Statistica Sinica: Supplement

Fast Convergence on Perfect Classification for Functional Data

Supplementary Material

This supplementary material contains full proofs of the statements in the main text.

S1 Proof of Lemmal/ll

Proof of Lemmal(l] f, minimizes R(f), if sign(fo(z)) = sign(Pr(Y = 1jz) —

Pr(Y = —1|x)) is satisfied. The Radon-Nikodym derivative for Pr(Y = 1| X)II(X)

Pr(X|Y =1)Pr(Y =1) = P, (X)(1—w) in terms of IT implies Pr(Y = 1|x) =
(1 — w)ps(x). Similarly, we have Pr(Y = —1|z) = wp_(z). Hence, f; has the

desired property. [

S2 Note on Assumption 1

We firstly provide additional example on Assumption I}

Example 1 (Monotone/Convex Path). Assume X is a set of component-wise
monotonic functions from [0, 1] to [0, 1] with p > 2. With v = 2(p — 1), As-
sumption [I| follows from Theorem 1.1 in|Gao and Wellner (2007)). Alternatively,

let X' be a set of convex functions on [0, 1]” that are uniformly bounded. From
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Theorem 3.1 in Guntuboyina and Sen|(2012) with setting v = p/2, Assumption

holds.

Example 2 (Gaussian Process). Let X be a Gaussian process on [0, 1]? with a
positive even p, and assume its covariance function Cov(t,t'),t,t' € [—,1]¢ is
Cov(t,t")ka (||t — t'||2) where k, is Matérn kernel function ((4.14) in [Williams
and Rasmussen (2006)). In this case, with probability 1, a path of X is in a
RKHS whose kernel is k,_,/2. Then, if X is a unit-ball of the RKHS in terms of
an RKHS norm, we obtain that Assumption [1|holds with v = p/(« — p/2). For

details, see Corollary 4.15 in Kanagawa et al. (2018)).

We also present the following result to show the validity of Example 4| on

unbounded functions.

Proposition 1. Let F be the set of functions with the form as in Example 4| with
fixed J € N and locations t1,...,t; € [0,1]. Then, there exists a constant C"*

such that the following inequality holds for any € € (0, £) with existing &:
IOgN(‘ngav || ’ ||L2) < Vl€_1/a>

Proof of Proposition[I} Let YW be a unit-ball in the Sobolev space on [0, 1] with
an order o € N. By applying Theorem 4.3.26 in Giné and Nickl (2016), there

exists an constant V"’ such that the following inequality

log N(e, F, || - |lz2) < C*e’l/o‘,
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for every ¢ > 0. Hence, we set M; = M;(¢) = log N'(e, W*, || - ||12) and take
a subset {g,, }21, C W as centers of the e-balls to cover W, that is, for any
g € W*, there exists ¢’ € {g,, }M'L, such that ||g — ¢/[|1> < e.

We also consider a set of location parameters a; € [0,1] and a covering
number of a parameter space for the locations. Let Z = [0, 1]/ be the space for

A = (ay,...,ay) € Z. We know that there exists a constant C' > 0 such that
N@EZ |- ) < NCe [0,1] - 1) < (Ce)™.

Then, let { A,,})"2 | be subsets of size My = M,(c) such that there are the centers
of the e-balls to cover Z.

Fix a function f which has the form in Example 4{as

J

(w9, A) = g(z) + Y dl(w;a;,t5). (S2.1)

j=1

Note that the locations 1, ...,t; € [0,1] are fixed. By the definition of the sub-
sets, we can find ¢, and A,,, from the subsets such that ||g — ¢'||;2 < e, and

(a1, ...,a;)" — An|| < e for each . Then, we define

J

F(@) = gu(@) + D (@ @, 1)),

j=1

where we write A, = (@1, ..., apr.7) . We can bound the following differ-

€nce as

J J

D w(iag,t) = > (s am i t;)

J=1 Jj=1

1f = Fllez < llg = gmll 2 +

L2
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J
e+ ) (s a,ts) = Y0 amg )l e -
j=1
About the norm in the last term, we can bound it as

10(5 az,t5) — (5 am )] 72
1 a; a : 2
< J i m’,j d
_/0 <|1’—tj!1/3 |5f7—75j’1/3) !
1 1 2
_ 2

= (a; — apw 3)?3((1 = t))"* + %)

J

< 6(a; — am ;)"
Combining the results and the Cauchy-Schwartz inequality, we obtain
R J
1f = Fllez S e+ V6 laj — amyl < e+ VOVIA = Al < (14 V6J)e
j=1

Hence, we find that the product set of {g,,}*'-, and {A,,}2, can construct a
(1 + V/6.J)e-covering set of a set of f with the form (S2.1). Then, we bound the

covering number of F as

log N'((1 + V6.J)e, F. || - |12) < log N'(e, F. || - | 12) +log V(. Z, | - |])

< V'e Ve 4 Jlog(Ce™).

