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S1 Technical Proofs

Lemma 1. Assume that µx ∈ C3, Θ0,2(G) < ∞, G ∈ SLC2, bn → 0

and nbn → ∞. Let ⊤ denote the transpose operator, then the local linear

estimator

{µ̂x(t), µ̂
′
x(t)}⊤ = argmin

(η,η′)⊤∈R2

n∑
i=1

{Xi − η − η′(i/n− t)}2K
(
i/n− t

bn

)

satisfies

[µ̂x(t)− µx(t), bn{µ̂′
x(t)− µ′

x(t)}]⊤ = Op{(nbn)−1/2 + b2n}
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for any t ∈ Tn. If in addition θk,4(G) = O(k−2) and nb2n(log n)
2 → ∞, then

sup
t∈Tn

|[µ̂x(t)− µx(t), bn{µ̂′
x(t)− µ′

x(t)}]⊤| = Op{(nbn)−1/2(− log bn)
1/2 + b2n}.

Proof. Write Rx,n,l(t) = (nbn)
−1

∑n
i=1{Xi−E(Xi)}{(i/n−t)/bn}lKµ{(i/n−

t)/bn} and define the deterministic sums wn,l(t) = (nbn)
−1

∑n
i=1{(i/n −

t)/bn}lKµ{(i/n − t)/bn} and δx,n,l(t) = (nbn)
−1

∑n
i=1{µx(i/n) − µx(t) −

µ′
x(t)(i/n − t)}{(i/n − t)/bn}lKµ{(i/n − t)/bn}, then by solving the mini-

mization problem in the local linear estimation (Fan and Gijbels, 1996) we

can obtain that
wn,0(t) wn,1(t)

wn,1(t) wn,2(t)


 µ̂x(t)− µx(t)

bn{µ̂′
x(t)− µ′

x(t)}

 =


Rx,n,0(t)

Rx,n,1(t)

+


δx,n,0(t)

δx,n,1(t)

 .

By Lamma A.1 of Zhang and Wu (2012), Rx,n,l(t) = Op{(nbn)−1/2} holds for

any t ∈ [0, 1] and l ∈ {0, 1}, and by the same argument as in Lemma A.3 of

Zhang andWu (2012) we can obtain that supt∈Tn |Rx,n,l(t)| = Op{(nbn)−1/2(− log bn)
1/2}.

Note that wn,l(t) =
∫ 1

0
vlK(v)dv + O{(nbn)−1} and δx,n,l(t) = O(b2n) hold

uniformly over t ∈ Tn for l ∈ {0, 1, 2}, Lemma 1 follows.

Lemma 2. Assume that µx, µy ∈ C3, θk,4(G) + θk,4(H) = O(k−2), and

G,H ∈ SLC2. If bn → 0, nb2n(log n)
2 → ∞, and the trend estimator

satisfies

sup
t∈Tn

|[µ̂x(t)− µx(t), bn{µ̂′
x(t)− µ′

x(t)}]⊤| = Op{(nbn)−1/2(− log bn)
1/2 + b2n},
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then

sup
t∈Tn

|γ̂n(t)− γ̃n(t)| = Op[{(nbn)−1/2(− log bn)
1/2 + b2n}2 + n−1/2bn].

Proof. Let dµx(t, t
′) = µx(t) + µ′

x(t)(t
′ − t)− µx(t

′) and d̂µx(t, t
′) = µ̂x(t) +

µ̂′
x(t)(t

′ − t) − µx(t
′). Similarly we define dµy(t, t

′) and d̂µy(t, t
′), then we

can write

γ̂n(t)− γ̃n(t) = In(t) + IIn(t) + IIIn(t),

where

In(t) =
1

nbn

n∑
i=1

d̂µx(t, i/n)d̂µy(t, i/n)K

(
i/n− t

bn

)
;

IIn(t) = − 1

nbn

n∑
i=1

{Xi − µx(i/n)}{µ̂y(t) + µ̂′
y(t)(i/n− t)− µy(i/n)}K

(
i/n− t

bn

)
;

IIIn(t) = − 1

nbn

n∑
i=1

{µ̂x(t) + µ̂′
x(t)(i/n− t)− µx(i/n)}{Yi − µy(i/n)}K

(
i/n− t

bn

)
.

By using the decomposition

d̂µx(t, i/n) = {µ̂x(t)− µx(t)}+ {µ̂′
x(t)− µ′

x(t)}(i/n− t) + dµx(t, i/n),

we have

IIIn(t) = − 1

nbn

n∑
i=1

{µ̂x(t)− µx(t)}{Yi − µy(i/n)}K
(
i/n− t

bn

)
− 1

nbn

n∑
i=1

bn{µ̂′
x(t)− µ′

x(t)}{Yi − µy(i/n)}
(
i/n− t

bn

)
K

(
i/n− t

bn

)
− 1

nbn

n∑
i=1

dµx(t, i/n){Yi − µy(i/n)}K
(
i/n− t

bn

)
.
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Since Yi − µy(i/n) = Yi − E(Yi) is a zero-mean process, by the proof of

Lemma 1 we have

sup
t∈Tn

∣∣∣∣∣ 1

nbn

n∑
i=1

{Yi − µy(i/n)}K
(
i/n− t

bn

)∣∣∣∣∣ = Op{(nbn)−1/2(− log bn)
1/2}.

On the other hand, note that |dµx(t, i/n)| ≤ 2−1b2n supt∈[0,1] |µ′′
x(t)| holds for

any |i/n− t| ≤ bn and that

|dµx{t, (i+ 1)/n} − dµx(t, i/n)| = |n−1µ′
x(t)− µx{(i+ 1)/n}+ µx(i/n)|

≤ 2n−1bn sup
t∈[0,1]

|µ′′
x(t)|,

by Lemma A.1(ii) of Zhang and Wu (2012) we have

sup
t∈[0,1]

∣∣∣∣∣ 1

nbn

n∑
i=1

dµx(t, i/n){Yi − µy(i/n)}K
(
i/n− t

bn

)∣∣∣∣∣ = Op(n
−1/2bn).

