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In this supplementary material, we provide part of the simulation results

and the technical proofs for all the results presented in the main body of

the paper.

S1. Simulation on Time Series Regression

In this section, we evaluate the finite sample performance of the modified

`1-regularized Huber estimator proposed in Section 3.1 compared with the

regular Huber estimator. We generate the linear process {Xi}ni=1 from a

VAR model,

Xi+1 = AXi + εi,

where we consider a Toeplitz transition matrix A = (λ|i−j|) with λ = 0.5

and further scaled by 2λmax(A) to ensure the stationarity of (Xi). The inno-



vation vectors εi have i.i.d. coordinates drawn from Student’s t-distribution

with df = 5. We construct ξi in (3.1) as

ξi =
∞∑
k=0

bkηi−k,

where bk = ρk with a ρ drawn from Unif(−0.8, 0.8) and ηi follows a Stu-

dent’s t-distribution with df = 5 and is independent of εi. Recall the linear

model

Yi = X>i β
∗ + ξi.

We choose β∗ = (1, 1, . . . , 1, 0, 0, . . . , 0)> with s elements of value 1 and

p− s elements of value 0 for s = 2blog(p)c. In weight function

w(x) = min

{
1,

b

|Bx|2

}
,

we select b = 5, 15, 50, 100 and B = Ip. The simulation results with different

n, p are summarized in Table 1. We observe that neither small b nor large

b can be consistently beneficial. The weight function with a small b shrinks

the covariates too aggressively, hence discards too much information of the

tail behavior of the linear process. Large b makes the shrinkage less effective,

hence approaches the Huber estimator.

S2. Proofs of Results in Section 2

In this section, we provide the proofs of the results presented in Section 2.



Table 1: Experiment results on time series regression.

(n, p) (100, 10) (100, 100) (100, 500) (100, 1000)

Huber 0.77 (0.090) 3.64 (0.120) 4.37 (0.079) 5.65 (0.064)

Weighted Huber (b = 5) 0.80 (0.043) 4.25 (0.069) 4.55 (0.082) 5.89 (0.041)

Weighted Huber (b = 15) 0.68 (0.035) 3.15 (0.092) 4.15 (0.035) 5.28 (0.161)

Weighted Huber (b = 50) 0.87 (0.042) 3.24 (0.155) 4.00 (0.090) 5.11 (0.049)

Weighted Huber (b = 100) 0.70 (0.086) 3.70 (0.086) 4.26 (0.135) 5.30 (0.077)

Proof of Theorem 1. We first define the filtration {Fi} with the σ-field Fi =

σ(εi, εi−1, . . . ), and the projection operator Pj(·) = E(·|Fj) − E(·|Fj−1).

Conventionally it follows that Pj(G(Xi)) = 0 for j ≥ i+ 1. We can write

n∑
i=1

G(Xi)− EG(Xi) =
n∑

j=−∞

( n∑
i=1

Pj(G(Xi))
)

=:
n∑

j=−∞

Lj,

where Lj =
∑n

i=1 Pj(G(Xi)). By the Markov inequality, for any λ > 0,

P
( n∑

i=1

G(Xi)− EG(Xi) ≥ 2x

)
≤ P

( 0∑
j=−∞

Lj ≥ x

)
+ P

( n∑
j=1

Lj ≥ x

)
≤ e−λxE

[
exp

{
λ

0∑
j=−∞

Lj

}]
+ e−λxE

[
exp

{
λ

n∑
j=1

Lj

}]
. (S2.1)

We shall bound the right-hand side of (S2.1) with a suitable choice of λ > 0.

Observing that {Lj}j≤n is a sequence of martingale differences with respect

to {Fj}, we firstly seek an upper bound on E[eλLj
∣∣Fj−1]. By the Lipschitz



condition (2.6) and the boundedness of G, it follows that

|Lj| ≤
n∑

i=1∨j

min
{∣∣E [G(Xi)

∣∣Fj]− E [G(Xi)|Fj−1]
∣∣ , 2M}

≤
n∑

i=1∨j

min
{
g>|Ai−j|E

[
|εj − ε′j|

∣∣Fj] , 2M} , (S2.2)

where ε′j is an i.i.d. copy of εj. For notational convenience, we denote

b>i = g>|Ai| and ηj = E(|εj − ε′j|
∣∣Fj). Then we have

|Lj| ≤ 2M
n∑

i=1∨j

I(b>i−jηj ≥ 2M) +
n∑

i=1∨j

b>i−jηjI(b>i−jηj ≤ 2M) =: Ij + IIj.

For j ≤ 0 and k ≥ 2, by the triangle inequality, it holds that

E[|Lj|k
∣∣Fj−1] ≤

[(
E[|Ij|k

∣∣Fj−1]
)1/k

+
(
E[|IIj|k

∣∣Fj−1]
)1/k

]k
≤ (‖Ij‖k + ‖IIj‖k)k . (S2.3)

Moreover,

‖Ij‖k ≤ 2M
∞∑

i=−j

∥∥I(b>i ηj ≥ 2M)
∥∥
k
≤ 2M

∞∑
i=−j

[
P
(
(b>i ηj)

2 ≥ (2M)2
)]1/k

.