We update € as € < (1 + v/6.J)e and achieve C* such that we can ignore the

term with the order of log(1/¢), then obtain the statement. O
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S3 Note on Assumption 2

Several distributions are known to satisfy Assumption[2] We develop the follow-

ing simple example:

Example 3 (Uniformly distributed Fourier coefficients). We consider a distri-
bution IT of a function & on [0, 1] whose Fourier coefficients by a basis are uni-

formly distributed. Let {¢; : [0,1] — R},;_; 2 . o be a trigonometric basis as an

77777

orthonormal basis (see Example 1.3 inTsybakov (2008))). We set II as a measure
of h which has a form
W)= 00,
j=1
where 0; is a random Fourier coefficient which independently follows a uni-
form distribution on [—1/5,1/j]. Note that Parseval’s equality yields ||h]|3 =
dooy 07 < 322 1/5% = 7°/6 almost surely, hence the support of 1T is in the
L? space. Furthermore, h belongs to the Sobolev space since the coefficients
{0;}32, are in the Sovolev ellipsoid (for details, see Section 1.7.1 in Tsybakov
(2008)), the support of II satisfies Assumption
We show that IT satisfies Assumption 2 Without loss of generality, we con-
sider a ball B(0,0) whose center is 0 with fixed 6 > 0. We define C) 5 =

P 1/71% ~ 2.61238. We study the measure as

II(h € B(0,8)) = I(||A]]* < &%)
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where J = max{j € N | 1/5% > §?/(C}.55'°)}. The first inequality follows the

independent property of 6;, and the last equality follows that H(G? < Cl“;m) =
1forj > J+ 1. For j < J, 1'[(9]2- < L) is positive since §; follows the

C1.5515

uniform distribution, we obtain that IT(h € B(0,4)) > 0. O
Another example is the truncated Gaussian as described below.

Example 4 (Small shifted ball probability with truncated Gaussian processes).
Let h be a Borel measurable centered Gaussian random element in a separable
Hilbert space (H, || - ||m). From Kuelbs et al.|(1994), for any z € H, ¢ > 0, 0 <

o < 1, it holds that

zo:€H:|zo—z||<ce 2

2
M(h:||h—z||g <e) Zexp{— inf ol + log (|| A||m < (1—a)5)}.
(S3.2)
To satisfy Assumption [I| we consider a probability measure of a truncated ver-
sion of a Gaussian measure. Given a constant ¢ > 0 as a truncation level, we

define a ball H, := {h € H | ||h||m < ¢} such that C := II(H,) > 0. We, then,
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consider a measure 11, associated with the truncated Gaussian process, such that
H € o(H,) satisfies II.(H) := II(H | H.) = II(H)/C. Using the inequality

(S3.2), for any = € H,, it holds that

He(h s (lh = alla <e)

2
zexp{— inf M—i—logﬂ(“h“]ﬂ < (1—04)5)}01,
zo:€H:||zo—z||<ae 2
for any a € (0,1). Hence, by setting H, = L?, a = L and e = g, we obtain

IT. (B (w,%)) :H(h: Ilh — ||z < g) c!

1 onuiz ) _—
= - f log I ( |n]: < 2) Ve
B exp{ xo:€L2:||1:2—z||§5/4 2 + log H HL2 1

4] 2\ ~
> II (h . HhHLQ < Z__l) exp <—%) Cil

> ( h:|h <§ ex —C—2 ct
= . L2 4 p 9 )

for any z € H,. Since h is a centered Gaussian, a ball near 0 with positive radius

has positive measure (Gao et al., 2004). Then I1(B(x;d/2)) > 0 holds. O

S4 Proof of the Delaigle-Hall and hard-margin Condition

We start with the proof for connecting the Delaigle—Hall condition and the hard-

margin condition, which is one of the key points of this study.

Proof of Proposition[2] We will develop an explicit classifier based on the Delaigle—

Hall condition, then show that the classifier has a positive margin. Without loss
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of generality, we set 4 = 0, hence p_ ; = 0 holds for all ;7 € N. Hence, we

have ¢y == D00, 0; a5, and fip(w) = (2, 0ar) = (e, 0ar)? = (@, 90r)

forz € X and M € N. For X generated from P_, f;,(X) is written as

f]*\}(X) = </J“+777Z)M>2 - 2<M+7¢M>Q—Z—7

where the random variable Z_ = (X, ¢n)/a_and o = 3772, 0 (Yar, o 5)°.
Here, E[Z_] = 0 and E[Z?] = 1 hold. Similarly, for X generated from P, , we

obtain

Far(X) = = (s u)® = 20w — o, Vo) (g, Oar) = — (s ¥a)® = 2, Yan) oy Zy
where Z, = (X — py,¥u) /oy and o = 377, 04 j(dwr, ¢ ;). Here, Zy
satisfies E[Z,] = 0 and E[Z3] = 1.

