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Supplementary Material

This supplementary material contains full proofs of the statements in the main text.

S1 Proof of Lemma 1

Proof of Lemma 1. f0 minimizes R(f), if sign(f0(x)) = sign(Pr(Y = 1|x) −

Pr(Y = −1|x)) is satisfied. The Radon-Nikodym derivative for Pr(Y = 1|X)Π(X) =

Pr(X|Y = 1)Pr(Y = 1) = P+(X)(1−w) in terms of Π implies Pr(Y = 1|x) =

(1− w)p+(x). Similarly, we have Pr(Y = −1|x) = wp−(x). Hence, f0 has the

desired property.

S2 Note on Assumption 1

We firstly provide additional example on Assumption 1.

Example 1 (Monotone/Convex Path). Assume X is a set of component-wise

monotonic functions from [0, 1]p to [0, 1] with p ≥ 2. With γ = 2(p − 1), As-

sumption 1 follows from Theorem 1.1 in Gao and Wellner (2007). Alternatively,

let X be a set of convex functions on [0, 1]p that are uniformly bounded. From
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Theorem 3.1 in Guntuboyina and Sen (2012) with setting γ = p/2, Assumption

1 holds.

Example 2 (Gaussian Process). Let X be a Gaussian process on [0, 1]p with a

positive even p, and assume its covariance function Cov(t, t′), t, t′ ∈ [−, 1]d is

Cov(t, t′)kα(‖t − t′‖2) where kα is Matérn kernel function ((4.14) in Williams

and Rasmussen (2006)). In this case, with probability 1, a path of X is in a

RKHS whose kernel is kα−p/2. Then, if X is a unit-ball of the RKHS in terms of

an RKHS norm, we obtain that Assumption 1 holds with γ = p/(α− p/2). For

details, see Corollary 4.15 in Kanagawa et al. (2018).

We also present the following result to show the validity of Example 4 on

unbounded functions.

Proposition 1. Let F be the set of functions with the form as in Example 4 with

fixed J ∈ N and locations t1, ..., tJ ∈ [0, 1]. Then, there exists a constant C∗

such that the following inequality holds for any ε ∈ (0, ε̄) with existing ε̄:

logN (ε,Wα, ‖ · ‖L2) ≤ V ′ε−1/α,

Proof of Proposition 1. LetWα be a unit-ball in the Sobolev space on [0, 1] with

an order α ∈ N. By applying Theorem 4.3.26 in Giné and Nickl (2016), there

exists an constant V ′ such that the following inequality

logN (ε,F , ‖ · ‖L2) ≤ C∗ε−1/α,
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for every ε > 0. Hence, we set M1 = M1(ε) = logN (ε,Wα, ‖ · ‖L2) and take

a subset {gm}M1
m=1 ⊂ Wα as centers of the ε-balls to coverWα, that is, for any

g ∈ Wα, there exists g′ ∈ {gm}M1
m=1 such that ‖g − g′‖L2 ≤ ε.

We also consider a set of location parameters aj ∈ [0, 1] and a covering

number of a parameter space for the locations. Let I = [0, 1]J be the space for

A = (a1, ..., aJ) ∈ I. We know that there exists a constant C > 0 such that

N (ε, I, ‖ · ‖) ≤ N (ε, [0, 1], ‖ · ‖)J ≤ (Cε)−J .

Then, let {Am}M2
m=1 be subsets of sizeM2 = M2(ε) such that there are the centers

of the ε-balls to cover I.

Fix a function f which has the form in Example 4 as

f(x; g, A) = g(x) +
J∑
j=1

ψ(x; aj, tj). (S2.1)

Note that the locations t1, ..., tJ ∈ [0, 1] are fixed. By the definition of the sub-

sets, we can find gm and Am′ from the subsets such that ‖g − g′‖L2 ≤ ε, and

‖(a1, ..., aJ)> − Am′‖ ≤ ε for each ε. Then, we define

f̂(x) := gm(x) +
J∑
j=1

ψ(x; am′,j, tj),

where we write Am′ = (am′,1, ..., am′,J)>. We can bound the following differ-

ence as

‖f − f̂‖L2 ≤ ‖g − gm‖L2 +

∥∥∥∥∥
J∑
j=1

ψ(·; aj, tj)−
J∑
j=1

ψ(·; am′,j, tj)

∥∥∥∥∥
L2
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≤ ε+
J∑
j=1

‖ψ(·; aj, tj)− ψ(·; am′,j, tj)‖L2 .

About the norm in the last term, we can bound it as

‖ψ(·; aj, tj)− ψ(·; am′,j, tj)‖2L2

≤
∫ 1

0

(
aj

|x− tj|1/3
− am′,j
|x− tj|1/3

)2

dx

= (aj − am′,j)2
∫ 1

0

(
1

|x− tj|1/3

)2

dx

= (aj − am′,j)23((1− tj)1/3 + t
1/3
j )

≤ 6(aj − am′,j)2.

Combining the results and the Cauchy-Schwartz inequality, we obtain

‖f − f̂‖L2 ≤ ε+
√

6
J∑
j=1

|aj − am′,j| ≤ ε+
√

6
√
J‖A− Am′‖ ≤ (1 +

√
6J)ε

Hence, we find that the product set of {gm}M1
m=1 and {Am}M2

m=1 can construct a

(1 +
√

6J)ε-covering set of a set of f with the form (S2.1). Then, we bound the

covering number of F as

logN ((1 +
√

6J)ε,F , ‖ · ‖L2) ≤ logN (ε,F , ‖ · ‖L2) + logN (ε, I, ‖ · ‖)

≤ V ′ε−1/α + J log(Cε−1).