(S2.4)

Recall the definitions of γ and τ . We have |bi|1 ≤ γρ
i/τ
0 , which implies

E[(b>i ηj)
2] ≤ 2σ2|bi|21 ≤ 2γ2σ2ρ

2i/τ
0 , for all j.

By the Markov inequality, we obtain from (S2.4) that for k ≥ 2,

‖Ij‖k ≤ 2M

(
γσ√
2M

)2/k
ρ
−2j/kτ
0

1− ρ2/kτ
0

. (S2.5)



In view of the fact 1− x ≥ −x log x for x ∈ (0, 1), we can further relax the

bound in (S2.5). Applying the Stirling formula, for k ≥ 2, we can obtain

‖Ij‖kk ≤ kkτ kρ
−2/τ
0

(
M

log(1/ρ0)

)k (
γσ√
2M

)2

ρ
−2j/τ
0

≤ 1

2
√

2π

(
γσ

ρ0M

)2

k!τ k
(

eM

log(1/ρ0)

)k
ρ
−2j/τ
0 .

Define the constants

C1 =
1

2
√

2π
ρ−2

0 , and C2 =
e

log(1/ρ0)
.

Then we can simply write

‖Ij‖kk ≤ C1k!τ kCk
2M

k−2γ2σ2ρ
−2j/τ
0 . (S2.6)

Analogously, for k ≥ 2, we can also get

‖IIj‖kk ≤
[ ∞∑
i=−j

{
E
[
(b>i ηj)

2 (2M)k−2 ]}1/k
]k
≤ C1k!τ kCk

2M
k−2γ2σ2ρ

−2j/τ
0 .

(S2.7)

By (S2.3), (S2.6) and (S2.7), we have

E[|Lj|k
∣∣Fj−1] ≤ C1k!τ k(C ′2)kMk−2γ2σ2ρ

−2j/τ
0 , (S2.8)

where C ′2 = 2C2 = 2e/ log(1/ρ0). Now we are ready to derive an upper

bound for E[eλLj
∣∣Fj−1]. By the Taylor expansion, we have

E[eλLj |Fj−1] = 1 + E[λLj|Fj−1] +
∞∑
k=2

1

k!
E[λkLkj |Fj−1].



Notice that E[Lj
∣∣Fj−1] = 0. For 0 < λ < (C ′2Mτ)−1, we have

E[eλLj
∣∣Fj−1] ≤ 1 + C1M

−2γ2σ2ρ
−2j/τ
0

∞∑
k=2

(
C ′2Mτλ

)k
≤ exp

{
C ′1γ

2σ2τ 2ρ
−2j/τ
0 λ2

1− C ′2Mτλ

}
,

where the constant

C ′1 = C1(C ′2)2 =
1

2
√

2π

(
2e

ρ0 log(1/ρ0)

)2

,

Thus, recursively conditioning on F0,F−1, . . . , we have for 0 < λ < (C ′2τ)−1,

P
( 0∑
j=−∞

Lj ≥ x

)
≤ e−λxE

[
exp

{
λ

0∑
j=−∞

Lj

}]
≤ e−λx exp

{
C ′1γ

2σ2τ 2(1− ρ2/τ
0 )−1λ2

1− C ′2Mτλ

}
.

Specifically, choosing λ = x[C ′2Mτx+ 2C ′1γ
2σ2τ 2(1− ρ2/τ

0 )−1]−1 yields

P
( 0∑
j=−∞

Lj ≥ x

)
≤ exp

{
− x2

4C ′1γ
2σ2τ 2(1− ρ2/τ

0 )−1 + 2C ′2Mτx

}

≤ exp

{
− x2

2C ′1γ
2σ2ρ−2

0 (log(1/ρ0))−1τ 3 + 2C ′2Mτx

}
= exp

{
− x2

C ′′1 τ
3γ2σ2 + 2C ′2Mτx

}
, (S2.9)

where C ′′1 = 2C ′1ρ
−2
0 (log(1/ρ0))−1. We can deal with Lj for j ≥ 1 by similar

arguments and obtain

E[eλLj
∣∣Fj−1] ≤ exp

{
C ′1γ

2σ2τ 2λ2

1− C ′2Mτλ

}
for j ≥ 1.



In a similar way as deriving (S2.9), it follows that

P

(
n∑
j=1

Lj ≥ x

)
≤ exp

{
− x2

C ′′1γ
2σ2τ 2n+ 2C ′2Mτx

}
. (S2.10)

Combining (S2.1), (S2.9) and (S2.10), we have

P
( n∑
i=1

G(Xi)− E[G(Xi)] ≥ x
)
≤ 2 exp

{
− x2

4C ′′1 τ
2(τ ∨ n) + 4C ′2Mτx

}
,

which implies (2.7) for τ ≤ n.

Proof of Theorem 2. We follow the starting steps when proving Theorem

1. Without assuming G bounded, we have

|Lj| ≤
n∑

i=1∨j

g>|Ai−j|E
[
|εj − ε′j|

∣∣Fj] =
n∑

i=1∨j

b>i−jηj =: d>j ηj.

