 |∆X̃2i|2

p
= θ, almost surely, (S3.13)

where θ =
∫ 1

0
(γ∗t )

2dt, and

∑M
i=1 ∆X̃

T

2i∆ε̃2i

p
→ 0, almost surely. (S3.14)



To show (S3.13), by (S3.11), it suffices to show that

lim
n→∞

M∑
i=1

∫ sT2ih

sT(2i−2)h

|Mψi −
1

3
(γ∗s )

2|ds = 0,

almost surely. Suppose that γ∗t has J jumps at {τ1, . . . , τJ}; then

M∑
i=1

∫ sT2ih

sT(2i−2)h

|Mψi −
1

3
(γ∗s )

2|ds

=
∑

i∈{τ1,...,τJ}

∫ sT2ih

sT(2i−2)h

|Mψi −
1

3
(γ∗s )

2|ds

+
∑

i/∈{τ1,...,τJ}

∫ sT2ih

sT(2i−2)h

|Mψi −
1

3
(γ∗s )

2|ds

:=∆1 + ∆2.

For any ε > 0 and for sufficiently large n, |∆1| ≤ ε follows from the bounded-

ness of |Mψi| and γ∗t . For the second term, ∆2, by defining ψ∗i by replacing

γt with γ∗t from the definition of ψi, we have

|∆2| ≤ ∆21 + ∆22 + ∆23 + ∆24,



where

∆21 :=
∑

i/∈{τ1,...,τJ}

∫ sT2ih

sT(2i−2)h

|Mψi −Mψ∗i |ds,

∆22 :=
∑

i/∈{τ1,...,τJ}

∫ sT2ih

sT(2i−2)h

|Mψ∗i −M(γ∗(2i−2)/h)
2Ai|ds,

∆23 :=
∑

i/∈{τ1,...,τJ}

∫ sT2ih

sT(2i−2)h

|M(γ∗(2i−2)/h)
2Ai −M(γ∗s )

2Ai|ds,

∆24 :=
∑

i/∈{τ1,...,τJ}

∫ sT2ih

sT(2i−2)h

|M(γ∗s )
2Ai −

1

3
(γ∗s )

2|ds,

Ai :=
1

h2

L2ih∑
j=1

a2
2ih,j∆s2ih,j +

2h−1∑
l=1

L(2i−2)h+l∑
j=1

[
1− |h− l + 1|

h
+

+
|h− l + 1| − |h− l|

h
b(2i−2)h+l,j

]2

∆s(2i−2)h+l,j,

and ∆si,j := sTi−1+j − sTi−1+j−1.

We further decompose Ai as Ai = Ai1 + Ai2 + Ai3 + Ai4, where

Ai1 :=
1

h2

L2ih∑
j=1

a2
2ih,j∆s2ih,j = O(

1

nh2
),

Ai2 :=
2h−1∑
l=1

(
1− |h− l + 1|

h

)2 L(2i−2)h+l∑
j=1

∆s(2i−2)h+l,j =
2h

3n
+ o(

h

n
),

Ai3 :=
2h−1∑
l=1

L(2i−2)h+l∑
j=1

2

h

(
1− |h− l + 1|

h

)
(|h− l + 1| − |h− l|)

· b(2i−2)h+l,j∆s(2i−2)h+l,j = O(
1

n
),

Ai4 :=
2h−1∑
l=1

L(2i−2)h+l∑
j=1

1

h2
(|h− l + 1| − |h− l|)2b2

(2i−2)h+l,j∆s(2i−2)h+l,j

= O(
1

nh
),



follow from the boundedness of Li both below and above, the fact that

∆si,j = O(1/n) and Assumption (A.x). As (γ∗t ) is continuous in [sT(2i−2)h
, sT2ih ]

when i /∈ {τ1, . . . , τJ}, (γt) uniformly converges to (γ∗t ) by Assumption

(A.iv), and ψ∗i = O(h/n) by Assumption (A.iii) and (A.xi), for any ε > 0

and sufficiently large n, p, it is easy to show that

|MAi − 1/3| ≤ ε and max{∆21,∆22,∆23,∆24} < Cε.