We update ε as ε ← (1 +
√

6J)ε and achieve C∗ such that we can ignore the

term with the order of log(1/ε), then obtain the statement.
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S3 Note on Assumption 2

Several distributions are known to satisfy Assumption 2. We develop the follow-

ing simple example:

Example 3 (Uniformly distributed Fourier coefficients). We consider a distri-

bution Π of a function h on [0, 1] whose Fourier coefficients by a basis are uni-

formly distributed. Let {ϕj : [0, 1]→ R}j=1,2,...,∞ be a trigonometric basis as an

orthonormal basis (see Example 1.3 in Tsybakov (2008)). We set Π as a measure

of h which has a form

h(·) =
∞∑
j=1

θjϕj(·),

where θj is a random Fourier coefficient which independently follows a uni-

form distribution on [−1/j, 1/j]. Note that Parseval’s equality yields ‖h‖22 =∑∞
j=1 θ

2
j ≤

∑∞
j=1 1/j2 = π2/6 almost surely, hence the support of Π is in the

L2 space. Furthermore, h belongs to the Sobolev space since the coefficients

{θj}∞j=1 are in the Sovolev ellipsoid (for details, see Section 1.7.1 in Tsybakov

(2008)), the support of Π satisfies Assumption 1.

We show that Π satisfies Assumption 2. Without loss of generality, we con-

sider a ball B(0, δ) whose center is 0 with fixed δ > 0. We define C1.5 :=∑∞
j=1 1/j1.5 ≈ 2.61238. We study the measure as

Π(h ∈ B(0, δ)) = Π(‖h‖2 ≤ δ2)
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= Π

(
∞∑
j=1

θ2j ≤ δ2

)

= Π

(
∞∑
j=1

θ2j ≤
δ2

C1.5

∞∑
j=1

j−1.5

)

≥
∞∏
j=1

Π

(
θ2j ≤

δ2

C1.5j1.5

)

=
J∏
j=1

Π

(
θ2j ≤

δ2

C1.5j1.5

)
,

where J = max{j ∈ N | 1/j2 ≥ δ2/(C1.5j
1.5)}. The first inequality follows the

independent property of θj , and the last equality follows that Π(θ2j ≤ δ2

C1.5j1.5
) =

1 for j ≥ J + 1. For j ≤ J , Π(θ2j ≤ δ2

C1.5j1.5
) is positive since θj follows the

uniform distribution, we obtain that Π(h ∈ B(0, δ)) > 0.

Another example is the truncated Gaussian as described below.

Example 4 (Small shifted ball probability with truncated Gaussian processes).

Let h be a Borel measurable centered Gaussian random element in a separable

Hilbert space (H, ‖ · ‖H). From Kuelbs et al. (1994), for any x ∈ H, ε > 0, 0 ≤

α ≤ 1, it holds that

Π(h : ‖h− x‖H ≤ ε) ≥ exp

{
− inf

x0:∈H:‖x0−x‖≤αε

‖x0‖2H
2

+ log Π(‖h‖H < (1− α)ε)

}
.

(S3.2)

To satisfy Assumption 1, we consider a probability measure of a truncated ver-

sion of a Gaussian measure. Given a constant c > 0 as a truncation level, we

define a ball Hc := {h ∈ H | ‖h‖H ≤ c} such that C̄ := Π(Hc) > 0. We, then,
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consider a measure Πc associated with the truncated Gaussian process, such that

H ∈ σ(Hc) satisfies Πc(H) := Π(H | Hc) = Π(H)/C̄. Using the inequality

(S3.2), for any x ∈ Hc, it holds that

Πc(h : ‖h− x‖H ≤ ε)

≥ exp

{
− inf

x0:∈H:‖x0−x‖≤αε

‖x0‖2H
2

+ log Π(‖h‖H < (1− α)ε)

}
C̄−1,

for any α ∈ (0, 1). Hence, by setting Hc = L2, α = 1
2

and ε = δ
2
, we obtain

Πc

(
B

(
x;
δ

2

))
= Π

(
h : ‖h− x‖L2 ≤ δ

2

)
C̄−1

≥ exp

{
− inf

x0:∈L2:‖x0−x‖≤δ/4

‖x0‖2L2

2
+ log Π

(
‖h‖L2 <

δ

4

)}
C̄−1

≥ Π

(
h : ‖h‖L2 <

δ

4

)
exp

(
−
‖x‖2L2

2

)
C̄−1

≥ Π

(
h : ‖h‖L2 <

δ

4

)
exp

(
−c

2

2

)
C̄−1,

for any x ∈ Hc. Since h is a centered Gaussian, a ball near 0 with positive radius

has positive measure (Gao et al., 2004). Then Π(B(x; δ/2)) > 0 holds.

S4 Proof of the Delaigle–Hall and hard-margin Condition

We start with the proof for connecting the Delaigle–Hall condition and the hard-

margin condition, which is one of the key points of this study.

Proof of Proposition 2. We will develop an explicit classifier based on the Delaigle–

Hall condition, then show that the classifier has a positive margin. Without loss
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of generality, we set µ− = 0, hence µ−,j = 0 holds for all j ∈ N. Hence, we

have ψM :=
∑M

j=1 θ
−1
j µ+,jφj , and f ∗M(x) = (〈x, ψM〉 − 〈µ+, ψM〉)2 − 〈x, ψM〉2

for x ∈ X and M ∈ N. For X generated from P−, f ∗M(X) is written as

f ∗M(X) = 〈µ+, ψM〉2 − 2〈µ+, ψM〉α−Z−,

where the random variableZ− = 〈X,ψM〉/α− and α2
− =

∑∞
j=1 θ−,j〈ψM , φ−,j〉2.

Here, E[Z−] = 0 and E[Z2
−] = 1 hold. Similarly, for X generated from P+, we

obtain

f ∗M(X) = −〈µ+, ψM〉2 − 2〈x− µ+, ψM〉〈µ+, ψM〉 = −〈µ+, ψM〉2 − 2〈µ+, ψM〉α+Z+,

where Z+ = 〈X − µ+, ψM〉/α+ and α2
+ =

∑∞
j=1 θ+,j〈ψM , φ+,j〉2. Here, Z+

satisfies E[Z+] = 0 and E[Z2
+] = 1.