For j ≤ −τ , we have

|dj|1 ≤
n∑
i=1

|bi−j|1 ≤ γ
ρ

1/τ
0

1− ρ1/τ
0

· ρ−j/τ0 ≤ (log(1/ρ0))−1γτρ
−j/τ
0 . (S2.11)

Note that

E[eλ|Lj ||Fj−1] ≤ E[eλd
>
j ηj |Fj−1] = E[eλd

>
j ηj ] ≤ E[eλd

>
j (|εj |+|ε′j |)]. (S2.12)

Let λ∗ = c0(log(1/ρ0))(γτ)−1 and Yj = λ∗d>j (|εj| + |ε′j|)ρ
j/τ
0 . By (S2.11)

and (S2.12), it follows that for any j ≤ −τ , EeYj ≤ θ2 and

E[eλ
∗|Lj | − 1|Fj−1] ≤ EeYjρ

−j/τ
0 − 1 =

∫ ∞
0

ρ
−j/τ
0 exρ

−j/τ
0 P(Yj ≥ x)dx



≤
∫ ∞

0

ρ
−j/τ
0 exρ

−j/τ
0 e−xθ2dx

≤ ρ
−j/τ
0 θ2

1− ρ−j/τ0

≤ ρ
−j/τ
0 θ2

1− ρ0

.

Since E[Lj|Fj] = 0, for any 0 < λ ≤ λ∗,

E[eλLj − 1|Fj−1] = E[eλLj − λLj − 1|Fj−1]

≤ E[eλ|Lj | − λ|Lj| − 1|Fj−1]

≤ E[eλ
∗|Lj | − λ∗|Lj| − 1|Fj−1] · λ2/(λ∗)2

≤ E[eλ
∗|Lj | − 1|Fj−1] · λ2/(λ∗)2,

in view of ex − x ≤ e|x| − |x| for any x and when x > 0, (eλx − λx− 1)/λ2

is increasing with λ ∈ (0,∞). Using 1 + x ≤ ex, we have

E[eλLj |Fj−1] ≤ 1 + E[eλ
∗|Lj | − 1|Fj−1] · λ2/(λ∗)2

≤ 1 + C1ρ
−j/τ
0 γ2τ 2θ2λ2 ≤ exp

{
C1ρ

−j/τ
0 γ2τ 2θ2λ2

}
.

where C = c−2
0 (log(1/ρ0))−2/(1− ρ), which implies that

P
( −τ∑
j=−∞

Lj ≥ x

)
≤ e−λxE

[
exp

{
λ
−1∑

j=−∞

Lj

}]
≤ e−λx exp

{
C1γ

2τ 3θ2λ2
}
.

with C1 = C(log(1/ρ0))−1(ρ0)−2. For the cases when j > −τ , we use the

bound |dj|1 ≤ (ρ0 log(1/ρ0))−1γτ and obtain E[eλLj |Fj−1] ≤ 1+C2γ
2τ 2θ2λ2

for C2 = C/ρ2
0 and

P
( n∑
j=−τ+1

Lj ≥ x

)
≤ exp

{
−λx+ C2(n+ τ)γ2τ 2θ2λ2

}
. (S2.13)



Therefore (2.9) follows by choosing

λ = min

{
λ∗,

x

2C1γ2τ 3θ2
,

x

2C2(n+ τ)γ2τ 2θ2
,

}
.

By a slight modification of the Lipschitz condition (S2.2), we can devel-

op some ancillary results in Corollar 1 and Corollary 2, that can be useful in

estimating time series regression models. The proof follows similarly from

that of Theorem 1 without extra technical difficulty.

Corollary 1. Consider the same setting of the model as in Theorem 1. Let

G : R2p → R be a function with |G(u)| ≤M for all u ∈ R2p. Suppose there

exists a vector g = (g1, . . . , g2p)
> with gi ≥ 0 for 1 ≤ i ≤ 2p and

∑2p
i=1 gi = 1

such that

|G(u)−G(v)| ≤
2p∑
i=1

gi|ui − vi|, for all u, v ∈ R2p.

Then for any x > 0, we have

P
( n∑
i=1

G(Xi, Xi−1)− EG(Xi, Xi−1) ≥ x
)
≤ 2 exp

{
− x2

C ′1nσ
2γ2τ 2 + C ′2τMx

}
.

(S2.14)

Proof of Corollary 1. It follows from the fact that the (2p)-dimensional pro-

cess (X>i , X
>
i−1)> is also linear and satisfies the condition (2.3) with γ mul-

tiplied by a constant depending on ρ0 only.



Corollary 2. Consider the same setting of the model as in Theorem 1. Let

G : Rp → R be a function with |G(u)| ≤M for all u ∈ Rp. Assume that

|G(u)−G(v)| ≤ |u− v|2, for all u, v ∈ Rp.

Assume that log p > 1 and τ log p ≤ n. Then for any x > 0, we have

P
( n∑
i=1

G(Xi)− EG(Xi) ≥ x
)

≤ 2 exp

{
− x2

C ′′1n(σ2γ2 +M2)τ 2(log p)2 + C ′′2 τM(log p)x

}
.(S2.15)

Proof of Corollary 2. With a different Lipschitz condition on G, the step

(S2.2) becomes

|Lj| ≤
n∑

i=1∨j

min{|Ai−jηj|2, 2M} ≤
n∑

i=1∨j

min{γρ(i−j)/τ
0 |ηj|2, 2M}.

