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Supplementary Material

The supplementary materials consist of three sections: (1) The validity and
computational details of the proposed algorithm; (2) A general guide for selecting the
bandwidth parameter r; (3) Empirical evidence for the effectiveness of the proposed

method in terms of likelihood estimation.

S1 Details of RRJ

S1.1 Derivation of Equation (5.11)

Let ¢; ~ K, ;(z), j =1,...,d, independent of each other. Then let

I ~ Multinomial (1, (1,...,n), (Wi,...,W,)),



LI, WANG, DENG AND LIU

be independent of £ and
X=X/+e| X, W~ Wik (z—X). (S1.1)
i=1

Now we can see that

FPEr () = P(X <2y | W, X)
=P Xpn+e <z |WX)

:ZmP(Xil+€l <z | W, X)

i=1

=Y WiP(er <ay — X | W, X) = Wik, (w1 — Xa).
=1

i=1

Then for j7 > 1,

Y Wz i T - Xz
P(I = ’L ‘ W, X, Xl:jfl = 371:j71) — . Hk:lj/fl’k<xk ) ,
> ims Wil iz k(e — Xin)
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SO

FV 5 (2 2050)

= P(X] S T | VV,X, Xl:j—l = xlzj—l) (deﬁnition)

= ZP(I =i | W, X, X1j 1 =21, )P(X; < | W, X, X1, 1 = 21,51, ] =)

=1

n 7j—1
T XZ )
Z Wi Ty fori (26 — i) Plej <xj— Xy | W, X, 151 = 21501 — Xonjor, L =1)
i Wi Hk 1 Frk (@ — Xig)

- Wi - X
Z LTy s = Xa) Ko j(x; — Xij).-
¢ Wi TT k(o — Xag)

S1.2 Gradient

Here, we give calculation for the Gaussian case, where

K, (z) =®(z/r), 5 (z) = o(x/1)/r.

Note that the calculation can be done for general kernels as long as it has a differ-

entiable probability density function.

We have Uy = F/"* " (2,) and U; = P}W’X’Kr(mj; x1.j-1), j > 1. Differentiate

X WL 0B 255
A RrE==

U; =

with respect to

1. VVi/Z
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Let
I a - X
k — <Nk
Azg - Hgb( r )7
k=1
T — X
bzg = ¢( ! r ])7
T; — Xi;
B%] = (I)< : r ]>
O - A'L’]Bz’j
C 0% 1. 0z
A k bz J
+ZW ] {k:1 aml}+r ]aVVi/]
4, 2 WidisBiy
T WAy |
1 ZZ WiAijBij Zz mAU(Z?c;ll( Xk)aavglc/k/)
r2 22 Widis

The coefficient of ;Vf}?/ in the jth equation, when j = k:

0T, . 1

When j > k: 5 3, W;4;;B;;(X; — X)) — % i WA”B”ZZWWI/L;SU(XM %)

The constant of equation j: A; ]%:WTAZZX? — Ay By
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1 = 0Fy | 1, 01
0i0 Y Widyy =Y Wi, 5 Bis ) (X = Tw) 5 U, bija_Uj/

k=1
1 2 WidyBij >, Wi { (X — fk)gg’i}
2 > Widy

The coefficient of gg’i in the jth equation, when j = k:
J

v o Widijby;.

When ] > k’l r% Zz WZAUBU( ik — Xk) 1 Z WA”BUX:ZWW;:?”(XM Xk)

The constant of equation j: d; ;> . W;A;;

3. Xi/kli

I . I (Xin—a) L,k,_é(i, ), (i k')
S W T o) @) {Zi:i o ol b
> Willim o(B7)

T ;

- sl o (it
X, i— X5\ 90X, (4,9), (3" k")
Z W H (ﬂﬁk k)d)(xj : z]) k! .
2 WilTioy o(5)
k=1