Now, we evaluate the margin of the classifier f;, with the measure II. For

any 0 > 0, we bound it as

({2 = s P = llal < 6)

= lmn TI({z: | f3(2)] < 6})

=l wP(If5,(X)] £ 6) + (1= w)Py( (X)) < 6)
< Jim wP(f5,(X) < 8)+ (1 —w)P(fif(X) = —0)
=l wP () = 2 va)a 7 < 9)

M —o0

+ (1= w) Py (=, oar)® = 2, Yar)ar Zy > —0)



S5. PROOF OF CONVERGENCE ANALY SIS

. <M+7¢M>2_5> ( <M+7¢M>2_5
= limwP (Z_.>—+"""T""" |+ (1—-w)P. |2 > —"""T"
M—ro0 ( 20 iy, ) ( P "7 200 (pa )
- A4wa? +4(1 —w)ad F g, Yar)? : -
< lim -.- Chebyshev’s inequalit
ST (et 0 (7 Chebyshey's nequali)
=0.

The last equality holds because of the following relation: for ¢ € {—,+}, we

obtain
M _
I (s tou)® (225=1 9 ')’
im ———— = lim == 5
M—o00 Oy M—o0 ijl Qm <?/)M, qbg’j)
M _
~ lim (Zj:l 9]‘ 1#?)2
- ) M -
M=o0 Zj:l 0, (D521 b; (b, o))
—= 007
by the Delaigle—Hall condition. 0

S5 Proof of Convergence Analysis

S5.1 Additional Notation

For a function f : X x {—1,1} — R, we employ the notation (¢ o f)(z,y) =
((yf(x)). Also, for g = ¢ o f, its expectation and empirical mean with respect
to P is written as Pg = E(x y)~plg(X,Y)] and P,f = 1 3"  ¢(X;,Y;) with
the observed data {(X;,Y;) : i =1,...,n}.

We define an open ball B(x;0’) C X of radius ¢’ centered at x € X with

)
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metric || - ||. We also define a set H(x, ") C H which is a set of amap h € H

satisfying the following three conditions:
6/
(i)Va' € X 0 < h(z') <264, (id) h > 6 on B <:U; 5) , and

(i17) / hdll < 5’/ hdll, (55.3)
B(x;0')° X
where B(x;¢")¢ := X\ B(z; ). It is obvious to show H(z,d") # (), since there
exists a continuous f such that 0 < f < 26’ on B(z,¢'/2) and f = 0 on
B(z,0")° holds, and # is dense in C'(X).

We define ¢(z,6") = infrep(q,s) ||h]|% and g(0") as its decreasing envelope
such that g(¢6') > sup,c q(z,d") holds. We also define p(x, §') = (&')*11(B(x; ¢ /2))
and define its lower envelope function p as p(x, d") > p(¢’) > 0 for all = such that
| /*(x)| > 1 holds. This definition is related to the small shifted ball probability
and it varies with the setting of IT and X'. Remark that the existence of a lower
envelope is guaranteed by Assumption Further, on the set {z : | f*(z)| > 1},
we consider a positive function r : R, — R, such that 7(¢") > p(d")/q(6") > 0

holds.

S5.2  Full Proof

Proof of Theorem|I} This proof contains three steps: (i) a basis decomposition
on the generalization error, (ii) bound a misclassification error with the bounded

condition, and (iii) bound an unbounded probability. In the following, each step
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is described in one subsection.

(i) Basic Decomposition: We start with a basic decomposition for the gen-
eralization error for the classification. To fit the situation with the Delaigle—Hall
condition, we extend its formulation. In the following, Pr(-) and E[:] denote a

probability and an expectation with respect to the observed data from P®",

Lemma 1. Suppose the Delaigle—Hall condition holds. Then, the following

equation holds:

E[R(f,) - /m ) Pr(F () (2) < 0) dI1(2).

Proof of Lemma([l] We transform the generalization error for any f € H as

R(f) = R(f*) = Ex[By[lpysam0n = Ly (oo | X
= Ex[{Tpssenr0)) = Lpssign(fxyy ) - Pr(Y = 11X)

L asign(r0)) — Li1zsian(pe(x))y } - Pr(Y = —=1|X) ]

IN

Ex [ fsign(7+ () sign(r 0y 111

/o ()] dIl(z).
{zeX:sign(f*(x))#sign(f(2))}

We consider its expectation with fn and develop its upper bound as

EIR(G) — R(F)) = In(%’)\dﬂ(fﬂ)]

3l

{zeX: 51gn( (z));émgn(fn(l‘))}

= B[[ e
{z€X: fr(z) f*(x)<0}

= [ 0 B gz | )
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- /|n(x)|Pr(ﬁ(x)f*(x) < 0)dll(x).