Note that E|ηj|22 ≤ 2pσ2. For j ≤ −n0 where n0 = dτ log p/ log(1/ρ0)e, by

similar arguments in deriving (S2.9), it can be obtained that

P
( −n0∑
j=−∞

Lj ≥ x

)
≤ exp

{
− x2

C1τ 3 + C2Mτx

}
. (S2.16)

For j > −n0, we have

|Lj| ≤ 2n0M +
∞∑

i=j+n0

min{γρ(i−j)/τ
0 |ηj|2, 2M}.

Similarly as (S2.8), we can get

E[|Lj|k|Fj−1] ≤ 2k[(2n0M)k + C ′1k!τ k(C ′2)kMk−2γ2σ2]



≤ C3(C4n0M)kk!(1 +M−2γ2σ2),

which further implies

E
[

exp
{
λ

n∑
j=−s+1

Lj

}]
≤ exp

{
C3C

2
4(M2 + γ2σ2)n2

0(n0 + n)λ2

1− C4n0Mλ

}
,

and

P

(
n∑

j=−n0+1

Lj ≥ x

)
≤ exp

{
− x2

C ′3(M2 + γ2σ2)n2
0(n0 + n) + C ′4Mτ(log p)x

}
.

Then (S2.15) follows in view of n0 ≤ Cρ0n.

Proof of Theorem 3. Let µ̂j be the Huber estimator of µj. Following similar

arguments of proving Theorem 3.1 in Zhang (2021), for

Rnj(a) =
n∑
i=1

[φν(Xij − a)− Eφν(Xij − a)],

it can be obtained that for any δ > 0 with ν−1δ ≤ 1/2,

P(µ̂j − µj ≥ δ) ≤ P(Rnj(µj + δ) ≥ n(δ − 4ν−1µ2
2)).

By the Lipschitz continuity of the function φν and the uniform bound

|φν(x)| ≤ ν, applying Theorem 1 to Rnj(µj + δ), it follows that

P(Rnj(µj + δ) ≥ y) ≤ 2 exp

{
− y2

2C1nτ 2γ2 + C2τνy

}
.

Then it follows that

P(µ̂j − µj ≥ δ) ≤ 2x



by letting n(δ− 4ν−1µ2
2) = y = τγ

√
2C1n log(1/x) +C2τν log(1/x) for 0 <

x < 1/e. The requirement ν−1δ ≤ 1/2 is met if we choose ν = 2µ∗√
C2

√
n

log(1/x)

for any µ∗ ≥ µ2 and impose the condition

(
√

2C1C2γ/µ2 + 4C2)τ log(1/x) ≤ n.

For δ ≤ δn = (
√

2C1γ + 4
√
C2µ

∗)τ
√

log(1/x)
n

, we have P(µ̂j − µj ≥ δn) ≤ 2x.

It can also be obtained that P(µ̂j − µj ≤ −δn) ≤ 2x similarly. By letting

x = p−c−1, for some c > 0, it follows that

P
(

max
1≤j≤p

|µ̂j − µj| ≥
√
c+ 1(

√
2C1γ + 4

√
C2µ

∗)τ

√
log p

n

)
≤ 4p−c.

which further implies (2.10).

S3. Proofs of Results in Section 3

This section includes all the proofs for the results on robust estimation of

time series regressions presented in Section 3.

S3.1 Proofs of Results in Section 3

Denote Ln(β) = 1
n

∑n
i=1 Φν((Yi − X>i β)w(Xi)) and φν(·) = Φ′ν(·). Recall

b0 = b/λmin(B) and κ(B) = λmax(B)/λmin(B).

Lemma 1 (Deviation bound). Let Assumptions (A1) (A2) (A3) in Section

3.1 be satisfied. Let ν = cση(n/ log p)1/2 and λ = Cb0ση(log p/n)1/2 for a



S3.1 Proofs of Results in Section 3

sufficiently large C, with probability at least 1 − 4p−c1 for some c1 > 0, it

holds that |∇Ln(β∗)|∞ ≤ λ.

Proof. Consider the first component ∇Ln1(β∗) of ∇Ln(β∗). We have

∇Ln1(β∗) =
1

n

n∑
i=1

φν(ξiw(Xi))Xi1w(Xi).

Note that |φν(x) − φν(y)| ≤ |x − y| and |φν(ξiw(Xi))Xi1w(Xi)| ≤ νb0.

Conditioned on {Xi}ni=1, by Theorem 1, we have

P
(
|∇Ln1(β∗)− E[∇Ln1(β∗)]| ≥ C ′b0x |(Xi)i

)
≤ 4p−c,

for x = ση
√

log p/n+ ν log p/n and some constant c > 1. Hence by a union

bound, with probability at least 1− 4p−c1 for c1 > 0, it holds that

|∇Ln(β∗)− E[∇Ln(β∗)]|∞ ≤ C ′b0x.

As E|φν(ξiw(Xi))| = E[|ξiw(Xi)|1(|ξiw(Xi)| > ν)] ≤ Cρσ
2
ην
−1, we have

|E[∇Ln1(β∗)]| ≤ E|∇Ln1(β∗)| ≤ Cρb0σ
2
ην
−1. (S3.1)

Therefore, choosing ν = cση(n/ log p)1/2 and λ = Cb0ση
√

log p/n ensures

that |∇Ln(β∗)|∞ ≤ λ with high probability.

Lemma 2 (RSC condition). Let Assumptions (A1) (A2) (A3) be satisfied.

Assume

b0(b0 + κ(B)γσε)τ
√
s
√

(log p)3/n→ 0.