As a result,

sup
t∈Tn

|IIIn(t)| = Op[n
−1/2bn+(nbn)

−1/2(− log bn)
1/2{(nbn)−1/2(− log bn)

1/2+b2n}],

(S1.1)

and similarly we can show that

sup
t∈Tn

|IIn(t)| = Op[n
−1/2bn+(nbn)

−1/2(− log bn)
1/2{(nbn)−1/2(− log bn)

1/2+b2n}].

(S1.2)

We shall now deal with the term In(t), for which we need to further decom-

pose it into

In(t) = I1,n(t) + I2,n(t) + I3,n(t) + I4,n(t),
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where

I1,n(t) =
1

nbn

n∑
i=1

{d̂µx(t, i/n)− dµx(t, i/n)}{d̂µy(t, i/n)− dµy(t, i/n)}K
(
i/n− t

bn

)
;

I2,n(t) =
1

nbn

n∑
i=1

dµx(t, i/n){d̂µy(t, i/n)− dµy(t, i/n)}K
(
i/n− t

bn

)
;

I3,n(t) =
1

nbn

n∑
i=1

{d̂µx(t, i/n)− dµx(t, i/n)}dµy(t, i/n)K

(
i/n− t

bn

)
;

I4,n(t) =
1

nbn

n∑
i=1

dµx(t, i/n)dµy(t, i/n)K

(
i/n− t

bn

)
.

Note that for any t ∈ Tn,

1

nbn

n∑
i=1

(
i/n− t

bn

)l

K

(
i/n− t

bn

)
=

∫
vlK(v)dv +O{(nbn)−1},

we have

sup
t∈Tn

|I1,n(t)| = Op[{(nbn)−1/2(− log bn)
1/2 + b2n}2],

and

sup
t∈Tn

{|I2,n(t)|+ |I3,n(t)|+ |I4,n(t)|} = Op[{(nbn)−1/2(− log bn)
1/2 + b2n}b2n].

The result then follows by combining these with (S1.1) and (S1.2).

Proof. (Theorem 1) Note that

γ̃n(t)− E{γ̃n(t)} =
1

nbn

n∑
i=1

[U(i/n,F i)− E{U(i/n,F i)}]K
(
i/n− t

bn

)
,

then by the proof of Theorem 2.1 in Zhang (2013),

(nbn)
1/2[γ̃n(t)− E{γ̃n(t)}] →d N{0, ϖU(t)ϕ2}.
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On the other hand, by Theorem 2 of Zhou and Wu (2010), on a richer

probability space there exist independent standard normal random vari-

ables Z1, Z2, . . . and a process (Wk) such that the partial sum process

(
∑k

i=1[U(i/n,F i) − E{U(i/n,F i)}])nk=1 has the same joint distribution as

(
∑k

i=1Wi)
n
k=1 and that

max
1≤k≤n

∣∣∣∣∣
k∑

i=1

Wi −
k∑

i=1

ϖU(i/n)Zi

∣∣∣∣∣ = op(n
3/10 log n).

Then by applying the summation by parts, we can obtain that

sup
t∈Tn

∣∣∣∣∣ 1

nbn

n∑
i=1

{Wi −ϖU(i/n)Zi}K
(
i/n− t

bn

)∣∣∣∣∣ = op{(nbn)−1n3/10 log n},

which is of order op{(nbn log n)−1/2}, and thus by the proof of Lemma A.2

in Zhang (2016) we have

pr

{
(nbn)

1/2

ϕ
1/2
2

sup
t∈Tn

∣∣∣∣ γ̃n(t)− γ(t)− 2−1κ2b
2
nγ

′′(t)

ϖU(t)1/2

∣∣∣∣− (−2 log bn)
1/2 − CK

(−2 log bn)1/2

≤ z

(−2 log bn)1/2

}
→ exp{−2 exp(−z)}.

Since (nbn)
1/2n−1/2bn(−2 log bn)

l = b
3/2
n (−2 log bn)

l → 0 for any l > 0, the

results follow by Lemmas 1 and 2.

Proof. (Theorem 2) Note that

ρ̂n(t) =
γ̂n(t)− E{γ̃n(t)}

σx(t)σy(t)
+ [γ̂n(t)− E{γ̃n(t)}]

{
1

σ̂x,n(t)σ̂y,n(t)
− 1

σx(t)σy(t)

}
+E{γ̃n(t)}

{
1

σ̂x,n(t)σ̂y,n(t)
− 1

σx(t)σy(t)

}
+

E{γ̃n(t)}
σx(t)σy(t)

,
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where

1

σ̂x,n(t)σ̂y,n(t)
− 1

σx(t)σy(t)
=

1

σy(t)

{
1

σ̂x,n(t)
− 1

σx(t)

}
+

1

σx(t)

{
1

σ̂y,n(t)
− 1

σy(t)

}
+

{
1

σ̂x,n(t)
− 1

σx(t)

}{
1

σ̂y,n(t)
− 1

σy(t)

}
.

Write

1

σ̂x,n(t)
− 1

σx(t)
= −

σ̂2
x,n(t)− σ2

x(t)

σ̂x,n(t)σx(t){σ̂x,n(t) + σx(t)}
,

then by applying the proof of Theorem 1 to the case when Y = X and

using Lemma A.3 of Zhang and Wu (2012) we can obtain that

sup
t∈Tn

|σ̂2
x,n(t)− σ2

x(t)| = Op{(nbn)−1/2(− log bn)
1/2 + b2n}.

Since σx(t) is bounded away from zero on [0, 1], we have

sup
t∈Tn

∣∣∣∣ 1

σ̂x,n(t)
− 1

σx(t)

∣∣∣∣ = Op{(nbn)−1/2(− log bn)
1/2 + b2n},

and

sup
t∈Tn

∣∣∣∣ 1

σ̂x,n(t)
− 1

σx(t)
+

σ̂2
x,n(t)− σ2

x(t)

2σ3
x(t)

∣∣∣∣ = Op[{(nbn)−1/2(− log bn)
1/2+b2n}2].