This completes the proof of (S3.13). Finally, (S3.14) follows from (S3.13)

and (S3.6) and (S3.7). �

S4. Proof of Theorem 2

Suppose that we have L
(q)
i (≥ 1) observations for each stock q at recording

time ti = i/n, for q = 1, 2, . . . , p and i = 1, 2, . . . , n. Take T
(q)
i =

∑i
k=1 L

(q)
k

for q = 1, . . . , p and i = 1, . . . , n. Recall that for any process (Vt), V
(q)
i,j

denote the observation of the jth transaction for stock q during time interval

(ti−1, ti], and the true transaction time of V
(q)
i,j is denoted as s

(q)

T
(q)
i−1+j

, for

j = 1, . . . , L
(q)
i satisfying ti−1 ≤ s

(q)

T
(q)
i−1+1

< · · · < s
(q)

T
(q)
i−1+L

(q)
i

= s
(q)

T
(q)
i

≤ ti.

Thus, V
(q)
i,j = V

(q)

s
(q)

T
(q)
i−1

+j

. Under asynchronous trading conditions, the average



of multiple observations at each recording time ti is given by

V
∗
i :=

L
(1)
i∑
j=1

1

L
(1)
i

V
(1)
i,j , . . . ,

L
(p)
i∑
j=1

1

L
(p)
i

V
(p)
i,j

T

;

thus, the increment at trading time ti becomes

∆V
∗
i :=


∑L

(1)
i

j=1 a
(1)
i,j ∆

(1)
i,j V +

∑L
(1)
i−1

j=1 b
(1)
i−1,j∆

(1)
i−1,jV

...∑L
(p)
i

j=1 a
(p)
i,j ∆

(p)
i,j V +

∑L
(p)
i−1

j=1 b
(p)
i−1,j∆

(p)
i−1,jV

 ,

where a
(q)
i,j = 1 − j−1

L
(q)
i

, b
(q)
i,j = j−1

L
(q)
i

and ∆
(q)
i,jX = X

(q)
i,j − X

(q)
i,j−1, for q =

1, 2, . . . , p. Similar to the proof of Lemma 1, we first show that there exists

a constant C > 0 such that for large M

min
1≤i≤M

|∆X̃
∗

2i|2 ≥ C, (S4.15)

and

max
1≤i≤M,1≤q≤p

√
p|∆(ε̃

∗
2i)

(q)| → 0, almost surely, (S4.16)

which leads to the result that matrices

p

M

M∑
i=1

∆Ỹ
∗

2i(∆Ỹ
∗

2i)
T

|∆Ỹ
∗

2i|2
and

p

M

M∑
i=1

∆X̃
∗

2i(∆X̃
∗

2i)
T

|∆X̃
∗

2i|2

have the same LSD. We only need to prove (S4.15), as (S4.16) holds straight-

forwardly from the proof of (S3.12) given earlier. By a similar decomposi-

tion to that used in (S3.9), the return based on the pre-averaged (latent)



price can be decomposed as

∆X̃
∗

2i =
1

h

h∑
j=1

X
∗
(2i−1)h+j −

1

h

h∑
j=1

X
∗
(2i−2)h+j = Ri1 + Mi + Ri2,

where Mi = (M
(1)
i , . . . ,M

(q)
i )T, Ri` = (R

(1)
i` , . . . , R

(q)
i` )T for ` = 1, 2, and

their qth components have the form

R
(q)
i1 =

1

h

L
(q)
2ih∑
j=1

a
(q)
2ih,j∆

(q)
2ih,jX,

M
(q)
i =

2h−1∑
l=1

L
(q)
(2i−2)h+l∑
j=1

cl,h∆
(q)
(2i−2)h+l,jX,

R
(q)
i2 =

2h−1∑
l=1

L
(q)
(2i−2)h+l∑
j=1

[
|h− l + 1| − |h− l|

h
b

(q)
(2i−2)h+l,j

]
∆

(q)
(2i−2)h+l,jX,

where cl,h = 1− |h−l+1|
h

. Note that M
(q)
i can be reduced to

2h−1∑
l=1

cl,h · (X(q)

s
(q)
T(2i−2)h+l

−X(q)

s
(q)
T(2i−2)h+l−1

).

We further decompose M
(q)
i as Φ

(q)
i +R

(q)
i3 , where

Φ
(q)
i =

2h−1∑
l=1

cl,h(X
(q)
t(2i−2)h+l

−X(q)
t(2i−2)h+l−1

),

R
(q)
i3 =

2h−1∑
l=1

cl,h

(
X

(q)

s
(q)
T(2i−2)h+l

−X(q)
t(2i−2)h+l

+X
(q)
t(2i−2)h+l−1

−X(q)

s
(q)
T(2i−2)h+l−1

)
,

and X
(q)
ti denotes the log price for stock q at recording time ti. Let ΦΦΦi =

(Φ
(1)
i , . . . ,Φ

(q)
i )T and Ri3 = (R

(1)
i3 , . . . , R

(q)
i3 )T. Thus,

∆X̃
∗

2i = ΦΦΦi + Ri1 + Ri2 + Ri3, (S4.17)



where

ΦΦΦi =
2h−1∑
l=1

(
1− |h− l + 1|

h

)
∆X(2i−2)h+l,

and

∆X(2i−2)h+l =


X

(1)
t(2i−2)h+l

−X(1)
t(2i−2)h+l−1

...