S3.1 Proofs of Results in Section 3

We have the following holds uniformly for all β, such that |∆|2 ≤ ν/(2b0)

and |∆Sc|1 ≤ 3|∆S|1 with probability no less than 1− 4p−c2 that

Ln(β)− Ln(β∗)−∇Ln(β∗)>(β − β∗) ≥ 1

2
λmin(E[

w2(Xi)

2
XiX

>
i ])|β − β∗|22.

(S3.2)

Proof. Denote S = supp(β∗). We will show that with high probability,

(S3.2) holds uniformly over the set

C := {β : |β − β∗| ≤ ν

2b0

, |βSc − β∗Sc|1 ≤ 3|βS − β∗S|1},

Let T (β, β∗) = Ln(β) − Ln(β∗) − ∇Ln(β∗)>(β − β∗), then it follows the

same argument as Appendix B.3 in Loh (2021) that

T (β, β∗) ≥ 1

n

n∑
i=1

1

2
(w(Xi)X

>
i (β − β∗))21Ai ,

where Ai = {ξi ≤ ν/2}. Denote Γ = 1
n

∑n
i=1

w(Xi)
2

2
XiX

>
i 1Ai . For any u

such that |u|2 ≤ 1, we have

u>Γu =
1

n

n∑
i=1

1

2
(u>Xiw(Xi))

21Ai .

Notice that 1
2
|(u>xw(x))2−(u>yw(y))2| ≤ b0(κ(B)+1)|x−y|2 and |(u>xw(x))2| ≤

b2
0. Conditioned on ξi, by Corollary 2 we have

P(|u>Γu− E[u>Γu]| ≥ t|(ξi)i) ≤ 4 exp{−c3s log p},

where t = Cb0(b0 +κ(B)γσε)τ
√
s
√

(log p)3/n for a sufficiently large C such

that c3 > 4. Note that t → 0 by assumption. Following the same spirit



S3.1 Proofs of Results in Section 3

of the ε-net argument in lemma 15 of Loh and Wainwright (2012), we can

obtain that

∣∣v>(Γ− EΓ
)
v
∣∣ ≤ t, ∀ v ∈ Rp, |v|0 ≤ 2s, |v|2 ≤ 1,

holds with probability at least

1− 4 exp
{

2s log 9 + 2s log p− c3s log p
}
≥ 1− 4p−c2 ,

provided that p→∞ and a sufficiently large c3. By Lemma 12 in Loh and

Wainwright (2012), it further implies that

|v>(Γ− EΓ)v| ≤ 27t

(
|v|22 +

|v|21
s

)
, ∀v ∈ Rp. (S3.3)

Denote ∆ = β − β∗, then we have

T (β, β∗) ≥ ∆>Γ∆ ≥ E[∆>Γ∆]− 27t(|∆|22 +
|∆|21
s

). (S3.4)

Moreover, as E|ξi|2 ≤ Cρσ
2
η and ν →∞,

E[∆>Γ∆] = E[
w2(Xi)

2
(∆>Xi)

2] · P(|ξi| ≤
ν

2
)

≥ λmin(E[
w2(Xi)

2
XiX

>
i ])|∆|22 ·

(
1− 4E|ξi|2

ν2

)
≥ 3

4
λmin(E[

w2(Xi)

2
XiX

>
i ])|∆|22,

Also, for β ∈ C, |∆|22 +
|∆|21
s
≤ 17|∆|22. By (S3.4), we conclude that

T (β, β∗) ≥
(3

4
λmin(E[

w2(Xi)

2
XiX

>
i ])− 459t

)
|∆|22

≥ 1

2
λmin(E[

w2(Xi)

2
XiX

>
i ])|∆|22
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Proof of Theorem 4. With Lemma 1 and Lemma 2, the proof follows the

same spirit as Appendix B.1 of Loh (2021) without extra technical difficulty.

S3.2 Proofs of Results in Section 3.2

We shall first prove Proposition 1.

Proof of Proposition 1. If λmax(A) < 1, for any ε > 0, the matrix B =

A/[λmax(A)+ε] has spectral radius strictly less than 1. By Theorem 5.6.12 of

Golub and Van Loan (2013), B is convergent in the sense that lim
k→∞

Bk = 0.

Thus, ‖Bk‖ → 0 as k → ∞ and there exists some N = N(ε, A) such that

‖Bk‖ < 1 for all k ≥ N , which implies ‖Ak‖ ≤ [λmax(A) + ε]k for all k ≥ N .

Therefore, given the constant 0 < ρ0 < 1 and with an arbitrarily small ε

with λmax(A) + ε < 1, there must exist some finite k such that ‖Ak‖ ≤ ρ0.

The proof of the converse is easier by the fact that [λmax(A)]k = λmax(Ak) ≤

‖Ak‖ for any k.