By a similar argument, we can obtain the associated bounds for σ̂y,n(t) as

well. Combining them together, we can get

sup
t∈Tn

∣∣∣∣ 1

σ̂x,n(t)σ̂y,n(t)
− 1

σx(t)σy(t)

∣∣∣∣ = Op{(nbn)−1/2(− log bn)
1/2 + b2n},

and

sup
t∈Tn

∣∣∣∣ 1

σ̂x,n(t)σ̂y,n(t)
− 1

σx(t)σy(t)
+

σ̂2
x,n(t)− σ2

x(t)

2σ3
x(t)σy(t)

+
σ̂2
y,n(t)− σ2

y(t)

2σx(t)σ3
y(t)

∣∣∣∣
= Op[{(nbn)−1/2(− log bn)

1/2 + b2n}2].
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Since E{γ̃n(t)} = γ(t) + 2−1κ2b
2
nγ

′′(t) + O(b3n) uniformly over t ∈ Tn, we

have

sup
t∈Tn

∣∣∣∣ρ̂n(t)− γ̂n(t)− E{γ̃n(t)}
σx(t)σy(t)

+ γ(t)

{
σ̂2
x,n(t)− σ2

x(t)

2σ3
x(t)σy(t)

+
σ̂2
y,n(t)− σ2

y(t)

2σx(t)σ3
y(t)

}
− E{γ̃n(t)}
σx(t)σy(t)

∣∣∣∣ = Op[{(nbn)−1/2(− log bn)
1/2 + b2n}2].

Let

Qi,n(t) =
U(i/n,F i)

σx(t)σy(t)
−γ(t)

[
{Xi − µx(i/n)}2

2σ3
x(t)σy(t)

+
{Yi − µy(i/n)}2

2σx(t)σ3
y(t)

]
, (S1.3)

then by Lemma 2 and its application to the case when Y = X we can

obtain that

sup
t∈Tn

∣∣∣∣∣ρ̂n(t)− 1

nbn

n∑
i=1

Qi,n(t)K

(
i/n− t

bn

)
− E{γ̃n(t)}

σx(t)σy(t)

∣∣∣∣∣
= Op[{(nbn)−1/2(− log bn)

1/2 + b2n}2 + n−1/2bn].

Note that nb7n = o(nb7n log n) → 0 and (nbn)
1/2n−1/2bn(−2 log bn)

l = b
3/2
n (−2 log bn)

l →

0 for any l > 0, by the proof of Theorem 1 it suffices to show that

sup
t∈Tn

∣∣∣∣∣ 1

nbn

n∑
i=1

{Qi,n(t)− V (i/n,F i)}K
(
i/n− t

bn

)∣∣∣∣∣ = op{(−nbn log bn)
−1/2}.

We first deal with the first term in (S1.3) and consider

1

nbn

n∑
i=1

U(i/n,F i)

{
1

σx(t)σy(t)
− 1

σx(i/n)σy(i/n)

}
K

(
i/n− t

bn

)
,

which by Lemma A.1(ii) of Zhang and Wu (2012) satisfies∥∥∥∥∥ 1

nbn

n∑
i=1

U(i/n,F i)

{
1

σx(t)σy(t)
− 1

σx(i/n)σy(i/n)

}
K

(
i/n− t

bn

)∥∥∥∥∥ = O(n−1/2).
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The remaining two terms in (S1.3) can be similarly dealt with, and we can

show that

sup
t∈Tn

∣∣∣∣∣ 1

nbn

n∑
i=1

{Qi,n(t)− V (i/n,F i)}K
(
i/n− t

bn

)∣∣∣∣∣ = Op(n
−1/2),

which is of order op{(−nbn log bn)
−1/2} if bn log bn → 0. The latter is auto-

matically satisfied when bn → 0, and Theorem 2 follows.

S2 Additional Simulation Results

S2.1 Simulation-Assistance with Other Distributions

We shall here examine the possibility of using distributions other than the

normal to perform the simulation-assisted procedure described in Section

4.1. In particular, we consider generating the simulation-assisted samples

X⋄
i and Y ⋄

i in step (v) of the algorithm from the following distributions (in

addition to the standard normal reported in Section 4.2):

(a) uniform distribution on (−1, 1);

(b) centered exponential distribution with rate parameter 1;

(c) Rademacher distribution;

(d) t-distribution with degree of freedom 4;

(e) t-distribution with degree of freedom 9.
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The inclusion of the t4 distribution is to examine the sensitivity of the

simulation-assisted procedure to some of the moment conditions in finite-

sample performance. To compare with the baseline results using the stan-

dard normal distribution reported in Section 4.2, we shall here follow the

same simulation setting as that in Section 4.2. In particular, let (ϵi,1) be

a sequence of independent standard normal random variables and (ϵi,2) be

a sequence of independent Rademacher random variables that is also inde-

pendent of (ϵi,1), we generate the data (Xi, Yi), i = 1, . . . , n, by

Xi = µx(i/n) + 3 sin(1.5πi/n){|ϵi,1| − (2/π)1/2}+ 2 cos(1.5πi/n)ϵi,2 +
∞∑
j=1

j−2ϵi−j,2;

Yi = µy(i/n) + {1.5− (i/n)2}ϵi,1 + (i/n)ϵi,2 +
∞∑
j=1

2−jϵi−j,1,

where µx(t) = 2t2+2t and µy(t) = 2{sin(1.5πt)+ t}. Following Section 4.2,

we consider making simultaneous inference on (1) the time-varying covari-

ance and correlation between the two time series; and (2) the time-varying

first-order autocovariance and autocorrelation of (Xi). By elementary cal-

culations, the true underlying time-varying covariance function between

(Xi) and (Yi) in this case has the explicit form

γ(t) = 2t cos(1.5πt),

while the corresponding time-varying correlation function is given by

ρ(t) =
2t cos(1.5πt)

{(9− 18/π) sin2(1.5πt) + 4 cos2(1.5πt) + π4/90}1/2{(1.5− t2)2 + t2 + 1/3}1/2
.
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Similarly, the time-varying first-order autocovariance and autocorrelation

of (Xi) can be calculated as

γx,1(t) = 2 cos(1.5πt) + π2/3− 3;

ρx,1(t) =
2 cos(1.5πt) + π2/3− 3

(9− 18/π) sin2(1.5πt) + 4 cos2(1.5πt) + π4/90
.