X
(p)
t(2i−2)h+l

−X(p)
t(2i−2)h+l−1

 = Xt(2i−2)h+l
−Xt(2i−2)h+l−1

,

which reduces to the synchronous setting. Using a similar argument to that

in (S3.13), we have

lim
p→∞

3
∑M

i=1 |ΦΦΦi|2

p
= θ. (S4.18)

Thus, (S4.15) follows if we can show that there exists a constant C > 0

such that for large M

min
1≤i≤M

|ΦΦΦi|2 ≥ C, (S4.19)

and

max
1≤i≤M,1≤q≤p

√
p|R(q)

i1 +R
(q)
i2 +R

(q)
i3 | → 0, almost surely. (S4.20)

Notice that (S4.19) follows naturally from the proof of (S3.7). We only

need to show the proof of (S4.20). To prove (S4.20), let R
(q)
i = R

(q)
i1 +

R
(q)
i2 + R

(q)
i3 . By Cp inequality and the Burkholder-Davis-Gundy inequality,

we have for any κ ≥ 1,

E(R
(q)
i ) < Cn−1 and E|R(q)

i − E(R
(q)
i )|2κ ≤ Cn−κ, (S4.21)



for all i, q. Hence, it follows that for any ε > 0 and κ ≥ 1,

P

(
max
i,q

√
p|R(q)

i − E(R
(q)
i )| ≥ ε

)
≤
∑
i,q

pκE|R(q)
i − E(R

(q)
i )|2κ

ε2κ

≤ C · Mp · pκ · n−κ

ε2κ
= O(p2−κβ/(1−β)).

We choose κ large enough such that κβ/(1−β)−2 > 1. This proves (S4.20)

from the Borel–Cantelli lemma. Thus, (S4.15) holds.

From (S4.15) and (S4.16), we know that

p

M

M∑
i=1

∆Ỹ
∗

2i(∆Ỹ
∗

2i)
T

|∆Ỹ
∗

2i|2
and

p

M

M∑
i=1

∆X̃
∗

2i(∆X̃
∗

2i)
T

|∆X̃
∗

2i|2

have the same LSD. Further, (S4.17), (S4.19), (S4.20), and Lemma 2 imply

that

p

M

M∑
i=1

∆X̃
∗

2i(∆X̃
∗

2i)
T

|∆X̃
∗

2i|2
and

p

M

M∑
i=1

ΦΦΦiΦΦΦ
T
i

|ΦΦΦi|2

have the same LSD. Moreover, from the proof of Theorem 2.3 in Xia and

Zheng (2018), we have already known that the LSD of p
M

∑M
i=1

ΦΦΦiΦΦΦ
T
i

|ΦΦΦi|2 relates

to H̆ through the Marčenko-Pastur equation. Therefore, at last, we only

need to prove that

lim
p→∞

3
∑M

i=1 |∆Ỹ
∗

2i|2

p
= θ, almost surely. (S4.22)

Followed by the proof of Proposition 2, (S4.22) holds if we can show that

lim
p→∞

3
∑M

i=1 |∆X̃
∗

2i|2

p
= θ, (S4.23)



and ∑M
i=1(∆X̃

∗

2i)
T∆ε̃

∗
2i

p
→ 0, (S4.24)

almost surely. Notice that (S4.23) follows from (S4.18) and (S4.20), and

(S4.24) follows from (S4.23) and (S4.16). Therefore, the proof of Theorem

2 is complete. �

S5. Proofs of Theorem 3, 4, 5.

S5.1 Proof of Theorem 3

Under the assumptions of Theorem 3, if we can show that

max
1≤`≤p

∣∣∣uT
1`Ξ̃

∗
2u1` − uT

1`Σ̆u1`

uT
1`Σ̆u1`

∣∣∣→ 0, almost surely. (S5.25)

Then Theorem 3 is a direct consequence of (S5.25), (S4.22) and Assump-

tions (A.iv) and (C.i).