Then, we obtain the statement. L]

Our next goal is to study the probability Pr(fn(:p) f*(z) <0)in Lemma
for a given z € X. For any z € X such that f* () > 0 holds, with the threshold

U, we obtain

=T =13
(S5.4)
If f*(x) < 0 holds, we obtain the similar bound. We will bound the terms T}
and 75, respectively.
(ii-1) Bound 7 via hard-margin Condition: As preparation, we fix x such
that f*(z) > & = 1 holds, which follows from ess inf,cx | f*(z)| > & for any
d by Proposition 2| Also, we fix dy > 0 then pick h € H(z,dy) as (§5.3). We

rewrite the empirical loss in (2.2)) as

Laf) = = S URI(X0) + AL e

By Lemma@ we obtain its functional derivative in terms of f at fn with direction
has VL(f,) = L0 00 (X))Yih(X:) + 2M\(fn, h)3. By the optimal

condition of f,,, we have VLn(J?n) = 0.
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We bound the term 77 by combining a probability of the event with V L,, (fn)

Let U be an event {J?n(m) < 0,|[fullz < U}. We simply obtain

Ty = Pr(U, VL, (f,) = 0)
= Pr(VLa(fa) = 0| U)Pr(Ud)
= {1 = Pr(VLy(fn) # 0| U)}Pr(U)
< {1 = Pr(VLy(fa) < 0| U)}Pr(U)

Sl_PLa

where we define P, = Pr(VL,(f,) < 0| ). The first line follows the fact
Pr(VL,(f,) = 0) = 1. To bound T}, we will study P;.

We consider an event I/, and study the derivative VLn(fn). We define
VL = Iy 5’(Kﬁ(Xi))§Qh(Xi) as a derivative of the loss function part from

VLn(fn). By Lemmaassociated with Lemma we can bound tail probability

~

of L as
~ 1 ndgE[h(X)]
Pr{VL < ——0Eh(X)]|U) >1—2exp | ———F—F
2 CL,U
np(x,éo))
>1—-2e -,

which follows the relation 6y E[h(X)] > 62T1(B(x;80/2)) = p(x,d). By this

result, we can also bound VLn(fA'n) as

VLn(fo) = VL +2X(fn, )
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< =00 B[h(X)]/2 + 22U]|]l3

< —p(z.60) /2 + 20Ug(z, do),

with probability at least 1 —2 exp(—np(z, éy)/Cr,). The first inequality follows

the Cauchy-Schwartz inequality and || f,, ||z < U. Since we set A < 45(;;5‘3)0) =
%, we obtain VL, (f,) < 0 with the probability. Thus, we have
)
T, < 1—PLg1—{1—2exp(—M>}
CrLu
4 p(6
< 2exp (—M> < 2exp (_np( 0)) : (S5.5)
CL,U CL,U

(ii-2) Bound 75 via Metric Entropy of Functional Data Space: We bound
T5 in (S5.4) by using the peeling technique (for introduction, see Chapter 7 in
Steinwart and Christmann| (2008])).

As preparation, we derive an upper bound of ||ﬁ |- Since
Ml fallz < Pu(Co fu) + Al fullz < €00) + [0l < 1,

where the second inequality is obtained by replacing J/‘; by 0 and the optimality
condition of fn and the last inequality follows the bounded condition on the loss
function, we obtain R = A\~1/2¢(0)~'/2 as an upper bound of || f, ||

We decompose the term T5. We remind the definition f = argmin ., R(f),

and consider a constant R = || fT||3; which is assumed to be no less than 1 with-
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out loss of generality. We also define events A(R) and £(R) as

AR = { £ <l < R}, anae(m) = {IFe < 5}

and a sequence R, = 2F k= 1,2,..., N where N = log, R+ 1. Foreach A > )\

and sufficiently large n, we have

1
E(O)_H < log n +1 < Cy, logn,

N =log, R+1 =
082 i \ 2log2 8 Ty loglogn

L
(0]
2log2 8

where Cf,_ is a constant depending on Cy,,. We remark that Uy A(Ry) D
{U < ||fulla} since || fu]l < R holds. Since A(Ry),k = 1, ..., N are disjoint

up to null sets, we obtain

N

E<§}%Uﬂmmmmwm }j (U < (| Fallze A(R)).