The results are summarized in Tables 1–5, from which we can see that the

performance of the simulation-assisted procedure is reasonably robust to

different choices of the distribution used to generate X⋄
i and Y ⋄

i .

We shall here further examine the situation when different distributions

are used to generate X⋄
i and Y ⋄

i in step (v) of the algorithm. For this, we set

the distribution of X⋄
i as the standard normal (baseline) in the simulation-

assisted procedure and generate Y ⋄
i from different distributions listed in

(a)–(e) to investigate the effect when X⋄
i and Y ⋄

i are not generated from the

same distribution. The results are summarized in Tables 6–10, from which

we can see that the simulation-assisted procedure is reasonably robust to

the situation when the practitioner decides to use different distributions to

generate X⋄
i and Y ⋄

i .

S2.2 Simulation-Assistance with an Artificial Trend

We in this section consider the situation when the simulation-assisted sam-

ples X⋄
i and Y ⋄

i in step (v) of the algorithm are not both generated from
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Table 1: Empirical coverage probabilities of simultaneous confidence bands for the time-

varying covariance and time-varying correlation between (Xi) and (Yi) as functions

of time, where the uniform distribution in (a) is used to generate X⋄
i and Y ⋄

i in the

simulation-assisted procedure.

LHC LHC-DA

n bn 90% 95% 99% 90% 95% 99%

covariance

500 0.1 0.841 0.906 0.952 0.849 0.915 0.952

0.15 0.870 0.927 0.983 0.895 0.943 0.982

0.2 0.884 0.950 0.983 0.911 0.958 0.986

0.25 0.902 0.946 0.988 0.916 0.958 0.987

0.3 0.911 0.951 0.991 0.917 0.957 0.993

1000 0.1 0.890 0.938 0.988 0.894 0.938 0.991

0.15 0.891 0.938 0.985 0.904 0.941 0.991

0.2 0.891 0.947 0.984 0.903 0.955 0.986

0.25 0.894 0.949 0.986 0.902 0.955 0.989

0.3 0.904 0.948 0.988 0.893 0.957 0.989

correlation

500 0.1 0.877 0.933 0.979 0.874 0.935 0.981

0.15 0.834 0.907 0.984 0.836 0.918 0.988

0.2 0.844 0.919 0.983 0.861 0.924 0.990

0.25 0.855 0.916 0.982 0.876 0.941 0.988

0.3 0.863 0.931 0.987 0.882 0.939 0.988

1000 0.1 0.848 0.921 0.988 0.857 0.927 0.987

0.15 0.841 0.913 0.973 0.855 0.924 0.972

0.2 0.860 0.913 0.976 0.870 0.930 0.980

0.25 0.862 0.913 0.980 0.878 0.930 0.982

0.3 0.869 0.929 0.981 0.882 0.933 0.982

centered distributions. For this, we follow the simulation-assisted algo-

rithm described in Section 4.1 but added an artificial trend µ⋄(i/n) to X⋄
i ,



S2. ADDITIONAL SIMULATION RESULTS

Table 2: Empirical coverage probabilities of simultaneous confidence bands for the time-

varying covariance and time-varying correlation between (Xi) and (Yi) as functions of

time, where the exponential distribution in (b) is used to generate X⋄
i and Y ⋄

i in the

simulation-assisted procedure.

LHC LHC-DA

n bn 90% 95% 99% 90% 95% 99%

covariance

500 0.1 0.843 0.913 0.959 0.854 0.918 0.959

0.15 0.863 0.919 0.983 0.878 0.935 0.982

0.2 0.880 0.937 0.981 0.901 0.951 0.983

0.25 0.895 0.942 0.985 0.909 0.951 0.983

0.3 0.911 0.946 0.987 0.910 0.952 0.988

1000 0.1 0.890 0.942 0.989 0.894 0.946 0.992

0.15 0.883 0.937 0.984 0.893 0.935 0.988

0.2 0.879 0.935 0.982 0.896 0.949 0.983

0.25 0.887 0.937 0.986 0.890 0.952 0.988

0.3 0.896 0.944 0.987 0.885 0.952 0.989

correlation

500 0.1 0.905 0.952 0.987 0.902 0.950 0.989

0.15 0.896 0.949 0.984 0.908 0.949 0.988

0.2 0.898 0.943 0.992 0.913 0.954 0.994

0.25 0.899 0.952 0.988 0.920 0.958 0.991

0.3 0.913 0.958 0.989 0.920 0.959 0.990

1000 0.1 0.922 0.963 0.990 0.930 0.959 0.991

0.15 0.899 0.938 0.981 0.907 0.954 0.987

0.2 0.886 0.935 0.981 0.892 0.945 0.983

0.25 0.879 0.925 0.985 0.893 0.946 0.984

0.3 0.884 0.937 0.983 0.896 0.943 0.988

i = 1, . . . , n. For the artificial trend function, we consider a linear trend

µ⋄(t) = t and a quadratic trend µ⋄(t) = (t − 0.5)2. The results are sum-
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Table 3: Empirical coverage probabilities of simultaneous confidence bands for the time-

varying covariance and time-varying correlation between (Xi) and (Yi) as functions of

time, where the Rademacher distribution in (c) is used to generate X⋄
i and Y ⋄

i in the

simulation-assisted procedure.