To prove Theorem 5, we introduce some preparatory lemmas. Define

L̃j(b) = n−1
∑n

i=1(X̃ij − b>X̃i−1)2 for 1 ≤ j ≤ p.
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Lemma 3. Let Assumption (B1) be satisfied. For ν � µq(n/ log p)1/2(q−1)

and λ � τγµq(‖A‖∞ + 1)[(log p)/n]1/2−1/2(q−1), with probability at least 1−

4p−c1 for some c1 > 0, it holds that

∣∣L̃j(aj·)∣∣∞ ≤ λ, for all 1 ≤ j ≤ p. (S3.5)

Proof of Lemma 3. We consider the first component of ∇L̃j(aj·), denoted

by ∇L̃j1(aj·). Other components can be manipulated analogously. Let

G(Xi, Xi−1) = 2(X̃i1− X̃>i−1aj·)X̃(i−1)1, where X̃(i−1)1 is the first element of

X̃(i−1). Then we can write

∇L̃j1(aj·) =
1

n

n∑
i=1

G(Xi, Xi−1).

Notice that |G| ≤ 2(‖A‖∞ + 1)ν2 and |G(u) − G(v)| ≤ g>|u − v|, where

|g|1 ≤ 4(‖A‖∞ + 1)ν. By Corollary 1, for x = c′γτ
√

(log p)/n, we have

P
(∣∣∣∇L̃j1(aj·)− E

[
∇L̃j1(aj·)

]∣∣∣ ≥ 4ν(‖A‖∞ + 1)x

)
≤ 4 exp

{
− (c′)2 log p

2C1

}
.

(S3.6)

In view of E[∇Ln(aj·)] = 0, the triangle inequality and |X̃ij| ≤ |Xij|,

∣∣E[∇L̃j1(aj·)
]∣∣ =

∣∣E[∇L̃j1(aj·)
]
− E

[
∇Lj1(aj·)

]∣∣
= 2E

[∣∣(X̃ij − a>j·X̃i−1)X̃(i−1)1 − (Xij − a>j·Xi−1)X(i−1)1

∣∣]
. E

[∣∣X(i−1)1(X̃ij −Xij)
∣∣]+ E

[∣∣Xij(X(i−1)1 − X̃(i−1)1)
∣∣]

+|aj·|>E
[∣∣X(i−1)1(X̃i−1 −Xi−1)

∣∣]
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+|aj·|>E
[∣∣Xi−1(X̃(i−1)1 −X(i−1)1)

∣∣]. (S3.7)

Since |X̃ij −Xij| ≤ |Xij|1{|Xij| ≥ ν}, by Hölder’s inequality, we have

E
[∣∣X(i−1)1(Xij − X̃ij)

∣∣] ≤ ‖X̃(i−1)1‖q · ‖X̃ij −Xij‖q/(q−1)

≤ µq‖X̃ij −Xij‖q/(q−1),

where

‖X̃ij −Xij‖q/(q−1)
q/(q−1) ≤ E|Xij|q/(q−1)1{|Xij| ≥ ν} ≤ µqqν

−q(q−2)/(q−1).

It then follows that E
[∣∣X(i−1)1(Xij − X̃ij)

∣∣] ≤ µqqν
2−q. Other terms in

(S3.7) can be dealt with similarly. With the choice of ν, we can get∣∣E[∇L̃j1(aj·)
]∣∣ ≤ cν(‖A‖∞ + 1)x. Letting λ = Cν(‖A‖∞ + 1)x for a suffi-

ciently large C and c′ > 2
√
C1, it follows from (S3.6) that

P
(∣∣∣∇L̃j1(aj·)

∣∣∣ ≥ λ

)
≤ 4 exp

{
− (c′)2 log p

2C1

}
.

By the Bonferroni inequality, we have

P
(∣∣∣∇L̃j(aj·)∣∣∣

∞
≥ λ, for all 1 ≤ j ≤ p

)
≤ 4p−c1

where c1 = 2−1C−1
1 (c′)2 − 2 > 0.

Define a cone C(S) = {∆ ∈ Rp : |∆Sc|1 ≤ 3|∆S|1} for a subset S ⊆

{1, 2, . . . , p}. We shall verify a restricted eigenvalue (RE) condition on the

set C(S) in the lemma below.
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Lemma 4. Let Assumptions (B1) and (B2) be satisfied. Choose ν �

µq(n/ log p)1/(2q−2). Then for all ∆ ∈ C(S),

∆>∇2L̃j(aj·)∆ ≥
1

2
|∆|22 (S3.8)

holds with probability at least 1− 4p−c2 for some constant c2 > 0.

Proof of Lemma 4. Denote X̃ = (X̃0, X̃1, . . . , X̃n−1)>. Then ∇2L̃j(aj·) =

2X̃>X̃/n =: Γ. We shall first show that with probability at least 1− 4p−c2

for some positive constant c2, it holds that

∣∣v>(Γ− EΓ
)
v
∣∣ ≤ t, ∀ v ∈ Rp, |v|0 ≤ 2s, |v|2 ≤ 1, (S3.9)

where t = c1µqγτs
2(log p/n)1/2−1/[2(q−1)]. For any u ∈ Rp such that |u|2 ≤ 1

and |u|0 ≤ s hence |u|1 ≤
√
s, write

u>(Γ−EΓ)u = 2n−1

n−1∑
i=0

(u>X̃i)
2−E(u>X̃i)

2 =: n−1

n−1∑
i=0

G(Xi)−E[G(Xi)].