Now, we evaluate the margin of the classifier f ∗M with the measure Π. For

any δ > 0, we bound it as

Π({x : | ‖x− µ+‖2 − ‖x‖2| ≤ δ})

= lim
M→∞

Π({x : |f ∗M(x)| ≤ δ})

= lim
M→∞

wP−(|f ∗M(X)| ≤ δ) + (1− w)P+(|f ∗M(X)| ≤ δ)

≤ lim
M→∞

wP−(f ∗M(X) ≤ δ) + (1− w)P+(f ∗M(X) ≥ −δ)

= lim
M→∞

wP−(〈µ+, ψM〉2 − 2〈µ+, ψM〉α−Z− ≤ δ)

+ (1− w)P+(−〈µ+, ψM〉2 − 2〈µ+, ψM〉α+Z+ ≥ −δ)
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= lim
M→∞

wP−

(
Z− ≥

〈µ+, ψM〉2 − δ
2α−〈µ+, ψM〉

)
+ (1− w)P+

(
−Z+ ≥

〈µ+, ψM〉2 − δ
2α+〈µ+, ψM〉

)
≤ lim

M→∞

{4wα2
− + 4(1− w)α2

+}〈µ+, ψM〉2

(〈µ+, ψM〉2 − δ)2
(∵ Chebyshev’s inequality)

= 0.

The last equality holds because of the following relation: for ` ∈ {−,+}, we

obtain

lim
M→∞

〈µ+, ψM〉2

α2
`

= lim
M→∞

(
∑M

j=1 θ
−1
j µ2

j)
2∑∞

j=1 θ`,j〈ψM , φ`,j〉2

= lim
M→∞

(
∑M

j=1 θ
−1
j µ2

j)
2∑∞

j=1 θ`,j(
∑M

i=1 θ
−1
i µi〈φi, φ`,j〉)2

=∞,

by the Delaigle–Hall condition.

S5 Proof of Convergence Analysis

S5.1 Additional Notation

For a function f : X × {−1, 1} → R, we employ the notation (` ◦ f)(x, y) =

`(yf(x)). Also, for g = ` ◦ f , its expectation and empirical mean with respect

to P is written as Pg = E(X,Y )∼P [g(X, Y )] and Pnf = 1
n

∑n
i=1 g(Xi, Yi) with

the observed data {(Xi, Yi) : i = 1, ..., n}.

We define an open ball B(x; δ′) ⊂ X of radius δ′ centered at x ∈ X with
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metric ‖ · ‖. We also define a set H(x, δ′) ⊂ H which is a set of a map h ∈ H

satisfying the following three conditions:

(i)∀x′ ∈ X 0 ≤ h(x′) ≤ 2δ, (ii)h ≥ δ′ on B

(
x;
δ′

2

)
, and

(iii)

∫
B(x;δ′)c

hdΠ ≤ δ′
∫
X
hdΠ, (S5.3)

where B(x; δ′)c := X\B(x; δ′). It is obvious to show H(x, δ′) 6= ∅, since there

exists a continuous f such that 0 ≤ f ≤ 3
2
δ′ on B(x, δ′/2) and f = 0 on

B(x, δ′)c holds, andH is dense in C(X ).

We define q(x, δ′) = infh∈H(x,δ′) ‖h‖H and q̄(δ′) as its decreasing envelope

such that q̄(δ′) ≥ supx∈X q(x, δ
′) holds. We also define p(x, δ′) = (δ′)2Π(B(x; δ′/2))

and define its lower envelope function p̄ as p(x, δ′) ≥ p̄(δ′) > 0 for all x such that

|f̃ ∗(x)| ≥ 1 holds. This definition is related to the small shifted ball probability

and it varies with the setting of Π and X . Remark that the existence of a lower

envelope is guaranteed by Assumption 2. Further, on the set {x : |f̃ ∗(x)| ≥ 1},

we consider a positive function r : R+ → R+ such that r(δ′) ≥ p̄(δ′)/q̄(δ′) > 0

holds.

S5.2 Full Proof

Proof of Theorem 1. This proof contains three steps: (i) a basis decomposition

on the generalization error, (ii) bound a misclassification error with the bounded

condition, and (iii) bound an unbounded probability. In the following, each step
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is described in one subsection.

(i) Basic Decomposition: We start with a basic decomposition for the gen-

eralization error for the classification. To fit the situation with the Delaigle–Hall

condition, we extend its formulation. In the following, Pr(·) and E[·] denote a

probability and an expectation with respect to the observed data from P⊗n.

Lemma 1. Suppose the Delaigle–Hall condition holds. Then, the following

equation holds:

E[R(f̂n)−R(f̃ ∗)] ≤
∫
|η(x)|Pr(f̂n(x)f̃ ∗(x) ≤ 0) dΠ(x).

Proof of Lemma 1. We transform the generalization error for any f ∈ H as

R(f)−R(f̃ ∗) = EX [EY [I{Y 6=sign(f(X))} − I{Y 6=sign(f̃∗(X))} |X]]

= EX [{I{16=sign(f(X))} − I{16=sign(f̃∗(X))}} · Pr(Y = 1|X)

+{I{−16=sign(f(X))} − I{−1 6=sign(f∗(X))}} · Pr(Y = −1|X) ]

≤ EX [I{sign(f̃∗(X)) 6=sign(f(X))} |η(X)| ]

=

∫
{x∈X :sign(f̃∗(x)) 6=sign(f(x))}

|η(x)| dΠ(x).

We consider its expectation with f̂n and develop its upper bound as

E[R(f̂n)−R(f̃ ∗)] = E

[∫
{x∈X :sign(f̃∗(x))6=sign(f̂n(x))}

|η(x)|dΠ(x)

]
= E

[∫
{x∈X :f̂n(x)f̃∗(x)≤0}

|η(x)|dΠ(x)

]
=

∫
|η(x)|E[ I{x∈X :f̂n(x)f̃∗(x)≤0} ] dΠ(x)
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=

∫
|η(x)|Pr(f̂n(x)f̃ ∗(x) ≤ 0) dΠ(x).

Then, we obtain the statement.

Our next goal is to study the probability Pr(f̂n(x)f̃ ∗(x) ≤ 0) in Lemma 1

for a given x ∈ X . For any x ∈ X such that f̃ ∗(x) > 0 holds, with the threshold

U , we obtain

Pr(f̂n(x)f̃ ∗(x) ≤ 0) = Pr(f̂n(x) ≤ 0)

≤ Pr(f̂n(x) ≤ 0 , ‖f̂n‖H ≤ U)︸ ︷︷ ︸
=T1

+ Pr(‖f̂n‖H > U)︸ ︷︷ ︸
=T2

.