LHC LHC-DA

n bn 90% 95% 99% 90% 95% 99%

covariance

500 0.1 0.856 0.924 0.964 0.864 0.929 0.965

0.15 0.882 0.931 0.988 0.899 0.949 0.986

0.2 0.892 0.951 0.982 0.915 0.958 0.986

0.25 0.905 0.945 0.987 0.917 0.961 0.986

0.3 0.911 0.952 0.988 0.917 0.960 0.990

1000 0.1 0.890 0.941 0.988 0.895 0.945 0.991

0.15 0.893 0.938 0.984 0.904 0.941 0.990

0.2 0.894 0.946 0.984 0.905 0.955 0.986

0.25 0.894 0.949 0.986 0.902 0.955 0.989

0.3 0.904 0.945 0.989 0.893 0.957 0.989

correlation

500 0.1 0.888 0.938 0.983 0.883 0.944 0.983

0.15 0.825 0.920 0.986 0.836 0.923 0.988

0.2 0.843 0.918 0.987 0.858 0.924 0.992

0.25 0.851 0.915 0.977 0.870 0.936 0.985

0.3 0.854 0.927 0.981 0.869 0.938 0.983

1000 0.1 0.841 0.921 0.987 0.848 0.927 0.987

0.15 0.838 0.910 0.970 0.851 0.921 0.972

0.2 0.854 0.910 0.973 0.868 0.926 0.976

0.25 0.856 0.911 0.982 0.876 0.925 0.982

0.3 0.867 0.924 0.981 0.878 0.933 0.982

marized in Tables 11 and 12, from which we can see that the results are

reasonably robust to the presence of an artificial trend in the simulation-
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Table 4: Empirical coverage probabilities of simultaneous confidence bands for the time-

varying covariance and time-varying correlation between (Xi) and (Yi) as functions of

time, where the t4 distribution in (d) is used to generate X⋄
i and Y ⋄

i in the simulation-

assisted procedure.

LHC LHC-DA

n bn 90% 95% 99% 90% 95% 99%

covariance

500 0.1 0.841 0.918 0.970 0.852 0.922 0.969

0.15 0.856 0.911 0.981 0.874 0.932 0.982

0.2 0.876 0.935 0.981 0.900 0.947 0.983

0.25 0.882 0.933 0.982 0.904 0.944 0.981

0.3 0.902 0.942 0.983 0.898 0.943 0.988

1000 0.1 0.883 0.938 0.987 0.891 0.938 0.991

0.15 0.876 0.925 0.978 0.890 0.929 0.983

0.2 0.873 0.930 0.979 0.890 0.947 0.982

0.25 0.880 0.930 0.985 0.886 0.946 0.988

0.3 0.883 0.937 0.984 0.878 0.940 0.987

correlation

500 0.1 0.914 0.957 0.989 0.912 0.957 0.991

0.15 0.925 0.970 0.992 0.923 0.968 0.992

0.2 0.907 0.951 0.996 0.916 0.961 0.995

0.25 0.899 0.955 0.992 0.920 0.958 0.996

0.3 0.903 0.958 0.991 0.917 0.960 0.991

1000 0.1 0.951 0.986 0.998 0.955 0.983 0.998

0.15 0.910 0.958 0.998 0.921 0.961 0.997

0.2 0.893 0.937 0.989 0.899 0.953 0.988

0.25 0.883 0.932 0.986 0.899 0.951 0.988

0.3 0.883 0.937 0.986 0.893 0.944 0.988

assisted samples. This is largely because the simulation-assisted samples

X⋄
i and Y ⋄

i are used to calculate the test statistic in the same way as the
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Table 5: Empirical coverage probabilities of simultaneous confidence bands for the time-

varying covariance and time-varying correlation between (Xi) and (Yi) as functions of

time, where the t9 distribution in (d) is used to generate X⋄
i and Y ⋄

i in the simulation-

assisted procedure.

LHC LHC-DA

n bn 90% 95% 99% 90% 95% 99%

covariance

500 0.1 0.846 0.924 0.966 0.860 0.928 0.967

0.15 0.867 0.923 0.984 0.884 0.939 0.982

0.2 0.882 0.940 0.981 0.904 0.953 0.983

0.25 0.897 0.938 0.985 0.911 0.950 0.983

0.3 0.911 0.943 0.983 0.907 0.952 0.988

1000 0.1 0.890 0.941 0.987 0.894 0.941 0.991

0.15 0.890 0.933 0.985 0.897 0.935 0.992

0.2 0.885 0.942 0.983 0.897 0.949 0.986

0.25 0.887 0.937 0.986 0.890 0.952 0.989

0.3 0.889 0.941 0.987 0.882 0.950 0.989

correlation

500 0.1 0.877 0.924 0.979 0.874 0.925 0.978

0.15 0.858 0.924 0.983 0.869 0.924 0.985

0.2 0.867 0.923 0.982 0.885 0.934 0.987

0.25 0.871 0.929 0.982 0.892 0.942 0.986

0.3 0.887 0.936 0.983 0.893 0.943 0.985

1000 0.1 0.880 0.939 0.986 0.884 0.944 0.986

0.15 0.864 0.920 0.979 0.874 0.933 0.979

0.2 0.871 0.916 0.976 0.877 0.934 0.981

0.25 0.866 0.916 0.984 0.881 0.934 0.982

0.3 0.870 0.928 0.982 0.882 0.933 0.982
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Table 6: Empirical coverage probabilities of simultaneous confidence bands for the time-

varying covariance and time-varying correlation between (Xi) and (Yi) as functions of

time, where X⋄
i is standard normal and Y ⋄

i is generated from the uniform distribution

in (a) in the simulation-assisted procedure.

LHC LHC-DA

n bn 90% 95% 99% 90% 95% 99%

covariance

500 0.1 0.845 0.915 0.958 0.856 0.921 0.958

0.15 0.869 0.927 0.984 0.891 0.944 0.984

0.2 0.890 0.945 0.982 0.915 0.954 0.986

0.25 0.902 0.947 0.987 0.916 0.959 0.986

0.3 0.911 0.952 0.989 0.917 0.959 0.990

1000 0.1 0.890 0.940 0.988 0.896 0.941 0.991

0.15 0.888 0.937 0.984 0.898 0.938 0.988

0.2 0.887 0.939 0.983 0.901 0.949 0.984

0.25 0.894 0.950 0.985 0.901 0.955 0.988

0.3 0.904 0.946 0.987 0.894 0.957 0.989

correlation

500 0.1 0.875 0.930 0.977 0.874 0.930 0.977

0.15 0.834 0.918 0.983 0.843 0.923 0.986

0.2 0.858 0.921 0.981 0.874 0.933 0.989

0.25 0.863 0.924 0.980 0.885 0.941 0.985

0.3 0.880 0.937 0.983 0.892 0.943 0.985

1000 0.1 0.862 0.929 0.987 0.874 0.939 0.987

0.15 0.848 0.915 0.973 0.859 0.926 0.976

0.2 0.866 0.912 0.976 0.871 0.930 0.980

0.25 0.870 0.917 0.980 0.881 0.935 0.982

0.3 0.872 0.929 0.981 0.887 0.933 0.982

observed data, where the trend function can be handled by the proposed

locally homogenized centering scheme.
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Table 7: Empirical coverage probabilities of simultaneous confidence bands for the time-

varying covariance and time-varying correlation between (Xi) and (Yi) as functions of

time, whereX⋄
i is standard normal and Y ⋄

i is generated from the exponential distribution

in (b) in the simulation-assisted procedure.