(S5.6)

Now, we will bound the probability Pr(U < H]?n]m\A(Rk)) in the following.
We investigate the event £( R) with conditional on A(R) and study the event
U < || fll3. We set a constant cyy = 2V R(V6+ 75 ) exp(V37). An inequality

P,(to fn) — infgepp gl <r Pn(€ 0 g) > 0 and a uniform bound defined by

A(n,7,t, R) = Rey(log n)~Y7 4+ /2t /n, (S5.7)
and Lemma [2]implies
A Jalliy < PaCo fu) = _ inf _ Pu(Cog)+ M fully

geM:||glln<R
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o {pn@of)_ it inog)anui}

e flln<R ocH:lgln<R
< inf Plof)— inf P(log)+ ) 2}+2An, R
= fEH:fIIHSR{ (Cof)= Lut  Plog)+Alflh (7,8, R)

< A5 +2A(n, 7,8, R),

with probability at least 1 — exp(—t) for any ¢ > 0. The last inequality holds by

substituting fT. Combining an inequality R/2 < HfAnHH with this result yields
R[4 < || falle < N5+ 2A(n, 5,8, R) /X

Solving this inequality with respect to R yields that

R < dey, A (log n) ™7 4/ (dey, A= (log n) /)2 + 4| £1[13, + 8A-1y/2¢/m
< 8y A (logn) TV £ 2| fH |l + 2 (26) /AN 2
< Cua (Il v A (logm) ™7 v 414X~/ 100,
where Cy ., is a constant depending on cy,. By setting ¢ = n¢? and with suffi-
ciently small ¢ > 0 which will be specified later, we obtain R < Cy..,||fT||% = U
holds. Consequently, conditional on A(R), the event £(R) implies R < U with

probability at least 1 — exp(—n(?), which contradicts the setting of R > U.

Hence, for any measurable event €2, it holds that
Pr( | A(R)) < Pr(E(R)° | A(R)) < 1— (1 —exp(—n(?)) = exp(—n(?).

We put this inequality with setting Q2 = {U < || f,||%} into (S3.6). Then we



S6. ENTROPY ANALYSIS FOR FUNCTIONAL DATA

obtain
N
T, <Y Pr(€(Ry)° | A(Ry)) < Nexp(—n¢®) < ™}, logn
k=1

< e Oy, exp(ne/Cy,) < Oy exp{—n((1 — Cy)} < exp(—n(/2),
(S5.8)
The last third inequality follows the setting of ¢ as following ¢ > Cy, >

1 loglogn
CVKY n '

(iii) Combining Results: We utilize the derived bounds for 7} in (S5.3) and

for T3 in (S5.8)) into (S5.4), then obtain the following inequality:

Pr(Fu(n) F*(x) < 0) < 2exp (—%) texp (—%C) < exp(~Bin),

by selecting /5 depending on p(dy), Cy and . Finally, we obtain £ [R(ﬁl) —
inf ;e R(f)] < E[R(f,) — R(f*)] by the fact R(f*) < inf e R(f), and the

above results yield the statement. [

S6 Entropy Analysis for Functional Data

We provide several technical results with empirical process techniques.

Lemma 2. Recall the definition of A(n,~,t, R) in (S5.7). For any f' € H, we

obtain

P.(lof)— inf P, <Pllof)y— inf PMof)+2A(n, vt R
(Lo f) it (Lo f) (Lo f) it (Lo f) (n,7,t,R)
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with probability at least 1 — e’ witht > 0.
Proof of Lemma[2] Simply, we obtain

Po(lo f) = f:“}ﬁligRPn(ﬂ o f)

=P,(tof)=—P(lof)+P(lof

— inf P + inf P/ — inf P,/
f¢||}ﬁlH§R ( Of) fiH}ﬁlHSR ( Of) fiH;ﬁlHSR ( Of)

< {Pu(lo f) = P(lo )}
—+{Pwof)— inf Pwoj)}+{PwofU—J%wofU}

Fllfllu<R
By Lemma 3, A(n,~,t, R) bounds the last two terms with probability at least

1—-1. 0

To complete Lemma 2, we provide the following lemma. This result is a
well-known result with the Rademacher complexity, but we provide it for the
sake of completeness. We introduce a ball in H with radius R as Hr = {f €

Ho: |l flln < R}

Lemma 3. Define ¢y, = 2V R(V6 + A5) exp(V3Y). Forany t > 0 and any

n € N, we obtain

Pr (sup |P,(lof)—P(lof)] < Rc\/ﬁ(logn)_l/“Y + 2t/n) > 1 —exp(—t).
fEHR

Proof of Lemma/[3] We firstly bound the term sup ;4. | P (£ 0 f) — P(£o f)| by

its expectation and others. Since a variation of the term is at most 2/n when one
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pair of {(X;,Y;)}", changes, the McDiarmid’s inequality (Theorem 3.3.14 in

Giné and Nickl (2016)) implies that with probability at least 1 — e,

2t
sup |P,(lo f)—P{o f)|<E |sup |P.,(lof)—P(o f)|} +4/—.
fEHR feMr n

(56.9)

Secondly, to bound the expectation term, we define the conditional Rademacher

complexity of a class of functions G as follows:

R.(G) = —FE, Sup ) oif(zi)],
where o1, ..., 0, are independent random variables which is 1 with probability