Thus, for G(Xi) = (u>X̃i)
2, we have

|G(x)−G(y)| ≤ 2|u>(x+ y) · u>(x− y)| ≤ 4sνg>|x− y|,

where |g|1 ≤ 1. Apply Theorem 1 to function G(Xi)/(4sν) and we have for

any fixed u such that |u|2 ≤ 1 and |u|0 ≤ s,

P
(∣∣u>(Γ− EΓ

)
u
∣∣ ≥ t

)
≤ 4 exp

{
− c3s

2 log p
}
.
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Following the same spirit of the ε-net argument in lemma 15 of Loh and

Wainwright (2012), we can obtain that (S3.9) holds with probability at least

1− 4 exp
{

2s log 9 + 2s log p− c3s
2 log p

}
≥ 1− 4p−c2 ,

provided that p → ∞ and a sufficiently large c3 (or equivalently c1). By

Lemma 12 in Loh and Wainwright (2012) and (S3.9), it further implies that

with probability greater than 1− 4p−c2 ,

|v>(Γ− EΓ)v| ≤ 27t

(
|v|22 +

|v|21
s

)
, ∀v ∈ Rp. (S3.10)

Note that when ∆ ∈ C(S),

|∆|1 = |∆S|1 + |∆Sc |1 ≤ 4|∆S|1 ≤ 4
√
s|∆S|2 ≤ 4

√
s|∆|2. (S3.11)

Furthermore, some algebra delivers that

∆>E
[
Γ
]
∆ = 2E[(X̃>1 ∆)2] ≥ 2

(
∆>E[X1X

>
1 ]∆−∆>E[X1X

>
1 − X̃1X̃

>
1 ]∆

)
≥ 2|∆|22 − 2|∆|21

∣∣E[X1X
>
1 − X̃1X̃

>
1 ]
∣∣
∞. (S3.12)

For any 1 ≤ j, k ≤ p, by the triangle and Hölder’s inequality,

|EX̃ijX̃ik − EXijXik| ≤ |E(X̃ij −Xij)X̃ik)|+ |E(X̃ik −Xik)Xij)|.

We have

|E(X̃ij −Xij)X̃ik)| ≤ ‖X̃ik‖q · ‖X̃ij −Xij‖q/(q−1)
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≤ µq‖X̃ij −Xij‖q/(q−1),

where

‖X̃ij −Xij‖q/(q−1)
q/(q−1) ≤ E|Xij|q/(q−1)1{|Xij| ≥ ν} ≤ µqqν

−q(q−2)/(q−1).

It then follows that |E(X̃ij − Xij)X̃ik| ≤ µqqν
2−q. We can also deal with

|E(X̃ik −Xik)Xij)| similarly. As a result, we have the bias

|E[X̃ijX̃ik −XijXik]| ≤ 2µqqν
2−q ≤ Cµ2

q

( log p

n

) 1
2
− 1

2q−2 . (S3.13)

By (S3.11), (S3.12) and (S3.13), it follows that

∆>E
[
Γ
]
∆ ≥ 2|∆|22 − 16Csµ2

q

( log p

n

) 1
2
− 1

2q−2 |∆|22 ≥ |∆|22. (S3.14)

Recall that t = c1µqγτs
2(log p/n)1/2−1/[2(q−1)] → 0 by Assumption (B2).

Combining (S3.10) and (S3.14), we can establish the following RE condition

∇2Lj(aj·) ≥ |∆|22 − 27t(|∆|22 + |∆|21/s) ≥ |∆|22 − 459t|∆|22 ≥
1

2
|∆|22,

for all ∆ ∈ C(S) with probability no less than 1− 4p−c2 .

Proof of Theorem 5. Let ∆̂j = âj·−aj· for j = 1, . . . , p. As the solution of

(3.5), âj· satisfies

L̃j(âj·) + λ|âj·|1 ≤ L̃j(aj·) + λ|aj·|1,
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which together with convexity implies,

0 ≤ L̃j(âj·)−L̃j(aj·)−〈∇L̃j(aj·), ∆̂j〉 ≤ λ(|aj·|1−|âj·|1)+
∣∣∇L̃j(aj·)∣∣∞|∆̂j|1.

(S3.15)

Denote by A and B the events in Lemma 3 and Lemma 4 respectively. Then

P(A∩B) = 1− P(Ac ∪Bc) ≥ 1− 8p−c for c = min{c1, c2}. Conditioned on

the event A, (S3.15) implies

0 ≤ |aj·,S|1 − |âj·,S|1 − |âj·,Sc |1 +
1

2
|∆̂j|1

≤ |∆̂j,S|1 − |∆̂j,Sc |1 +
1

2
|∆̂j|1 =

3

2
|∆̂j,S|1 −

1

2
|∆̂j,Sc|1,

which further implies ∆̂j ∈ C(S) for all 1 ≤ j ≤ p. Conditioned on the

event B, by (S3.5) and the second inequality in (S3.15), we have

1

2
|∆̂j|22 ≤

(
λ+

∣∣∇Ln(aj·)
∣∣
∞

)
|∆̂j|1 ≤ 6

√
sλ|∆̂j|2. (S3.16)

This immediately shows for all 1 ≤ j ≤ p

|∆̂j|2 ≤ 12
√
sλ � µqγτ(‖A‖∞ + 1)

√
s

(
log p

n

) 1
2
− 1

2q−2

(S3.17)

as well as

|∆̂j|1 . µqγτs(‖A‖∞ + 1)

(
log p

n

) 1
2
− 1

2q−2

.