LHC LHC-DA

n bn 90% 95% 99% 90% 95% 99%

covariance

500 0.1 0.844 0.912 0.958 0.854 0.918 0.958

0.15 0.864 0.918 0.981 0.881 0.934 0.982

0.2 0.879 0.935 0.979 0.901 0.947 0.98

0.25 0.882 0.934 0.982 0.906 0.945 0.981

0.3 0.906 0.943 0.983 0.905 0.946 0.988

1000 0.1 0.882 0.934 0.987 0.891 0.938 0.991

0.15 0.883 0.933 0.982 0.893 0.936 0.987

0.2 0.889 0.942 0.981 0.899 0.949 0.983

0.25 0.892 0.943 0.985 0.896 0.952 0.988

0.3 0.903 0.944 0.987 0.891 0.953 0.989

correlation

500 0.1 0.892 0.936 0.979 0.892 0.94 0.987

0.15 0.878 0.937 0.983 0.882 0.935 0.985

0.2 0.874 0.928 0.983 0.886 0.939 0.99

0.25 0.877 0.933 0.981 0.896 0.944 0.986

0.3 0.89 0.943 0.987 0.905 0.949 0.99

1000 0.1 0.895 0.947 0.988 0.905 0.951 0.987

0.15 0.87 0.922 0.977 0.879 0.934 0.978

0.2 0.881 0.923 0.976 0.885 0.939 0.98

0.25 0.879 0.924 0.984 0.897 0.942 0.982

0.3 0.884 0.936 0.984 0.895 0.943 0.988
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Table 8: Empirical coverage probabilities of simultaneous confidence bands for the time-

varying covariance and time-varying correlation between (Xi) and (Yi) as functions of

time, where X⋄
i is standard normal and Y ⋄

i is generated from the Rademacher distribu-

tion in (c) in the simulation-assisted procedure.

LHC LHC-DA

n bn 90% 95% 99% 90% 95% 99%

covariance

500 0.1 0.860 0.929 0.963 0.868 0.930 0.961

0.15 0.877 0.929 0.985 0.898 0.945 0.985

0.2 0.890 0.947 0.982 0.915 0.957 0.986

0.25 0.906 0.945 0.988 0.919 0.958 0.986

0.3 0.914 0.950 0.988 0.919 0.958 0.990

1000 0.1 0.883 0.939 0.988 0.894 0.940 0.991

0.15 0.888 0.937 0.984 0.897 0.939 0.989

0.2 0.887 0.941 0.983 0.902 0.949 0.983

0.25 0.892 0.948 0.986 0.896 0.954 0.988

0.3 0.901 0.944 0.987 0.889 0.952 0.989

correlation

500 0.1 0.878 0.933 0.978 0.876 0.937 0.979

0.15 0.840 0.913 0.985 0.847 0.920 0.988

0.2 0.846 0.919 0.986 0.862 0.924 0.993

0.25 0.861 0.915 0.981 0.878 0.937 0.986

0.3 0.877 0.934 0.982 0.889 0.940 0.984

1000 0.1 0.853 0.924 0.986 0.867 0.934 0.986

0.15 0.842 0.914 0.974 0.855 0.926 0.976

0.2 0.863 0.912 0.974 0.871 0.930 0.977

0.25 0.864 0.913 0.978 0.879 0.929 0.982

0.3 0.868 0.924 0.981 0.882 0.933 0.982

S2.3 Time-Varying Vector Autoregressive Model

We shall here supplement the simulation setting in Section 4.2 by con-

sidering an additional data generating mechanism to further examine the
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Table 9: Empirical coverage probabilities of simultaneous confidence bands for the time-

varying covariance and time-varying correlation between (Xi) and (Yi) as functions of

time, where X⋄
i is standard normal and Y ⋄

i is generated from the t4 distribution in (d)

in the simulation-assisted procedure.

LHC LHC-DA

n bn 90% 95% 99% 90% 95% 99%

covariance

500 0.1 0.845 0.919 0.966 0.858 0.926 0.969

0.15 0.866 0.923 0.982 0.883 0.940 0.982

0.2 0.882 0.937 0.981 0.905 0.952 0.983

0.25 0.897 0.938 0.983 0.911 0.949 0.982

0.3 0.911 0.948 0.985 0.910 0.953 0.988

1000 0.1 0.890 0.941 0.989 0.896 0.942 0.992

0.15 0.889 0.937 0.985 0.899 0.939 0.990

0.2 0.885 0.942 0.983 0.900 0.949 0.983

0.25 0.888 0.947 0.985 0.893 0.952 0.988

0.3 0.896 0.942 0.987 0.883 0.950 0.989

correlation

500 0.1 0.901 0.942 0.979 0.900 0.950 0.987

0.15 0.895 0.956 0.990 0.907 0.959 0.991

0.2 0.888 0.940 0.996 0.903 0.952 0.995

0.25 0.885 0.943 0.987 0.906 0.951 0.989

0.3 0.896 0.949 0.989 0.910 0.950 0.990

1000 0.1 0.919 0.967 0.998 0.926 0.964 0.998

0.15 0.894 0.941 0.991 0.901 0.955 0.992

0.2 0.883 0.935 0.985 0.890 0.946 0.985

0.25 0.879 0.925 0.985 0.894 0.950 0.986

0.3 0.878 0.936 0.984 0.891 0.938 0.988

finite-sample performance of the proposed method. For this, we consider
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Table 10: Empirical coverage probabilities of simultaneous confidence bands for the time-

varying covariance and time-varying correlation between (Xi) and (Yi) as functions of

time, where X⋄
i is standard normal and Y ⋄

i is generated from the t9 distribution in (c)

in the simulation-assisted procedure.