To prove (S5.25), we decompose (S5.25) into two parts

uT
1`Ξ̃

∗
2u1` − uT

1`Σ̆u1`

uT
1`Σ̆u1`

= I`1 + I`2, (S5.26)

where

I`1 =

uT
1`Ξ̃

∗
2u1` − 1

M2

∑
i∈J2

(uT
1`ΛZ̃∗i )

2

uT
1`Σ̆u1`

, I`2 =

1
M2

∑
i∈J2

(uT
1`ΛZ̃∗i )

2 − uT
1`Σ̆u1`

uT
1`Σ̆u1`

.

By Assumption (C.iv) and Lemma 1 in Lam (2016), we have max
1≤`≤p

|I`2| → 0

almost surely.



S5.1 Proof of Theorem 3

Now we consider the convergence of I`1. we further decompose I`1 as

follows,

max
1≤`≤p

|I`1|

≤ max
1≤`≤p

{∣∣∣∣uT
1`Ξ̃

∗
2u1` − uT

1`Ξ̃yx,2u1`

uT
1`Σ̆u1`

∣∣∣∣+

∣∣∣∣uT
1`Ξ̃yx,2u1` − uT

1`Ξ̃xx,2u1`

uT
1`Σ̆u1`

∣∣∣∣
+

∣∣∣∣uT
1`Ξ̃xx,2u1` − uT

1`Ξ̃xφ,2u1`

uT
1`Σ̆u1`

∣∣∣∣+

∣∣∣∣uT
1`Ξ̃xφ,2u1` − uT

1`Ξ̃φφ,2u1`

uT
1`Σ̆u1`

∣∣∣∣
+

∣∣∣∣uT
1`Ξ̃φφ,2u1` −M−1

2

∑
i∈J2(u

T
1`ΛZ̃∗i )

2

uT
1`Σ̆u1`

∣∣∣∣
}
,

where

Ξ̃yx,j =
p

Mj

∑
i∈Jj

∆Ỹ
∗

2i(∆Ỹ
∗

2i)
T

|∆X̃
∗

2i|2
, Ξ̃xx,j =

p

Mj

∑
i∈Jj

∆X̃
∗

2i(∆X̃
∗

2i)
T

|∆X̃
∗

2i|2
,

Ξ̃xφ,j =
p

Mj

∑
i∈Jj

∆X̃
∗

2i(∆X̃
∗

2i)
T

|ΦΦΦi|2
and Ξ̃φφ,j =

p

Mj

∑
i∈Jj

ΦΦΦiΦΦΦ
T
i

|ΦΦΦi|2
.
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The convergence of |I`1| follows directly if we can show the following results,

max
1≤`≤p

uT
1`

(
p

M2

∑
i∈J2

∆Ỹ
∗

2i(∆Ỹ
∗

2i)
T

|∆X̃
∗

2i|2
− p

M2

∑
i∈J2

∆X̃
∗

2i(∆X̃
∗

2i)
T

|∆X̃
∗

2i|2

)
u1` → 0,

(S5.27)

max
1≤`≤p

uT
1`

(
p

M2

∑
i∈J2

∆X̃
∗

2i(∆X̃
∗

2i)
T

|ΦΦΦi|2
− p

M2

∑
i∈J2

ΦΦΦiΦΦΦ
T
i

|ΦΦΦi|2

)
u1` → 0, (S5.28)

max
1≤i≤M

|∆Ỹ
∗

2i| · |∆X̃
∗

2i|−1 → 1, max
1≤i≤M

|∆X̃
∗

2i| · |ΦΦΦi|−1 → 1 (S5.29)

max
1≤`≤p

[uT
1`Ξ̃φφ,2u1` −M−1

2

∑
i∈J2

(uT
1`ΛZ̃∗i )

2]→ 0, (S5.30)

lim sup
p→∞

uT
1`

p

M2

∑
i∈J2

∆Ỹ
∗

2i(∆Ỹ
∗

2i)
T

|∆X̃
∗

2i|2
u1` ≤ C, (S5.31)

lim sup
p→∞

uT
1`

p

M2

∑
i∈J2

∆X̃
∗

2i(∆X̃
∗

2i)
T

|ΦΦΦi|2
u1` ≤ C, (S5.32)

almost surely, where C is a finite constant. (S5.32) follows from the bound-

edness of ‖Σ̆‖, the convergence of |I`2|, (S5.30), (S5.29) and (S5.28). (S5.31)

follows from (S5.32), (S5.29) and (S5.27). Moreover, (S5.29) has already

been shown in the proof of Theorem 2. Thus it only suffices to prove (S5.27),

(S5.28) and (S5.30) to finish the proof of Theorem 3. We begin with (S5.30)

and then show (S5.28), (S5.27).