(S5.4)

If f̃ ∗(x) < 0 holds, we obtain the similar bound. We will bound the terms T1

and T2, respectively.

(ii-1) Bound T1 via hard-margin Condition: As preparation, we fix x such

that f̃ ∗(x) ≥ δ = 1 holds, which follows from ess infx∈X |f̃ ∗(x)| ≥ δ for any

δ by Proposition 2. Also, we fix δ0 > 0 then pick h ∈ H(x, δ0) as (S5.3). We

rewrite the empirical loss in (2.2) as

Ln(f) =
1

n

n∑
i=1

`(Yif(Xi)) + λ‖f‖2H.

By Lemma 6, we obtain its functional derivative in terms of f at f̂n with direction

h as ∇Ln(f̂n) = 1
n

∑n
i=1 `

′(Yif̂n(Xi))Yih(Xi) + 2λ〈f̂n, h〉H. By the optimal

condition of f̂n, we have ∇Ln(f̂n) = 0.
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We bound the term T1 by combining a probability of the event with∇Ln(f̂n).

Let U be an event {f̂n(x) ≤ 0, ‖f̂n‖H ≤ U}. We simply obtain

T1 = Pr(U ,∇Ln(f̂n) = 0)

= Pr(∇Ln(f̂n) = 0 | U)Pr(U)

= {1− Pr(∇Ln(f̂n) 6= 0 | U)}Pr(U)

≤ {1− Pr(∇Ln(f̂n) < 0 | U)}Pr(U)

≤ 1− PL,

where we define PL = Pr(∇Ln(f̂n) < 0 | U). The first line follows the fact

Pr(∇Ln(f̂n) = 0) = 1. To bound T1, we will study PL.

We consider an event U , and study the derivative ∇Ln(f̂n). We define

∇L̂ = 1
n

∑n
i=1 `

′(Yif̂n(Xi))Yih(Xi) as a derivative of the loss function part from

∇Ln(f̂n). By Lemma 7 associated with Lemma 8, we can bound tail probability

of L̂ as

Pr

(
∇L̂ < −1

2
δ0E[h(X)] | U

)
≥ 1− 2 exp

(
−nδ0E[h(X)]

CL,U

)
≥ 1− 2 exp

(
−np(x, δ0)

CL,U

)
,

which follows the relation δ0E[h(X)] ≥ δ20Π(B(x; δ0/2)) = p(x, δ0). By this

result, we can also bound∇Ln(f̂n) as

∇Ln(f̂n) = ∇L̂+ 2λ〈f̂n, h〉
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≤ −δ0E[h(X)]/2 + 2λU‖h‖H

≤ −p(x, δ0)/2 + 2λUq(x, δ0),

with probability at least 1−2 exp(−np(x, δ0)/CL,U). The first inequality follows

the Cauchy-Schwartz inequality and ‖f̂n‖H ≤ U . Since we set λ < p(x,δ0)
4Uq(x,δ0)

=

r(x,δ0)
4U

, we obtain∇Ln(f̂n) < 0 with the probability. Thus, we have

T1 ≤ 1− PL ≤ 1−
{

1− 2 exp

(
−np(x, δ0)

CL,U

)}
≤ 2 exp

(
−np(x, δ0)

CL,U

)
≤ 2 exp

(
−np̄(δ0)
CL,U

)
. (S5.5)

(ii-2) Bound T2 via Metric Entropy of Functional Data Space: We bound

T2 in (S5.4) by using the peeling technique (for introduction, see Chapter 7 in

Steinwart and Christmann (2008)).

As preparation, we derive an upper bound of ‖f̂n‖H. Since

λ‖f̂n‖2H ≤ Pn(` ◦ f̂n) + λ‖f̂n‖2H ≤ `(0) + ‖0‖2H ≤ 1,

where the second inequality is obtained by replacing f̂n by 0 and the optimality

condition of f̂n, and the last inequality follows the bounded condition on the loss

function, we obtain R̄ = λ−1/2`(0)−1/2 as an upper bound of ‖f̂n‖H.

We decompose the term T2. We remind the definition f † = argminf∈HR(f),

and consider a constant R = ‖f †‖H which is assumed to be no less than 1 with-
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out loss of generality. We also define events A(R) and E(R) as

A(R) =

{
R

2
≤ ‖f̂n‖H ≤ R

}
, and E(R) =

{
‖f̂n‖H ≤

R

2

}
,

and a sequence Rk = 2k, k = 1, 2, ..., N where N = log2 R̄+ 1. For each λ > λ

and sufficiently large n, we have

N = log2 R̄+1 =
1

2 log 2
log

`(0)

λ
+1 ≤ 1

2 log 2
log

n

CV,γ log log n
+1 ≤ C ′V,γ log n,

where C ′V,γ is a constant depending on CV,γ . We remark that ∪Nk=1A(Rk) ⊃

{U ≤ ‖f̂n‖H} since ‖f̂n‖H ≤ R̄ holds. Since A(Rk), k = 1, ..., N are disjoint

up to null sets, we obtain

T2 ≤
N∑
k=1

Pr(U ≤ ‖f̂n‖H|A(Rk))Pr(A(Rk)) ≤
N∑
k=1

Pr(U ≤ ‖f̂n‖H|A(Rk)).

(S5.6)

Now, we will bound the probability Pr(U ≤ ‖f̂n‖H|A(Rk)) in the following.

We investigate the event E(R) with conditional onA(R) and study the event

U ≤ ‖f̂n‖H. We set a constant cV,γ = 2
√
R(
√

6+ 1
V 3γ

) exp(V 3γ). An inequality

Pn(` ◦ f̂n)− infg∈H:‖g‖H≤R Pn(` ◦ g) ≥ 0 and a uniform bound defined by

∆(n, γ, t, R) = RcV,γ(log n)−1/γ +
√

2t/n, (S5.7)

and Lemma 2 implies

λ‖f̂n‖2H ≤ Pn(` ◦ f̂n)− inf
g∈H:‖g‖H≤R

Pn(` ◦ g) + λ‖f̂n‖2H
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= inf
f∈H:‖f‖H≤R

{
Pn(` ◦ f)− inf

g∈H:‖g‖H≤R
Pn(` ◦ g) + λ‖f‖2H

}
≤ inf

f∈H:‖f‖H≤R

{
P (` ◦ f)− inf

g∈H:‖g‖H≤R
P (` ◦ g) + λ‖f‖2H

}
+ 2∆(n, γ, t, R)

≤ λ‖f †‖2H + 2∆(n, γ, t, R),

with probability at least 1− exp(−t) for any t > 0. The last inequality holds by

substituting f †. Combining an inequality R/2 < ‖f̂n‖H with this result yields

R2/4 ≤ ‖f̂n‖2H ≤ ‖f †‖2H + 2∆(n, γ, t, R)/λ.