LHC LHC-DA

n bn 90% 95% 99% 90% 95% 99%

covariance

500 0.1 0.843 0.915 0.964 0.854 0.921 0.965

0.15 0.865 0.919 0.981 0.882 0.935 0.982

0.2 0.879 0.937 0.981 0.900 0.948 0.980

0.25 0.887 0.938 0.985 0.908 0.950 0.983

0.3 0.911 0.946 0.983 0.908 0.952 0.988

1000 0.1 0.890 0.939 0.987 0.896 0.938 0.991

0.15 0.885 0.935 0.982 0.893 0.937 0.987

0.2 0.883 0.942 0.982 0.897 0.949 0.983

0.25 0.887 0.941 0.986 0.892 0.952 0.988

0.3 0.898 0.944 0.987 0.888 0.952 0.989

correlation

500 0.1 0.871 0.923 0.977 0.871 0.927 0.977

0.15 0.848 0.914 0.983 0.854 0.918 0.985

0.2 0.853 0.918 0.981 0.867 0.922 0.987

0.25 0.862 0.919 0.980 0.882 0.939 0.985

0.3 0.878 0.936 0.981 0.891 0.941 0.985

1000 0.1 0.871 0.936 0.989 0.878 0.944 0.988

0.15 0.859 0.917 0.973 0.869 0.930 0.975

0.2 0.867 0.915 0.976 0.874 0.930 0.980

0.25 0.866 0.914 0.981 0.880 0.932 0.982

0.3 0.869 0.924 0.982 0.884 0.933 0.982

the time-varying vector autoregressive modelX̃i

Ỹi

 =


0.5 0.5 cos(πi/n)

0 0.3


X̃i−1

Ỹi−1

+

ϵi,1

ϵi,2

 ,
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Table 11: Empirical coverage probabilities of simultaneous confidence bands for the time-

varying covariance and time-varying correlation between (Xi) and (Yi) as functions of

time, where a linear trend µ⋄(i/n) = i/n is added to X⋄
i when generating the simulation-

assisted samples in the algorithm described in Section 4.1.

LHC LHC-DA

n bn 90% 95% 99% 90% 95% 99%

covariance

500 0.1 0.878 0.942 0.972 0.891 0.943 0.974

0.15 0.885 0.935 0.990 0.891 0.946 0.989

0.2 0.899 0.944 0.987 0.902 0.949 0.992

0.25 0.895 0.946 0.986 0.909 0.941 0.990

0.3 0.904 0.939 0.985 0.901 0.947 0.987

1000 0.1 0.896 0.943 0.987 0.908 0.950 0.987

0.15 0.903 0.960 0.986 0.915 0.962 0.987

0.2 0.897 0.955 0.988 0.911 0.961 0.991

0.25 0.907 0.949 0.992 0.905 0.957 0.991

0.3 0.913 0.955 0.993 0.897 0.955 0.995

correlation

500 0.1 0.881 0.954 0.992 0.893 0.950 0.990

0.15 0.835 0.919 0.988 0.849 0.920 0.988

0.2 0.850 0.924 0.982 0.865 0.928 0.981

0.25 0.856 0.922 0.978 0.869 0.927 0.980

0.3 0.868 0.920 0.975 0.880 0.924 0.973

1000 0.1 0.853 0.919 0.987 0.857 0.921 0.986

0.15 0.862 0.925 0.984 0.872 0.932 0.990

0.2 0.867 0.929 0.984 0.884 0.940 0.985

0.25 0.884 0.929 0.986 0.882 0.939 0.987

0.3 0.871 0.930 0.983 0.883 0.934 0.989

for which the correlation between the two time series (X̃i) and (Ỹi) is chang-

ing over time. We then let Xi

Yi

 =


µx(i/n)

µy(i/n)

+

 X̃i

Ỹi

 , (S2.4)
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Table 12: Empirical coverage probabilities of simultaneous confidence bands for the time-

varying covariance and time-varying correlation between (Xi) and (Yi) as functions of

time, where a quadratic trend µ⋄(i/n) = (i/n − 0.5)2 is added to X⋄
i when generating

the simulation-assisted samples in the algorithm described in Section 4.1.

LHC LHC-DA

n bn 90% 95% 99% 90% 95% 99%

covariance

500 0.1 0.853 0.921 0.964 0.862 0.928 0.962

0.15 0.869 0.928 0.985 0.888 0.943 0.986

0.2 0.887 0.945 0.982 0.913 0.954 0.985

0.25 0.904 0.945 0.987 0.916 0.957 0.986

0.3 0.914 0.951 0.988 0.920 0.957 0.988

1000 0.1 0.895 0.946 0.989 0.899 0.953 0.992

0.15 0.889 0.938 0.985 0.899 0.940 0.992

0.2 0.889 0.944 0.985 0.902 0.955 0.987

0.25 0.892 0.949 0.986 0.900 0.955 0.989

0.3 0.901 0.946 0.988 0.889 0.957 0.989

correlation

500 0.1 0.873 0.930 0.979 0.874 0.931 0.981

0.15 0.851 0.918 0.983 0.854 0.920 0.984

0.2 0.860 0.922 0.983 0.874 0.934 0.990

0.25 0.871 0.926 0.984 0.890 0.942 0.988

0.3 0.889 0.936 0.986 0.897 0.943 0.988

1000 0.1 0.871 0.936 0.987 0.879 0.944 0.987

0.15 0.859 0.919 0.977 0.869 0.930 0.978

0.2 0.870 0.916 0.976 0.874 0.933 0.981

0.25 0.870 0.917 0.984 0.883 0.935 0.982

0.3 0.872 0.929 0.983 0.884 0.933 0.987

where the trend functions µx(t) = log(1+ t) and µy(t) = sin(t). For the in-

novations, we consider cases when (ϵi,1) and (ϵi,2) are independent standard
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normal, t4, or t9. The results are summarized in Tables 13–15, from which