We first consider (S5.30). By the definition of ΦΦΦi, ΦΦΦi can be further
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decomposed into two parts as ΦΦΦi = φ
1/2
i (ΛZ̃∗i + Ṽ∗i ), where

φi =
2h−1∑
l=1

∫ t(2i−2)h+l

t(2i−2)h+l−1

c2
l,hγ

2
t dt, Ṽ∗i = φ

−1/2
i

2h−1∑
l=1

∫ t(2i−2)h+l

t(2i−2)h+l−1

cl,hµtdt,

(S5.33)

and Z̃∗i s are i.i.d standard normal. Note that

max
1≤`≤p

|uT
1`Ξ̃φφ,2u1` −M−1

2

∑
i∈J2

(uT
1`ΛZ̃∗i )

2|

≤max
i∈J2

(
1

|Ṽ∗i + ΛZ̃∗i |2/p
− 1

)
· max

1≤`≤p

1

M2

∑
i∈J2

uT
1`(Ṽ

∗
i + ΛZ̃∗i )(Ṽ

∗
i + ΛZ̃∗i )

Tu1`

+ max
1≤`≤p

uT
1`

[ 1

M2

∑
i∈J2

(Ṽ∗i + ΛZ̃∗i )(Ṽ
∗
i + ΛZ̃∗i )

T − 1

M2

∑
i∈J2

ΛZ̃∗i (ΛZ̃∗i )
T
]
u1`.

By Assumption (C.ii), we have max1≤i≤M |Ṽ∗i |2 → 0. Thus

max
1≤i≤M

∣∣∣∣ |ΦΦΦi|
|φ1/2
i ΛZ̃∗i |

− 1

∣∣∣∣→ 0, ‖ 1

M2

∑
i∈J2

Ṽ∗i (Ṽ
∗
i )

T‖ ≤ max
i∈J2
|Ṽ∗i |2 → 0,

(S5.34)

almost surely. Further, by Cauchy-Schwartz inequality and the convergence

of max
1≤`≤p

|I`2|,

max
1≤`≤p

uT
1`

1

M2

∑
i∈J2

Ṽ∗i (ΛZ̃∗i )
Tu1`

≤ max
1≤`≤p

( 1

M2

∑
i∈J2

uT
1`Ṽ

∗
i (Ṽ

∗
i )

Tu1`

)1/2 · max
1≤`≤p

( 1

M2

uT
1`

∑
i∈J2

ΛZ̃∗i (ΛZ̃∗i )
Tu1`

)1/2

(S5.35)

→0, almost surely.
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It follows that

max
1≤`≤p

uT
1`

[ 1

M2

∑
i∈J2

(Ṽ∗i + ΛZ̃∗i )(Ṽ
∗
i + ΛZ̃∗i )

T − 1

M2

∑
i∈J2

ΛZ̃∗i (ΛZ̃∗i )
T
]
u1`

≤ max
1≤`≤p

1

M2

∑
i∈J2

uT
1`Ṽ

∗
i (Ṽ

∗
i )

Tu1` + 2 max
1≤`≤p

1

M2

∑
i∈J2

uT
1`Ṽ

∗
i (ΛZ̃∗i )

Tu1` → 0,

almost surely. By (S5.34) and (C.5) of Xia and Zheng (2018), almost surely,

max
1≤i≤M

|Ṽ∗ + ΛZ̃∗i |2/p→ 1.

Thus (S5.30) follows.

Next we show (S5.28). Let Ri = Ri1 + Ri2 + Ri3 = (R
(1)
i , . . . , R

(p)
i )T.

By (S4.19) and (S4.21), for any κ ≥ 1

max
1≤i≤M,1≤q≤p

E|R(q)
i |2κ ≤ Cn−κ,

which indicates that

max
1≤i≤M

E|Ri|2κ = E(

p∑
j=1

|R(q)
i |2)κ ≤ Cpκn−κ. (S5.36)

It follows that for any κ ≥ 1 and ε > 0

P

(
max

1≤i≤M
p|Ri|2 ≥ ε

)
≤ ε−κ

ppκpκ

nκ
→ 0.