Hence, (3.6) follows in view of ‖Â − A‖∞ = maxj |∆̂j|1. Moreover, if we

consider the estimation of Vec(A) = (a>1·,a
>
2·, . . . ,a

>
p·)
> ∈ Rp2 with the s-

parsity parameter S =
∑p

i=j sj, by Assumption (B2′) and similar arguments
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of verifying the RE condition in Lemma 4, (S3.8) becomes

2∆>
[
Ip ⊗

(
X̃>X̃

n

)]
∆ ≥ 1

2
|∆|22, for all ∆ ∈ Rp2 .

Thus, similarly as (S3.17), (3.7) follows.

Next we shall concern the robust Dantzig-type estimator.

Lemma 5. Let Assumption (B1) be satisfied. Choose the truncation param-

eter ν � µq(n/ log p)1/(2q−2). Let λ � µqγτ(‖A‖1 + 1)[(log p)/n](q−2)/(2q−2).

Then with probability at least 1 − 8p−c
′

for some constant c′ > 0, it holds

that

‖Σ̂0 − Σ0‖max ≤ λ0 and ‖Σ̂1 − Σ1‖max ≤ λ0.

Proof of Lemma 5. Let λ0 = Cµqτγ[(log p)/n](q−2)/(2q−2) for a sufficiently

large constant C. Applying Theorem 1 to the (m, l)-th entry of Σ̂0, we

have

P
( 1

n

∣∣∣ n∑
i=1

X̃imX̃il − EX̃imX̃il

∣∣∣ ≥ λ0

)
≤ 4 exp

{
− c2 log p

2C1

}
= 4p−c

2/(2C1).

By (S3.13) in the proof of Lemma 4, we see that

∣∣∣EX̃imX̃il − EXimXil

∣∣∣ ≤ cµ2
q

( log p

n

) 1
2
− 1

2q−2 ≤ λ0.

Therefore,

P
( 1

n

∣∣∣ n∑
i=1

X̃imX̃il − E[XimXil]
∣∣∣ ≥ λ0

)
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≤ P
( 1

n

∣∣∣ n∑
i=1

X̃imX̃il − E[X̃imX̃il]
∣∣∣ ≥ C2λ0

)
≤ 4p−C3

for some C3 > 1. Taking a union bound yields

P(‖Σ̂0 − Σ0‖max ≥ λ0) ≤ 4p−c
′
,

where c′ = C3−1 > 0. By Corollary 1, similar arguments apply to Σ̂1, which

delivers ‖Σ̂1−Σ1‖max ≤ λ0 with probability at least 1−4p−c
′
. In conclusion,

it holds simultaneously that ‖Σ̂0 − Σ0‖max ≤ λ0 and ‖Σ̂1 − Σ1‖max ≤ λ0

with probability at least 1− 8p−c
′
.

Proof of Theorem 6. We first show that A is feasible to the convex program-

ming (3.8) for λ = (‖A‖1 + 1)λ0 with high probability. By the Yule-Walker

equation and Lemma 5, we have

‖Σ̂0A− Σ̂1‖max ≤ ‖Σ̂0A− Σ1‖max + ‖Σ1 − Σ̂1‖max

≤ ‖Σ̂0 − Σ0‖max‖A‖1 + ‖Σ1 − Σ̂1‖max ≤ λ,

with probability no less than 1−8p−c
′
. Therefore, conditioned on the event

in Lemma 5, we conclude that |â·j|1 ≤ |a·j|1 for all j = 1, . . . , p and hence

‖Â‖1 ≤ ‖A‖1. Then we have

‖Â− A‖max = ‖Σ−1
0 (Σ0Â− Σ̂1 + Σ̂1 − Σ1)‖max

≤ ‖Σ−1
0 (Σ0Â− Σ̂0Â+ Σ̂0Â− Σ̂1)‖max + ‖Σ−1

0 (Σ̂1 − Σ1)‖max
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≤ ‖Σ−1
0 ‖1‖Σ0 − Σ̂0‖max‖Â‖1 + ‖Σ−1

0 ‖1‖Σ̂0Â− Σ̂1‖max

+‖Σ−1
0 ‖1‖Σ̂1 − Σ1‖max.

By Lemma 5 and the feasibility of Â, we have

‖Â− A‖max ≤ ‖Σ−1
0 ‖1(λ0‖A1‖+ λ+ λ0) = 2‖Σ−1

0 ‖1λ.

Now we shall bound ‖Â−A‖1 from above. Denote by Sj the support of a·j

for j = 1, . . . , p. Then for any 1 ≤ j ≤ p, we have

|â·j − a·j|1 =
∣∣â·j,Sj − a·j,Sj

∣∣
1

+
∣∣â·j∣∣1 − ∣∣â·j,Sj ∣∣1

≤
∣∣â·j,Sj − a·j,Sj

∣∣
1

+
∣∣a·j∣∣1 − ∣∣â·j,Sj ∣∣1

≤ 2
∣∣â·j,Sj − a·j,Sj

∣∣
1
≤ 4s∗‖Σ−1

0 ‖1λ. (S3.18)

Since (S3.18) holds for all 1 ≤ j ≤ p, we conclude that

‖Â− A‖1 ≤ 4s∗‖Σ−1
0 ‖1λ . µqs

∗γτ‖Σ−1
0 ‖1(‖A‖1 + 1)

(
log p

n

) 1
2
− 1

2q−2

.
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