we can see that the proposed LHC-DA method in general performs reason-

ably well as the empirical coverage probabilities are close to their nominal

levels for most of the cases considered. However, for the correlation case

with t4 innovations, a certain degree of size distortions can be observed from

Table 14. This is possibly due to the fact that a finite eighth moment is

assumed in Theorem 2 for simultaneous inference of the time-varying cor-

relation, which is not satisfied by the t4 distribution. The same moment

condition is used in Theorems 1 and 2 of Zhao (2015) for processes with a

known zero mean and geometrically decaying dependence. If we consider

the t-distribution with degree of freedom 9 as in Table 15 that has a fi-

nite eighth moment, then the size distortion diminishes and the empirical

coverage probabilities become reasonably close to their nominal levels.
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Table 13: Empirical coverage probabilities of simultaneous confidence bands for the

time-varying covariance and time-varying correlation between (Xi) and (Yi) from the

time-varying vector autoregressive model (S2.4) with standard normal innovations.

LHC LHC-DA

n bn 90% 95% 99% 90% 95% 99%

covariance

500 0.1 0.878 0.944 0.985 0.882 0.945 0.986

0.15 0.892 0.944 0.994 0.896 0.945 0.994

0.2 0.891 0.953 0.994 0.901 0.958 0.992

0.25 0.911 0.962 0.995 0.918 0.967 0.996

0.3 0.909 0.955 0.992 0.922 0.964 0.992

1000 0.1 0.911 0.954 0.991 0.921 0.959 0.991

0.15 0.910 0.955 0.990 0.907 0.957 0.991

0.2 0.904 0.961 0.991 0.911 0.964 0.991

0.25 0.904 0.953 0.992 0.910 0.964 0.993

0.3 0.905 0.953 0.993 0.911 0.962 0.994

correlation

500 0.1 0.889 0.961 0.996 0.889 0.956 0.994

0.15 0.872 0.936 0.988 0.879 0.934 0.988

0.2 0.865 0.922 0.985 0.869 0.921 0.984

0.25 0.867 0.942 0.988 0.875 0.946 0.988

0.3 0.867 0.926 0.986 0.880 0.927 0.988

1000 0.1 0.862 0.939 0.991 0.874 0.940 0.990

0.15 0.871 0.931 0.992 0.878 0.939 0.992

0.2 0.877 0.936 0.989 0.888 0.946 0.990

0.25 0.884 0.939 0.988 0.890 0.948 0.990

0.3 0.882 0.931 0.988 0.883 0.943 0.989
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Table 14: Empirical coverage probabilities of simultaneous confidence bands for the

time-varying covariance and time-varying correlation between (Xi) and (Yi) from the

time-varying vector autoregressive model (S2.4) with t4 innovations.

LHC LHC-DA

n bn 90% 95% 99% 90% 95% 99%

covariance

500 0.1 0.866 0.938 0.981 0.875 0.941 0.980

0.15 0.885 0.947 0.990 0.885 0.949 0.990

0.2 0.896 0.943 0.992 0.910 0.946 0.992

0.25 0.903 0.960 0.994 0.912 0.960 0.993

0.3 0.915 0.960 0.990 0.921 0.965 0.990

1000 0.1 0.896 0.953 0.989 0.901 0.958 0.991

0.15 0.907 0.956 0.994 0.911 0.958 0.996

0.2 0.920 0.953 0.991 0.919 0.957 0.993

0.25 0.922 0.965 0.993 0.920 0.968 0.995

0.3 0.913 0.961 0.990 0.921 0.965 0.992

correlation

500 0.1 0.798 0.922 0.979 0.828 0.920 0.976

0.15 0.792 0.866 0.979 0.784 0.864 0.978

0.2 0.829 0.891 0.964 0.833 0.903 0.970

0.25 0.834 0.909 0.978 0.849 0.917 0.974

0.3 0.849 0.903 0.978 0.849 0.910 0.979

1000 0.1 0.758 0.861 0.957 0.770 0.865 0.958

0.15 0.816 0.898 0.967 0.823 0.910 0.971

0.2 0.838 0.895 0.971 0.840 0.898 0.972

0.25 0.849 0.916 0.978 0.859 0.920 0.976

0.3 0.848 0.911 0.978 0.862 0.921 0.978



S2. ADDITIONAL SIMULATION RESULTS

Table 15: Empirical coverage probabilities of simultaneous confidence bands for the

time-varying covariance and time-varying correlation between (Xi) and (Yi) from the

time-varying vector autoregressive model (S2.4) with t9 innovations.

LHC LHC-DA

n bn 90% 95% 99% 90% 95% 99%

covariance

500 0.1 0.864 0.931 0.981 0.870 0.936 0.981

0.15 0.883 0.937 0.986 0.882 0.943 0.986

0.2 0.894 0.944 0.981 0.907 0.950 0.982

0.25 0.909 0.953 0.989 0.908 0.956 0.991

0.3 0.917 0.959 0.990 0.922 0.962 0.993

1000 0.1 0.901 0.954 0.991 0.907 0.958 0.993

0.15 0.913 0.960 0.990 0.917 0.966 0.990

0.2 0.895 0.954 0.994 0.898 0.957 0.993

0.25 0.907 0.952 0.995 0.909 0.959 0.994

0.3 0.896 0.954 0.991 0.900 0.952 0.991

correlation

500 0.1 0.888 0.950 0.990 0.895 0.953 0.989

0.15 0.863 0.932 0.995 0.870 0.943 0.994

0.2 0.853 0.922 0.989 0.863 0.923 0.988

0.25 0.857 0.920 0.989 0.858 0.929 0.991

0.3 0.856 0.925 0.984 0.878 0.931 0.989

1000 0.1 0.866 0.934 0.992 0.873 0.928 0.993

0.15 0.893 0.938 0.988 0.894 0.939 0.988

0.2 0.880 0.931 0.985 0.890 0.938 0.986

0.25 0.883 0.946 0.982 0.887 0.948 0.981

0.3 0.868 0.932 0.983 0.877 0.938 0.984
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