Thus max1≤i≤M p|Ri|2 → 0 almost surely by Borel-Cantelli Lemma and

Assumption (C.v). Togethering with (S4.19), we can show that

‖ p
M2

∑
i∈J2

RiR
T
i

|ΦΦΦi|2
‖ ≤ max

1≤i≤M
C · p|Ri|2 → 0, almost surely.
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Using the above result, (S4.19) and a similar argument in (S5.35), we have

max
1≤`≤p

uT
1`

(
p

M2

∑
i∈J2

∆X̃
∗

2i(∆X̃
∗

2i)
T

|ΦΦΦi|2
− p

M2

∑
i∈J2

ΦΦΦiΦΦΦ
T
i

|ΦΦΦi|2

)
u1` (S5.37)

≤ max
1≤`≤p

p

M2

∑
i∈J2

uT
1`

RiR
T
i

|ΦΦΦi|2
u1` + 2 max

1≤`≤p

p

M2

∑
i∈J2

uT
1`

RiΦΦΦ
T
i

|ΦΦΦi|2
u1` → 0,

almost surely, which indicates (S5.28).

Finally, we show (S5.27). By Assumptions (A.xi) and (A.viii), Lya-

punov’s inequality and the same argument in (C.8) of Xia and Zheng (2018),

we have

max
1≤i≤M,1≤q≤p

E|(∆ε̃∗2i)(q)|2ν < C

hν
, (S5.38)

where ν is the integer in Assumption (A.viii). For any ε > 0, by Markov’s

inequality,

P

(
max

1≤i≤M
p|∆ε̃∗2i|2 ≥ ε

)
≤ ε−ν

ppνpν

hν
= O(

1

pβν/(1−β)−2ν−1
),

which means that p|∆ε̃∗2i|2 → 0 almost surely, by Borel-Cantelli Lemma

and Assumption (C.v). Following a similar argument as (S5.37), we have

(S5.27). Thus the proof of Theorem 3 completes.

Now, we consider data from the factor model

dXt = µtdt+ γtΛfdW
∗
t + γtΛBdWt.

WLOG, we may assume that µt ≡ 0. If p−1tr(ΛBΛT
B) = 1 and p−1tr(ΛfΛ

T
f )→

β∗ as p → ∞, the increment ∆Xi =
√
ωi(Λf fi + ΛBzi), where ωi =
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ti−1

γ2
t dt, fi are i.i.d. N(0, Ir), zi are i.i.d. N(0, Ip), and fi and zi are

independent. Then (S5.25) holds if we can further show that

lim
p→∞

3
∑M

i=1 |∆X̃
∗

2i|2

p(1 + β∗)
= θ, a.s., (S5.39)

and for any given unit vector u1`,

max
i
|uT

1`Λf fif
T
i ΛT

f u1` − uT
1`ΛfΛ

T
f u1`| → 0, a.s.

max
i
|uT

1`ΛBziz
T
i ΛT

Bu1` − uT
1`ΛBΛT

Bu1`| → 0, a.s.

and max
i
|uT

1`Λf fiz
T
i ΛT

Bu1`| → 0 a.s..

(S5.40)

By the proof of (S4.23), (S5.39) follows from the fact that E(|Λf fi+ΛBzi|2/p)→

1 + β∗ as p → ∞ and (S5.40) follows directly from the proof of Lemma 1

in Lam (2016). �

S5.2 Proof of Theorem 4

To prove Theorem 4, we first provide the following lemma.

Lemma 1. Let the assumptions in Theorem 4 hold and denote U = (u1, . . . ,up).

Then the ESDs of Ξ̃∗ and Ξ̃∗1 converge to the same probability F̃ ∗ almost

surely, where F̃ ∗ is the LSD of matrices p
M

∑M
i=1

∆Ỹ
∗
2i(∆Ỹ

∗
2i)

T

|∆Ỹ
∗
2i|2

as p/M → c >

0. Meanwhile, there exist positive functions δ(·) such that almost surely,

p−1

p∑
i=1

uT
1iΣ̆u1i1{v1i≤x} →

∫ x

−∞
δ(λ)dF̃ ∗(λ) and

p−1

p∑
i=1

uT
i Σ̆ui1{vi≤x} →

∫ x

−∞
δ(λ)dF̃ ∗(λ),



S5.2 Proof of Theorem 4

where v1i is the eigenvalues of Ξ̃∗1 with corresponding eigenvectors u1i and

vi is the eigenvalues of Ξ̃∗ with corresponding eigenvectors ui.

We do not write down the explicit form of δ(·) because it is not impor-

tant in the proof of any subsequent theorems. Interested readers may refer

to (2.7) and (2.9) of Lam (2016).

Proof of Lemma 1. We just show the proof of second part in Lemma 1

because the first part can be obtained using the same argument as in the

proof of Theorem 2.