Solving this inequality with respect to R yields that

R ≤ 4cV,γλ
−1(log n)−1/γ +

√
(4cV,γλ−1(log n)−1/γ)

2
+ 4‖f †‖2H + 8λ−1

√
2t/n

≤ 8cV,γλ
−1(log n)−1/γ + 2‖f †‖H + 2 (2t)1/4λ−1/2n−1/4

≤ CV,γ(‖f †‖H ∨ λ−1(log n)−1/γ ∨ t1/4λ−1/2n−1/4),

where CV,γ is a constant depending on cV,γ . By setting t = nζ2 and with suffi-

ciently small ζ > 0 which will be specified later, we obtainR ≤ CV,γ‖f †‖H = U

holds. Consequently, conditional on A(R), the event E(R) implies R ≤ U with

probability at least 1 − exp(−nζ2), which contradicts the setting of R ≥ U .

Hence, for any measurable event Ω, it holds that

Pr(Ω | A(R)) ≤ Pr(E(R)c | A(R)) ≤ 1− (1− exp(−nζ2)) = exp(−nζ2).

We put this inequality with setting Ω = {U ≤ ‖f̂n‖H} into (S5.6). Then we
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obtain

T2 ≤
N∑
k=1

Pr(E(Rk)
c | A(Rk)) ≤ N exp(−nζ2) ≤ e−nζC ′V,γ log n

≤ e−nζC ′V,γ exp(nε/CV,γ) ≤ C ′V,γ exp{−nζ(1− C−1V,γ)} ≤ exp(−nζ/2),

(S5.8)

The last third inequality follows the setting of ζ as following ζ ≥ C ′V,γ ≥

C ′V,γ
log logn

n
.

(iii) Combining Results: We utilize the derived bounds for T1 in (S5.5) and

for T2 in (S5.8) into (S5.4), then obtain the following inequality:

Pr(f̂n(x)f̃ ∗(x) ≤ 0) ≤ 2 exp

(
−np̄(δ0)
CL,U

)
+ exp

(
−nζ

2

)
≤ exp(−βn),

by selecting β depending on p̄(δ0), CL,U and ζ . Finally, we obtain E[R(f̂n) −

inff∈HR(f)] ≤ E[R(f̂n) − R(f̃ ∗)] by the fact R(f̃ ∗) ≤ inff∈HR(f), and the

above results yield the statement.

S6 Entropy Analysis for Functional Data

We provide several technical results with empirical process techniques.

Lemma 2. Recall the definition of ∆(n, γ, t, R) in (S5.7). For any f ′ ∈ H, we

obtain

Pn(` ◦ f ′)− inf
f :‖f‖H≤R

Pn(` ◦ f) ≤ P (` ◦ f ′)− inf
f :‖f‖H≤R

P (` ◦ f) + 2∆(n, γ, t, R)
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with probability at least 1− et with t > 0.

Proof of Lemma 2. Simply, we obtain

Pn(` ◦ f ′)− inf
f :‖f‖H≤R

Pn(` ◦ f)

= Pn(` ◦ f ′)− P (` ◦ f) + P (` ◦ f ′)

− inf
f :‖f‖H≤R

P (` ◦ f) + inf
f :‖f‖H≤R

P (` ◦ f)− inf
f :‖f‖H≤R

Pn(` ◦ f)

≤ {Pn(` ◦ f)− P (` ◦ f)}

+

{
P (` ◦ f)− inf

f :‖f‖H≤R
P (` ◦ f)

}
+ {P (` ◦ f †)− Pn(` ◦ f †)}.

By Lemma 3, ∆(n, γ, t, R) bounds the last two terms with probability at least

1− t.

To complete Lemma 2, we provide the following lemma. This result is a

well-known result with the Rademacher complexity, but we provide it for the

sake of completeness. We introduce a ball in H with radius R as HR = {f ∈

H : ‖f‖H ≤ R}.

Lemma 3. Define cV,γ = 2
√
R(
√

6 + 1
V 3γ

) exp(V 3γ). For any t > 0 and any

n ∈ N, we obtain

Pr

(
sup
f∈HR

|Pn(` ◦ f)− P (` ◦ f)| ≤ RcV,γ(log n)−1/γ +
√

2t/n

)
≥ 1− exp(−t).

Proof of Lemma 3. We firstly bound the term supf∈HR |Pn(` ◦ f)−P (` ◦ f)| by

its expectation and others. Since a variation of the term is at most 2/n when one
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pair of {(Xi, Yi)}ni=1 changes, the McDiarmid’s inequality (Theorem 3.3.14 in

Giné and Nickl (2016)) implies that with probability at least 1− e−t,

sup
f∈HR

|Pn(` ◦ f)− P (` ◦ f)| ≤ E

[
sup
f∈HR

|Pn(` ◦ f)− P (` ◦ f)|
]

+

√
2t

n
.