I (k=31 (o =85 1y it
Z W, H (Ik sz) ( ){Z W, H (Z‘k Xm) ?cill (X k)(f’;%/kk/ O(i,k), (i k ))}

0=

(32 WIS ()
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j—1 (sz — jk) (82?1’ — 5(i,k),(i’,k’))

0= Z VViAijBij

7»2
k=1
o3, _ s
O0X:r1.1 - (i>j)1(i/7k,)
+ 57 W Ay by 2
oan

: (Xz z ) . -6 i Y
> WiAi;Bi; {Zz WA Zi_ i (ax = (L ) }
> Wid;

The constant of equation j: T%I/Vi/Ai/jBi/j]I(k/ < DX — Tp) + %Wizéjk/ -

LBy, A, J(K < §)(Xow — &)

S2 Proof of Theorem 1

Proof of Theorem 1. In state space models and Algorithm 2, we have

X0~ g (-1 XY) (52.2)
W = fiy® | X1) (52.3)
X0 = x4 0 (S2.4)

1t
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where If | X®

~ Multinomial(1,1 : n, W®). We let Ly(6) = 1,

0)} dw(l:t)

t
X s=1

be the likelihood of the first ¢ steps. We prove by induction for (5.12) and

n wWex®
‘E { Zn]it(eﬁj_(l(é) )} } / mE e =00/ V. (529)
For t =1, (S2.5) is 0.
S W) o]
[ { SR [ o)
oo wex®) s whex )|
a I Zz 1W (1) nLl(H)
_ {ZZ (X (1 > WS”) }]
N 1 B TLLl 0
- 2i- 1W““ (1) ) (S2.6)
. {zz WVe(x) (1_ S, W ’)}
B Zz 1 Wz(kl) nL1<0)
LAY
<E { (1 — W) } (because |¢| < 1),
Z?:l Wz(l)
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Moving on to later steps,

n (®) (®)
. (2 W 6(X, >>

n

()
_ E[ { (Zz 1W (X ) |X(1:t—1) x (Lt=1) W(t—l)) |X(1:t—1) W(t—l)}]
n 7 ? Y Y
1 n
-oyeie| [
n 4=
w
t—1
k=1

|
“lye {Zz— [/ Ty | 2w | X770 42 >¢<x>dxwx;1“>]}

=1

(v | 2)gule | X)g(a)d | X0, W“-”] }

Note that

) = /X f® | D)l | () dz

are bounded and M L-Lipschitz since |¢| < 1, |f;| < M and g,(z | -) is L-Lipschitz

by assumption. So

7'1_ Wl(t)¢ Xz(t) n W.(t—l) ~ -
E (ZZ_I - ( ) o ZE - J (til) th(Xj(t 1))
k

j=1 2 W

" it T =) (=) T (=) (1:t—1)
_ J - - — e
= |E {Z Zn WD E [¢f<Xj & ) — ¢t(Xj ) | Xj } }

j=1 2k=1 "k

n W,(tfl) ~ 1) - 1) o)
SE{Z n jW(t—l) [ (X5 e ) = ol ’|Xj' ]} (52.7)

Jj=1 k=1""k

n W(t—l)
SE{ 7 1)MLE(Hg“ Y1)

o 2k Wi

n W(t—l)
SE{ n (t— 1MLV T} MLV Cdr = O(1/+/n).

=1 2k=1 Wi
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On the other hand,

n (t—1)
ZE{ W (t : q;(XJ(tl))} B LLt((?g) /Wt(x(1;t))¢(x(t))dx(1:t)
t—1

j=1 Y W
n (t 1)

=>E {,LWJ'—@_WX;“))} = [ mea G| < 01V
j=1 > ket Wi (528)

by induction hypothesis. Adding equations (S2.7) and (S2.8), we have

n (t) ®
E{Z@':lWi H(X; )} _/Wt(m(l:t))qs(w(t))dw(l:t)

nLy(6)/Li_(6) O(1/v/n). (S2.9)

Now we analyze the difference between (L,(6)/L;_1(6))-normalized estimate and

weight-normalized estimate.