Define Ξ̃1,spl and Ξ̃spl as

Ξ̃1,spl = M−1
1

∑
i∈J1

ΛZ̃∗i (Z̃
∗
i )

TΛT, Ξ̃spl = M−1

M∑
i=1

ΛZ̃∗i (Z̃
∗
i )

TΛT,

where Z̃∗i consists of i.i.d. standard normals. Let v1j,spl, vj,spl be the eigen-

values of Ξ̃1,spl and Ξ̃spl with corresponding eigenvectors u1j,spl, uj,spl, re-

spectively. By the Theorem 4 of Ledoit and Péché (2011), there exists a

positive function δ(·) such that almost surely,

p−1

p∑
i=1

uT
1i,splΣ̆u1i,spl1{x≥v1i,spl} →

∫ x

−∞
δ(λ)dF̃ ∗(λ),

p−1

p∑
i=1

uT
i,splΣ̆ui,spl1{x≥vi,spl} →

∫ x

−∞
δ(λ)dF̃ ∗(λ),

To prove the convergence of p−1
∑p

i=1 uT
1iΣ̆u1i1{v1i≤x} and p−1

∑p
i=1 uT

i Σ̆ui1{vi≤x},

it suffices to show the convergence of their Stieltjes transforms, that is, al-
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most surely,

p−1tr
(
(Ξ̃1,spl − zIp)−1Σ̆

)
− p−1tr

(
(Ξ̃∗1 − zIp)−1Σ̆

)
→ 0,

p−1tr
(
(Ξ̃spl − zIp)−1Σ̆

)
− p−1tr

(
(Ξ̃∗ − zIp)−1Σ̆

)
→ 0.

(S5.41)

Next, we only show the first result in (S5.41) because the second result can

be proved similarly. Observe that

p−1tr
(
(Ξ̃∗1 − zIp)−1Σ̆

)
− p−1tr

(
(Ξ̃1,spl − zIp)−1Σ̆

)
=p−1tr

(
(Ξ̃1,spl − Ξ̃∗1)(Ξ̃∗1 − zIp)−1(Ξ̃1,spl − zIp)−1Σ̆

)
,

By Theorem 5.11 of Bai and Silverstein (2010), there exists a constant C

such that

lim sup
p→∞

‖ 1

M1

∑
i∈J1

ΛZ̃∗i (ΛZ̃∗i )
T‖ ≤ C.

Combining with (S5.34) and following a similar argument as (S5.30), we

have almost surely,

‖ p
M1

∑
i∈J1

ΦΦΦiΦΦΦ
T
i

|ΦΦΦi|2
− 1

M1

∑
i∈J1

ΛZ̃∗i (ΛZ̃∗i )
T‖ → 0. (S5.42)

Togethering with (S5.42), (S5.29) and a similar argument as (S5.27), (S5.28),
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(S5.31), (S5.32), the following statements hold, almost surely,

‖ p
M1

∑
i∈J1

∆X̃
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T
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lim sup
p→∞
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|∆X̃
∗

2i|2
− p

M1

∑
i∈J1

∆X̃
∗

2i(∆X̃
∗

2i)
T

|∆X̃
∗

2i|2
‖ → 0,

lim sup
p→∞

‖ p
M1

∑
i∈J1

∆Ỹ
∗

2i(∆Ỹ
∗

2i)
T

|∆X̃
∗

2i|2
‖ ≤ C,

where C is a finite constant. Thus ‖Ξ̃1,spl − Ξ̃∗1‖ → 0 almost surely. Com-

bining with the facts that ‖(Ξ̃∗1−zIp)−1‖ ≤ 1/=(z) and ‖(Ξ̃1,spl−zIp)−1‖ ≤

1/=(z), we conclud that

p−1tr
(
(Ξ̃1,spl − Ξ̃∗1)(Ξ̃∗1 − zIp)−1(Ξ̃1,spl − zIp)−1Σ̆

)
≤ ‖Σ̆‖
=2(z)

‖Ξ̃1,spl − Ξ̃∗1‖,

which converges to 0 almost surely. This completes the proof of Lemma 1.

�

Now, we begin the proof of Theorem 4. Recall that

Σoracle = θn ·Udiag(UTΣ̆U)UT, Σ = θnΣ̆, and Σ̂ = θ̂ Ξ̂∗,

where θn =
∫ 1

0
γ2
t dt and θ̂ = (3/p)

∑M
i=1 |∆Ỹ

∗

2i|2. Write EL((Σ̂,Σoracle)) as

follows,

EL(Σ̂,Σoracle) ≤ 1−

(
p−1/2‖(θ̂ − θn)Ξ̂∗‖F
p−1/2‖Σoracle −Σ‖F

+
p−1/2θn‖Ξ̂∗ − Σ̆‖F
p−1/2‖Σoracle −Σ‖F

)−2

.