(S6.9)

Secondly, to bound the expectation term, we define the conditional Rademacher

complexity of a class of functions G as follows:

Rn(G) =
1

n
Eσ

[
sup
f∈G

n∑
i=1

σif(xi)

]
,

where σ1, . . . , σn are independent random variables which is 1 with probability

1/2 and −1 otherwise. We introduce (X ′1, Y
′
1), · · · , (X ′n, Y ′n) as independent

pairs of random variables with the same distribution as (X, Y ). We apply the

independent pairs and bound the expectation term in (S6.9) as

E

[
sup
f∈HR

|Pn(` ◦ f)− P (` ◦ f)|
]

= E

[
sup
f∈HR

E

[∣∣∣∣∣ 1n
n∑
i=1

`(Yif(Xi))−
1

n

n∑
i=1

`(Y ′i f(X ′i))

∣∣∣∣∣ | {(Xi, Yi)}ni=1

]]

≤ E

[
sup
f∈HR

∣∣∣∣∣ 1n
n∑
i=1

`(Yif(Xi))−
1

n

n∑
i=1

`(Y ′i f(X ′i))

∣∣∣∣∣
]

= Eσ

[
sup
f∈HR

1

n

n∑
i=1

|σi{`(Yif(Xi))− `(Y ′i f(X ′i))}|

]

≤ Eσ

[
sup
f∈HR

1

n

n∑
i=1

σi`(Yif(Xi))

]
+ Eσ

[
sup
f∈HR

1

n

n∑
i=1

σi`(Y
′
i f(X ′i))

]

= 2Rn(` ◦ HR),
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where ` ◦ HR = {` ◦ f : f ∈ HR}. The first inequality following the Jensen’s

inequality, and the third equality follows the distribution equivalence by the ran-

dom variable σ. We further apply the Ledoux-Talagrand contraction inequality

(Theorem 3.2.1 in Giné and Nickl (2016)) with the 1-Lipschitz continuity of `

yieldsRn(` ◦ HR) ≤ Rn(HR). Combining the result with (S6.9), we obtain

sup
f∈HR

|Pn(` ◦ f)− P (` ◦ f)| ≤ 2Rn(` ◦ HR) +
√

2t/n ≤ 2Rn(HR) +
√

2t/n.

(S6.10)

with probability at least 1− e−t.

Finally, we apply Lemma 5 and bound Rn(HR). Then, we obtain the state-

ment.

To complete the empirical process result, we develop the following covering

number result, which is a key term to study the convergence of the classifier with

functional data.

Lemma 4. There exists a constant c̄ > 0 such that for any ε ∈ (0, c̄) such that

the following holds:

logN (ε,HR, ‖ · ‖n) ≤ 6R2

ε
+ 4R

[
exp

{
V

(
3R

ε

)γ}
− 1

]
.

Proof of Lemma 4. As preparation, we consider an ε-covering setX of functions

{x1, . . . xm} for X with m = m(ε), that is, for any x ∈ X , there exists xj from

the set such that ‖x−xj‖ ≤ ε holds. By Assumption 1, we havem ≤ exp(cε−γ).
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We consider grids inHR. For each f ∈ HR, we define a vector

Af = (bf(x1)/εc , bf(x2)/εc, ..., bf(xn)/εc)> ∈ Rm.

For any pair f, g ∈ HR such that maxi=1,...,m |f(xi) − g(xi)| < ε holds, we

obtain Af = Ag since bf(xi)/εc = bg(xi)/εc holds. We also mention the

following difference: for any x ∈ X and f ∈ HR, we obtain |f(x) − f(xi)| ≤

‖f‖H‖x − xi‖ ≤ R‖x − xi‖ ≤ Rε, by the property of (2.1) and that of the

covering set.

With these results, we bound the following distance with the pair f, g and

any x ∈ X :

|f(x)− g(x)| = |f(x)− f(xi) + f(xi)− g(xi) + g(xi)− g(x)|

≤ |f(x)− f(xi)|+ |f(xi)− g(xi)|+ |g(xi)− g(x)|

≤ (2R + 1)ε,

hence we have ‖f − g‖L∞ ≤ (2R + 1)ε.

From the above discussion, the covering numberN ((2R+1)ε,HR, ‖ ·‖L∞)

is bounded by the number of different Af when f ranges over HR. Since

|f(x)| ≤ ‖f‖HR ≤ R for any x ∈ X by (2.1), the number of possible val-

ues of each element of Af is bounded by (2R/ε + 1). Assume the covering set

x1, . . . , xm is ordered such that i < j implies ‖xi − xj‖ < 2ε, then we obtain
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|f(xj)− f(xi)| ≤ R‖xj − xi‖ < 2Rε. Therefore, we obtain

−2Rε+ f(xi) < f(xj) < 2Rε+ f(xi).

It implies that for given f(xi) the number of possible values of bf(xj)/εc is at

most 4R + 1. Hence, we can bound the covering number as

N ((2R + 1)ε,HR, ‖ · ‖L∞) = |{Af : f ∈ HR}|

≤ (2R/ε+ 1)(4R + 1)m−1

≤ (2R/ε+ 1)(4R + 1)exp (cε−γ)−1

As a result, we obtain the following bound in the norm ‖ · ‖L∞:

logN(ε,HR, ‖ · ‖L∞)

≤ log

{
2R(2R + 1)

ε
+ 1

}
+

[
exp

{
V

(
2R + 1

ε

)γ}
− 1

]
log(4R + 1).

Since the empirical norm ‖·‖n possesses the Riesz property (e.g. page 83 in Van

Der Vaart and Wellner (1996)), we obtain

logN(ε,HR, ‖ · ‖n)

≤ (2R(2R + 1)/ε+ 1) +

[
exp

{
V

(
2R + 1

ε

)γ}
− 1

]
log(4R + 1)

≤ 6
R2

ε
+ 4R

[
exp

{
V

(
3R

ε

)γ}
− 1

]
,

by the setting R ≥ 1. Then, we obtain the statement.

The following result is to bound the Rademacher complexity by the covering
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number. Although technique follows a standard discussion by the Dudley’s in-

tegral, the covering number for functional data analysis has a specific role from

functional data.

Lemma 5. Suppose Assumption 1 holds. Then, we obtain

Rn(HR) ≤ RcV,γ(log n)−1/γ.