1/2 and —1 otherwise. We introduce (X7,Y/),---,(X],Y!) as independent

n: n

pairs of random variables with the same distribution as (X,Y’). We apply the

independent pairs and bound the expectation term in (S6.9) as

B | sup R (eo 1)~ Pl f>|]

n

Zf Yif(X ZW’ (X))

z:1

- S YA - - Zf(Y;f(X{)) ]

=1

=F|sup F
| fE€HR

(X’i7 }/Z) ?:l

|

< E | sup
fGHR

= E, fseg-lt) —Zlaz{f Yif (X3)) — €Y7 F(X0)}

<E, sup—zaz (Yif (X))

feHR =1

n

sup =3 Uif(Yi’f(X{))]

fern Moy

+ Ey

= Q'Rn(go HR),
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where Lo Hr = {{o f : f € Hr}. The first inequality following the Jensen’s
inequality, and the third equality follows the distribution equivalence by the ran-
dom variable 0. We further apply the Ledoux-Talagrand contraction inequality
(Theorem 3.2.1 in |Giné and Nickl| (2016)) with the 1-Lipschitz continuity of ¢

yields R,,(¢ o Hr) < R, (Hr). Combining the result with (S6.9), we obtain

sup |P,(€o f) — P(lo f)] < 2R, (Lo Hg) + \/2t/n < 2R, (HR) + /2t/n.
feHR

(S6.10)
with probability at least 1 — e™*.
Finally, we apply Lemma [5|and bound R,,(# ). Then, we obtain the state-

ment. L]

To complete the empirical process result, we develop the following covering
number result, which is a key term to study the convergence of the classifier with

functional data.

Lemma 4. There exists a constant ¢ > 0 such that for any € € (0, ¢) such that

the following holds:

2 gl
log (e, Hr, || - [In) < % +4R {exp {V (?) } - 1] .

Proof of Lemmad} As preparation, we consider an e-covering set X’ of functions
{z1,... 2} for X with m = m(e), that is, for any = € X, there exists z; from

the set such that |z —z;|| < e holds. By Assumption[I} we have m < exp(ce ™).
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We consider grids in Hp. For each f € Hp, we define a vector

Ap = (If (@) /e], Lf(@2) /e, Lf(@n)/e])T € R™

For any pair f,g € Hpg such that max,—1__, |f(z;) — g(x;)| < € holds, we

obtain Ay = A, since | f(z;)/e] = |g(z;)/e]| holds. We also mention the
following difference: for any z € X and f € Hpg, we obtain |f(x) — f(z;)] <
Ifllxllz — =] < R||xz — x;|| < Re, by the property of and that of the
covering set.

With these results, we bound the following distance with the pair f, g and

any r € X:

[f(2) = g(@)| = [f(2) = f2:) + [ (i) = g(2:) + g(2:) — 9()]
< |f(@) = flo)| + [f(2:) — gz + |g(x:) — g()]

< (2R +1)e,

hence we have || f — gl/z~ < (2R + 1)e.

From the above discussion, the covering number N ((2R+1)e, Hg, || - | )
is bounded by the number of different A; when f ranges over Hy. Since
[f(@)] < ||fllug < R for any x € X by (2.1), the number of possible val-
ues of each element of A, is bounded by (2R/< + 1). Assume the covering set

T1,...,%n is ordered such that i < j implies ||x; — z;|| < 2¢, then we obtain
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|f(x;) — f(x:)| < R||z; — x;]| < 2Re. Therefore, we obtain
—2Re + f(z;) < f(xj) < 2Re + f(x;).

It implies that for given f(z;) the number of possible values of | f(z;)/<] is at

most 4R + 1. Hence, we can bound the covering number as

N(2R+1)e, Hp, || - ll=) = {Ar : f € Hr}l
< (2R/e +1)(4R+1)"*

< (2R/e 4+ 1)(4R 4 1)®Ple=")~1
As a result, we obtain the following bound in the norm || - || pe:

log N(e, Hr, || - || o)
N
<log {% + 1} + {exp {V (QR;— 1) } — 1] log(4R + 1).

Since the empirical norm || - ||,, possesses the Riesz property (e.g. page 83 in|Van

Der Vaart and Wellner (1996))), we obtain

IOgN(&T, HR: || . Hn)

< (2R(2R+1)/e+1)+ [exp {V (QR; 1)V} - 11 log(4R +1)

R? 3R\
<6— +4R [exp{v <—) }—1} ;
€ €
by the setting /2 > 1. Then, we obtain the statement. 0

The following result is to bound the Rademacher complexity by the covering
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number. Although technique follows a standard discussion by the Dudley’s in-
tegral, the covering number for functional data analysis has a specific role from

functional data.

Lemma 5. Suppose Assumption[l|holds. Then, we obtain
R.(Hr) < Rey,(logn) ™.