L En W) s W™
nLi(0)/Li—1(0) S VVi(t)

S W) (_srw 2
s owl nLy(0)/Li-1(0)

S W) (st 2
s ow nLi(0)/Li-1(0)

sew®
=By nLt(Q)/Lt—l(e)}

s, ]
[E {1 T Li0)/L(0) }

The first term is O(1/n) by plugging in ¢ = 1 in (S2.9), and the second term is
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O(1/n) by assumption (i) since W is bounded. In summary, we have

i W X ®

J

= O(1/v/n).

As for the variance (5.11), let w, = E[Wi(t)].

®)
. {zﬂw (X, >}

Z] 1Vv(lf)
ZVar{ZJ W00 | T W () ( i 1Wft)
nw; " Wt
7j=1
rwe(x W e(x ") W“
§2Var Z‘]fl j qb( J ) —|—2V&I‘ Z] 1 ¢((t) 1— Z =1 Lay=1""3
Nnwg Z] 1W

The first term is obviously O(1/n) by boundedness (note that w; is a constant). For

the second term,

n (t) N\ 2 n ®)\ 2
(e N (s
- ;L:l I/Vj(t) nw;

n )\ 2

<pl(1-2=
- nwy

noy®
:Var<zﬂ — ):O(l/n)

nwy
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Now we prove (5.12). Note that

T
Ly(0)
0) = lo
=20
T 1 n
_ 1 0
~y(1yow).
t=1 =1
Because T is fixed, it is sufficient to show that for all t,

{log( ZW ) Lf %)} — O(1/n).

Since £ 3% W is bounded below by ¢ > 0, in the region [min(e, Ly(6)/L,_1(8)), 00),

log is Lipschtiz and

L(0)
Zz IW Lt 1(6)

~ min(e, Li(0)/Li—1(0))

]. L (t) . Lt(e)
log (n ;WZ ) log o1 (0)

Square both sides and take expectation, and we notice that the right side would be

O(1/n) by taking ¢ =1 in (S2.5). O
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S3 Likelihood Experiments

We conduct experiments to support our theoretical analysis of likelihood using syn-
thetic data generated from the linear state space model from Section 6.2. In this
case, the marginal likelihood p(y*T)) can be computed exactly in closed form using
the Kalman filter, allowing us to directly compare the output likelihood to the true
likelihood. In Figure 1, we plot the log of the sample average of the likelihood esti-
mates from 50 independent experiments, as a function of p in equation (6.13), while
the observation y(*7) is generated with p = 0 and fixed across the experiments. It
can be seen that with the kernel bandwidth » = 0.1, RRJ has no significantly higher
bias compared to multinomial resampling (r = 0). In Figure 2, we zoom in on cases
with p = 0 and plot the same log-likelihood with respect to a continuum of . We can
see that RRJ has no significantly higher bias compared to multinomial resampling

for a reasonably wide range of r.

S4 Further Details of VRNN Experiments

The dimensions of Z; and R; are 10 and 5, respectively. The dimension of 74 is 32.
For the training of Ensemble Transform, the regularization parameter € is chosen as

0.8. The Sinkhorn iteration number is 500 and the convergence threshold is 0.001.
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likelihood Estimation
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Figure 1: Likelihood estimation. The four lines are the log-likelihood computed via Kalman filter,
SMC with multinomial resampling, RRJ with kernel bandwidth » = 0.1, and RRJ with r = 1,
respectively.
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likelihood Estimation
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Figure 2: Likelihood estimation with p = 0. The dashed lines are the log-likelihood computed via

Kalman filter. The green curves correspond to those estimated by RRJ for kernel bandwidth r
ranging from 0 to 1. Note that » = 0 reduces to multinomial resampling.