S5.3 Proof of Theorem 5

By Assumption (A.iv) and (S4.22), p−1/2‖(θ̂−θn)Ξ̂∗‖F ≤ |θ̂−θn| max
1≤i≤p

uT
1`Ξ̃

∗
2u1` →

0, almost surely. Further, from assumption that p−1/2||Σoracle − Σ||F 6→ 0

almost surely, it suffices to show that p−1/2θn‖Ξ̂∗−Σ̆‖F and p−1/2‖Σoracle−

Σ‖F share the same limit.

By the triangle formula, we write

p−1θ2
n‖Ξ̂∗ − Σ̆‖2

F

p−1‖Σoracle −Σ‖2
F

≤p
−1
∑p

i=1(uT
1iΞ̃
∗
2u1i − uT

1iΣ̆u1i)
2

p−1‖Udiag(UTΣ̆U)UT − Σ̆‖2
F

+
p−1‖U1diag(UT

1 Σ̆U1)UT
1 − Σ̆‖2

F

p−1‖Udiag(UTΣ̆U)UT − Σ̆‖2
F

.

By Assumption (A.vii) and Lemma 1, almost surely,

p−1||U1diag(UT
1 Σ̆U1)UT

1 − Σ̆||2F = p−1tr(Σ̆2)− p−1

p∑
i=1

(uT
1iΣ̆u1i)

2

→
∫
τ 2dH̆(τ)−

∫
δ2(λ)dF̃ ∗(λ),

which is non-zero if Σ̆ 6= Ip and also it is the limit of p−1||Udiag(UTΣ̆U)UT−

Σ̆||2F . By (S5.25), almost surely,

1

p

p∑
i=1

(uT
1iΞ̃
∗
2u1i − uT

1iΣ̆u1i)
2 ≤ max

1≤i≤p

∣∣∣∣uT
1iΞ̃
∗
2u1i − uT

1iΣ̆u1i

uT
1iΣ̆u1i

∣∣∣∣2 · max
1≤i≤p

(uT
1iΣ̆u1i)

2 → 0.

This completes the proof of Theorem 4. �

S5.3 Proof of Theorem 5

The result of asymptotically positive-definite propery follows directly from

Theorem 3 and Assumption (C.i). We only need tox show that EL(Σ, Σ̂B) ≤



0 almost surely.

Define

Σ̂(k) = 3

∑M
i=1 |∆Ỹ

∗

2i|2

p
(Ξ̂∗)(k).

Then Σ̂B = B−1
∑B

k=1 Σ̂(k) for a finite number B. By the property of

matrix norm, we have

EL(Σ, Σ̂B) =1−

(
‖ 1
B

∑B
k=1 Σ̂(k) −Σ‖F

‖Σideal −Σ‖F

)−2

= 1−

(
‖ 1
B

∑B
k=1(Σ̂(k) −Σ)‖F
‖Σideal −Σ‖F

)−2

≤1−

(
1

B

B∑
k=1

· ‖Σ̂
(k) −Σ‖F

‖Σideal −Σ‖F

)−2

.

Following the same argument as the proof of Theorem 4, we know that

‖Σ̂(k) −Σ‖F/‖Σideal −Σ‖F → 1 almost surely. Therefore, EL(Σ, Σ̂B) ≤ 0

almost surely, which completes the proof of Theorem 5. �

S6. Useful lemmas

Lemma 2. (Lemma 1 in Zheng and Li (2011)). Suppose that for each

p, vl = (v1
l , . . . , v

p
l )

T and wl = (w1
l , . . . , w

p
l )

T, l = 1, . . . ,m, are all p-

dimensional vectors. Define

S̃m =
m∑
l=1

(vl +wl)(vl +wl)
T and Sm =

m∑
l=1

wl(wl)
T.

Suppose the following conditions are satisfied:

• m = m(p) with limp→∞ p/m = c > 0;



• there exists a sequence εp = o(1/
√
p) such that for all p and all l, all

the entries of vl are bounded by εp in absolute value;

• lim supp→∞ tr(Sm)/p <∞ almost surely.

Then L(F S̃m , FSm)→ 0 almost surely, where for any two probability distri-

bution functions F and G, L(F,G) denotes the Levy distance between them.
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