Proof of Lemma 5. Now, we boundRn(HR) using the following inequality learned

from Srebro and Sridharan (2010):

Rn(HR) ≤ inf
α≥0

{
4α + 12

∫ supf∈HR

√
Pnf2

α

√
logN(ε,HR, ‖ · ‖n)

n
dε

}

As supx∈X |f(x)| ≤ ‖f‖HR ≤ R for all f ∈ HR, we obtain supf∈HR
√
Pnf 2 =

R. Lemma 4 yields∫ R

α

√
logN (ε,HR, ‖ · ‖n)

n
dε

≤ 1√
n

∫ R

α

√
6R2

ε
+ 4R

[
exp

{
V

(
3R

ε

)γ}
− 1

]
dε

≤ 1√
n

∫ 1
ε0

1

√
6Rτ + 4R {exp (V 3γτ γ)− 1 } R

τ 2
dτ

≤ R√
n

∫ 1
ε0

1

√
6Rτ−3/2 + 2

√
Rτ−2{exp (V 3γτ γ)− 1}dτ

≤ R√
n

∫ 1
ε0

1

√
6Rτ−3/2 + 2

√
Rτ γ−1 exp (V 3γτ γ)dτ

≤ Rn−1/2{2
√

6R + 2
√
R exp(V 3γε−γ0 )/(V 3γ)}

≤ Rn−1/2{2
√
R(
√

6 +
1

V 3γ
) exp(V 3γ)} exp(ε−γ0 ).
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Here, we substitute τ = R/ε and define ε0 = α/R. Then, we have

Rn(HR) ≤ R inf
0≤ε0≤1

[4ε0 + n−1/2{2
√
R(
√

6 +
1

V 3γ
) exp(V 3γ)} exp(ε−γ0 )]

≤ R[4(log n1/4)−1/γ + n−1/4{2
√
R(
√

6 +
1

V 3γ
) exp(V 3γ)}]

≤ R{2
√
R(
√

6 +
1

V 3γ
) exp(V 3γ)}(log n)−1/γ.

In the second inequality, we substitute ε0 to (log n1/4)−1/γ . Then, we obtain the

statement.

S7 Technical Lemma

We provide several technical results for the proof of the main theorem.

Lemma 6. We obtain the following equality:

∇Ln(f̂n) =
1

n

n∑
j=1

`′(Yj f̂n(Xj))Yjh(Xj) + 2λ〈f̂n, h〉H.

Proof of Lemma 6. We study the optimization problem in (2.2) by considering

its functional derivative in the Fréchet sense. For a coefficient α > 0, we rewrite

the target function in (2.2) as

Ln(α) = Pn{` ◦ (f̂n + αh)}+ λ‖f̂n + αh‖2H =
1

n

n∑
j=1

`{Yj(f̂n + αh)(Xj)}+ λ‖f̂n + αh‖2H.

Since f̂n is the minimizer of the problem in (2.2), a derivative of Ln(α) is 0

with f = f̂n and α = 0. By the differentiability of `, we obtain the following
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derivative

dLn
dα

(0) =
1

n

n∑
j=1

`′{Yj f̂n(Xj)}Yjh(Xj) + 2λ〈f̂n, h〉H,

then we obtain the statement.

Lemma 7. Suppose f̂n(x) ≤ 0 and ‖f̂n‖H < U hold. Then, for x ∈ X such that

f0(x) = δ > 0 holds, we set S = B(x; δ0) obtain

1

n

n∑
j=1

`′{Yj f̂n(Xj)}Yjh(Xj) ≤
1

n

n∑
j=1

ξj,

where ξj := 2Uδ0h(X)IS(Xj) + `′(0)Y h(X)IS(Xj) + |`′(−U)|h(X)ISc(Xj).

Proof of Lemma 7. We prepare some inequalities. It should be noted that

1

n

n∑
j=1

`′{Yj f̂n(Xj)}Yjh(Xj)

=
1

n

n∑
j:Yj=+1

`′{f̂n(Xj)}h(Xj)−
1

n

n∑
j:Yj=−1

`′{−f̂n(Xj)}h(Xj).

Also, we recall that `′ is negative and increasing, h is nonnegative. For any x′ ∈

S, the RKHS property (2.1) provides f̂n(x′) ≤ ‖f̂n‖Hδ0 ≤ Uδ0, then we have

`′{f̂n(x′)} ≤ `′(Uδ0), and `′{−f̂n(x′)} ≥ `′(−Uδ0). Also, |f̂n(x′)| ≤ ‖f̂n‖H ≤

U holds for all x′ ∈ S suggests that |`′{f̂n(y)}| ≤ |`′(−U)|, and |`′{−f̂n(y)}| ≤

|`′(−U)|.

Now, we are ready to bound the target value. For j = 1, ..., n, we define

Zj := h(Xj)IS(Xj) and Zc
j := h(Xj)ISc(Xj) for brevity. We bound the value
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as

1

n

n∑
j=1

`′{Yj f̂n(Xj)}Yjh(Xj)

≤ `′(Uδ0)

n

∑
j:Xj∈S,Yj=+1

h(Xj)−
`′(−Uδ0)

n

∑
j:Xj∈S,Yj=−1

h(Xj) +
|`′(−U)|

n

∑
j:Xj∈Sc

h(Xj)

=
`′(Uδ0)

n

∑
j:Xj∈S

1 + Yj
2

h(Xj)−
`′(−Uδ0)

n

∑
j:Xj∈S

1− Yj
2

h(Xj) +
|`′(−U)|

n

∑
j:Xj∈Sc

h(Xj)

=
`′(Uδ0)− `′(−Uδ0)

2n

n∑
j=1

Zj +
`′(Uδ0) + `′(−Uδ0)

2n

n∑
j=1

YjZj +
|`′(−U)|

n

n∑
j=1

Zc
j .

About the coefficient terms, we obtain∣∣∣∣`′(Uδ0) + `′(−Uδ0)
2

− `′(0)

∣∣∣∣ ≤ |`′(Uδ0)− `′(0)|
2

+
|`′(−Uδ0)− `′(0)|

2

≤ `′′(0)Uδ0 ≤ Uδ0,

and similarly

|`′(Uδ0)− `′(−Uδ0)|
2

≤ |`
′(Uδ0)− `′(0)|

2
+
|`′(−Uδ0)− `′(0)|

2
≤ Uδ0.

Using the inequalities, we further bound the target value as

1

n

n∑
j=1

`′{Yj f̂n(Xj)}Yjh(Xj)

≤ Uδ0
n

n∑
j=1

Zj +
Uδ0 + `′(0)

n

n∑
j=1

YjZj +
|`′(−U)|

n

n∑
j=1

Zc
j

≤ 2
Uδ0
n

n∑
j=1

Zj +
`′(0)

n

n∑
j=1

YjZj +
|`′(−U)|

n

n∑
j=1

Zc
j .