Proof of Lemma/[5] Now, we bound R,,(H r) using the following inequality learned

from [Srebro and Sridharan| (2010):

[ VP \/1og NG A |- 11n) dg}
N n

R,(Hg) < inf { dor + 12

Assup,cy |f(2)] < |[fllng < Rforall f € Hpy, we obtain supcqy,. \/ Prf? =

R. Lemmad] yields

/R \/bg/v(e,’HR, I-1ln)
= ¢_ oo {v (221 1)

c R
_n/ ; V6RT 4+ 4R {exp (V3177) — 1} —dr
1 T

< A /SO VO6RT 32 4 2V Rt *exp (V3777) — 1}dr
v i

< i/so 6RT 3% + 2V R L exp (V311 dr
ik ”

< R Y3{2V6R + 2V Rexp(V37e,7)/(V3Y)}

< Rn~Y*{2VR(V6 + %) exp(V3")}exp(g, 7).
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Here, we substitute 7 = R/ and define g = o/ R. Then, we have

1
. —1/2 -
Rn.(Hr) < Roglg)fgl[éleo +n V22V R(V6 + _V3V) exp(V37)} exp(g, )]

< R[4(logn"*)"7 4 n V42V R(V6 + %) exp(V3")}]

< R{2VE(VG + %) exp(V3")} (log n) /7.

In the second inequality, we substitute &y to (logn!/4)~1/7. Then, we obtain the

statement. ]

S7 Technical Lemma

We provide several technical results for the proof of the main theorem.

Lemma 6. We obtain the following equality:
TN BN -
VLa(fa) = = D LG Fa(XG)Y5h(X;) + 27\ B
j=1

Proof of Lemma[6] We study the optimization problem in (2.2)) by considering
its functional derivative in the Fréchet sense. For a coefficient o« > 0, we rewrite
the target function in (2.2)) as
—~ —~ 1 <& —~ —~
Lufa) = Pu{lo (fu+ah)} + Allfa+ ahlliy = = 3 6Y;(Fa + ah)(X5)} + Al fu + a3,
j=1
Since f, is the minimizer of the problem in (2.2), a derivative of L,(«) is 0

with f = fn and o = (0. By the differentiability of ¢/, we obtain the following
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derivative

Zé’{an DY) + 20 Fo, B,

then we obtain the statement. O]

Lemma 7. Suppose fn(:z:) < 0 and ||fn||H < U hold. Then, for x € X such that

fo(z) = 0 > 0 holds, we set S = B(x; ) obtain

—ZE’{an DPYih(X Z@,
where & := 2USoh(X)Is(X;) + ' (0)Yh(X)Is(X;) + [0/(=U)|h(X) s (X;).

Proof of Lemma[7} We prepare some inequalities. It should be noted that

—Zf’{m DIVh(X))

=%}Z RIS =+ 3 =R,

Also, we recall that ¢’ is negative and increasing, h is nonnegative. For any x’ €
S, the RKHS property (2.1)) provides fn(x’ ) < HﬁLH’H(SO < Udy, then we have
a@)| < 1l <
U holds forall 2/ € S suggests that |[¢/{ f,,(y)}| < [¢/(=U)|, and |¢'{—fn(y)}| <
[(=U)].

Now, we are ready to bound the target value. For 7 = 1,...,n, we define

C{fu(x)} < O(US), and £{—fo(a')} > €(=Udy). Also,

Zj = h(X;)Is(X;) and Z§ := h(X;)Is:(X}) for brevity. We bound the value
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—Ze'{an DIVh(X))

E’(U(S ) U'(=Udy)
<— : > h(X;) - TO > h(X)+
J:X;€8Y;=+1 J:X;€8Y;=-1

:e/(zao) 3 1+Yh(X) 6(—550) 3 1—2Yh(X

J:X;€S j:X;eSs

_ (U8 — £(=Uby) S 7+ '(Udo) + £'(=Udy) R |¢

2n 2n

J=1 Jj=1

About the coefficient terms, we obtain

U'(Udo) + '(=Udy) [0(U%) = £O) | [¢(=

IE’ Z h(X

X]eSC

j:X; €8¢

(-0) iZE-

Udy) — '(0)|

LUE

2 2

< "(0)US, < Uby,

and similarly

2

[£(U) = E(=Ud)| _ [¢(Ud) = (0)] | |¢'(=Udo) = ¢'(0)|
2

2 - 2

Using the inequalities, we further bound the target value as

- Zﬁ’{an i) 1Yih(X5)

< Udyp.

J

j=1

U50

ZYZ + ’ZZC

Then, we obtain the statement by the definition of &;.
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Lemma 8. Consider the same setting with Lemmal7} Then, we get the following

inequality:

Pr (% Y62 —%%E[h(X)}) < 2exp {—%} |

Proof of Lemma|8) We firstly bound an expectation of &;,

Blg] = 2060 E[R(X)s(X)] + £ (0)E[Y h(X)Is(X)] + |[¢'(=U)|E[A(X)5-(X)]
< 2U6 E[h(X)] + ¢ (0)E[Y h(X)15(X)] + [¢(=U)[6 E[R(X)],

by the conditions of H(x, §) presented in (S5.3). We define f(x) = f*(z) V 1.

For the term E[Y h(X)Is(X)], we approximate it as

E[YW(X)Is(X)] > E[f(X)h(X)Is(X)]
> (1 = Ldo) E[h(X)Is(X)]
> (1= Ldo)(1 = do) E[R(X)].
The first equality holds since f* is a perfect classifier. The second equality fol-
lows the hard-margin condition on f* and inf,/cg f*(:zc’ ) > 0 — Ldg by the Lip-

schitz constant L of f* For the last inequality, we apply the condition (iii) for

H(z, dp) in (S5.3) and obtain

50/ hde/ hdH:E[h]—/hdH,
X Se S

then we have E[h(X)Is(X)] > (1 — d9)E[h(X)]. Since ¢'(0) < 0 holds, we
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substitute the bound for E[Y h(X)Is(X)] and obtain
El&] < {2000 + £(0)(1 = Ldo)(1 = do) + |€/(=U) [} E[A(X)] < =0 E[A(X)].
The last inequality follows by selecting a sufficiently small 6 > 0 as dp <
1/(L+4U + 12).

We finally bound a tail probability of n~* Z?zl &, by the Bernstein inequal-
ity (Theorem 3.1.7 in |Giné and Nickl| (2016)). Using an elementary inequality
(a+ b+ c)* < 3a® + 3b* + 3%, we have F(£2?) < CooE(h(X)). In addition, it

is clear that |¢| < Cy 0. Then, by the Bernstein’s inequality, we obtain

1< 1 n?2E[h(X)]?/8 }
Pr|— > ——6ERhX)] | <2 — = L
1" (n 282 5Bl ”) <200 { - B
< 2exp {_M} |
Cur
Then, we obtain the statement. OJ

S8 Additional Experiment: Different Eigenfunctions

We implement an additional experiment to validate the main result when the co-
variance functions between different labels do not have the same eigenfunctions.
The setting in this section does not strictly satisfy our assumptions, therefore it
is outside the scope of our theory. However, to investigate the potential applica-
bility of our theory, we perform this experiment with different hyper-parameter

choices.
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S8.1 Experimental Setting

As in Section 4, we generate functional data from two groups with labels {—1, 1}.
For each group, we generate n functions on 7 = [0, 1] with two orthogonal

bases:

do(t) =1, ¢;(t) =+/2sin(mjt), Vj>1,
wo(t) =1, ;(t) = V2cos(mjt), Vj>1.
n is set from 1 to 3000. For a label +1, we generate functional data X, () =
Z?O:O(le-/ 2Zj+ + pj+)¢;(t) with random variables Z; and coefficients 6;, 11,4
for j = 0,1,...,50 and ¢ = 1,...,n. For a label —1, we generate X; (t) =
Z?OZO(G;/ Z;_ 4 p;_)w;(t) with random variables Z,_ and coefficients 11;_.
That is, in Scenario 1, we set §; = j=2, u;— = 0, and change p; = j~7
and draw 7, Z;_ from standard normal Gaussian. Then we determined the
DH condition based on whether the gamma was greater or less than 3/2. In

Scenario 2, we set §; = j*

, tj— = 0 and adjust p;y = 1{j = 0}u, and let
Z;+, Z;_ be sample from uniform distribution on [—1/2,1/2]. Although it is
analytically challenging to specify when the HM condition is violated because
of the different basis functions, we present the results of our experiments for
various p. In Scenario 2, because of the difficulty of rigorously checking the DH

condition in the setting, we examined a broader range of € {1.5,1.7,1.9,2.1}.

Other settings are the same as Section 4. For each n, we newly generate
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Scenario 1 Scenario 2
04k — v=13
X == V=14
0.3
£ 02
i3
0.1
100
Figure 1: Error (logarithm of misclassification error rate) by the RKHS
against logn. Left:  Scenario 1 for the Delaigle-Hall condition with ~v €

{1.3 (solid), 1.4 (dashes), 1.6 (dots), 1.7 (dotdash)}. Right: Scenario 2 for the hard-margin
condition with 1 € {2.1 (solid), 1.9 (dashes), 1.7 (dot), 1.5 (dotdash) }.

1000 test data and calculate misclassification rates with the test data. Each sim-
ulation experiment is repeated 200 times, and the average value is reported. We
investigate the classification error of the RKHS classifier with the Gaussian ker-

nel and the logit loss. The tuning parameters are chosen by cross-validation.

S8.2 Result

The results are shown in Figure I} In Scenario 1, we see a difference in con-
vergence speed for each value of ~, although the difference is not so clear as
in Figure 1 in the main text. The reason is that the conditions we are actually

checking are different from those we should impose, so there must be a differ-
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ence in scale. However, as n increases to some extent, e.g. n > 100, we can
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