Then, we obtain the statement by the definition of ξj .
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Lemma 8. Consider the same setting with Lemma 7. Then, we get the following

inequality:

Pr

(
1

n

n∑
j=1

ξj ≥ −
1

2
δ0E[h(X)]

)
≤ 2 exp

{
−nδ0E[h(X)]

CU,L

}
.

Proof of Lemma 8. We firstly bound an expectation of ξj ,

E[ξj] = 2Uδ0E[h(X)IS(X)] + `′(0)E[Y h(X)IS(X)] + |`′(−U)|E[h(X)ISc(X)]

≤ 2Uδ0E[h(X)] + `′(0)E[Y h(X)IS(X)] + |`′(−U)|δE[h(X)],

by the conditions of H(x, δ) presented in (S5.3). We define f̄(x) = f̃ ∗(x) ∨ 1.

For the term E[Y h(X)IS(X)], we approximate it as

E[Y h(X)IS(X)] ≥ E[f̄(X)h(X)IS(X)]

≥ (1− Lδ0)E[h(X)IS(X)]

≥ (1− Lδ0)(1− δ0)E[h(X)].

The first equality holds since f̃ ∗ is a perfect classifier. The second equality fol-

lows the hard-margin condition on f̃ ∗ and infx′∈S f̃
∗(x′) ≥ δ − Lδ0 by the Lip-

schitz constant L of f̃ ∗. For the last inequality, we apply the condition (iii) for

H(x, δ0) in (S5.3) and obtain

δ0

∫
X
hdΠ ≥

∫
Sc
hdΠ = E[h]−

∫
S

hdΠ,

then we have E[h(X)IS(X)] ≥ (1 − δ0)E[h(X)]. Since `′(0) < 0 holds, we
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substitute the bound for E[Y h(X)IS(X)] and obtain

E[ξj] ≤ {2Uδ0 + `′(0)(1− Lδ0)(1− δ0) + |`′(−U)|δ0}E[h(X)] ≤ −δ0E[h(X)].

The last inequality follows by selecting a sufficiently small δ0 > 0 as δ0 ≤

1/(L+ 4U + 12).

We finally bound a tail probability of n−1
∑n

j=1 ξj by the Bernstein inequal-

ity (Theorem 3.1.7 in Giné and Nickl (2016)). Using an elementary inequality

(a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2, we have E(ξ2) ≤ Cδ0E(h(X)). In addition, it

is clear that |ξ| ≤ CU,Lδ0. Then, by the Bernstein’s inequality, we obtain

Pr

(
1

n

n∑
j=1

ξj ≥ −
1

2
δ0E[h(X)]

)
≤ 2 exp

{
− n2δ20E[h(X)]2/8∑n

i=1E[ξ2i ]− nCU,Lδ20E[h(X)]/6

}

≤ 2 exp

{
−nδ0E[h(X)]

CU,L

}
.

Then, we obtain the statement.

S8 Additional Experiment: Different Eigenfunctions

We implement an additional experiment to validate the main result when the co-

variance functions between different labels do not have the same eigenfunctions.

The setting in this section does not strictly satisfy our assumptions, therefore it

is outside the scope of our theory. However, to investigate the potential applica-

bility of our theory, we perform this experiment with different hyper-parameter

choices.
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S8.1 Experimental Setting

As in Section 4, we generate functional data from two groups with labels {−1, 1}.

For each group, we generate n functions on T = [0, 1] with two orthogonal

bases: 
φ0(t) = 1, φj(t) =

√
2 sin(πjt), ∀j ≥ 1,

ψ0(t) = 1, ψj(t) =
√

2 cos(πjt), ∀j ≥ 1.

n is set from 1 to 3000. For a label +1, we generate functional data Xi+(t) =∑50
j=0(θ

1/2
j Zj+ + µj+)φj(t) with random variables Zj+ and coefficients θj, µj+

for j = 0, 1, ..., 50 and i = 1, ..., n. For a label −1, we generate Xi−(t) =∑50
j=0(θ

1/2
j Zj− + µj−)ψj(t) with random variables Zj− and coefficients µj−.

That is, in Scenario 1, we set θj = j−2, µj− = 0, and change µj+ = j−γ

and draw Zj+, Zj− from standard normal Gaussian. Then we determined the

DH condition based on whether the gamma was greater or less than 3/2. In

Scenario 2, we set θj = j−2, µj− = 0 and adjust µj+ = 1{j = 0}µ, and let

Zj+, Zj− be sample from uniform distribution on [−1/2, 1/2]. Although it is

analytically challenging to specify when the HM condition is violated because

of the different basis functions, we present the results of our experiments for

various µ. In Scenario 2, because of the difficulty of rigorously checking the DH

condition in the setting, we examined a broader range of µ ∈ {1.5, 1.7, 1.9, 2.1}.

Other settings are the same as Section 4. For each n, we newly generate
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Figure 1: Error (logarithm of misclassification error rate) by the RKHS

against log n. Left: Scenario 1 for the Delaigle–Hall condition with γ ∈

{1.3 (solid), 1.4 (dashes), 1.6 (dots), 1.7 (dotdash)}. Right: Scenario 2 for the hard-margin

condition with µ ∈ {2.1 (solid), 1.9 (dashes), 1.7 (dot), 1.5 (dotdash)}.

1000 test data and calculate misclassification rates with the test data. Each sim-

ulation experiment is repeated 200 times, and the average value is reported. We

investigate the classification error of the RKHS classifier with the Gaussian ker-

nel and the logit loss. The tuning parameters are chosen by cross-validation.

S8.2 Result

The results are shown in Figure 1. In Scenario 1, we see a difference in con-

vergence speed for each value of γ, although the difference is not so clear as

in Figure 1 in the main text. The reason is that the conditions we are actually

checking are different from those we should impose, so there must be a differ-
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ence in scale. However, as n increases to some extent, e.g. n ≥ 100, we can

observe an exponential-like fast convergence. In Scenario 2, the results confirm

exponential convergence for large µ, and as µ gets smaller, the rate falls off as in

polynomial convergence.
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