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S1 Comparison of Resampling Strategies

The divide and conquer SMC algorithm described in Section 2.3 merges

the particle populations of each node’s children using mixture resampling.

We compare the performances of lightweight mixture resampling with its

adaptive version described in Section 3.3, those of full-cost mixture resam-

pling, in which all possible N2 permutations of the particles are created,

and those of a linear cost version of DaC-SMC in which no mixing weights

are used (Lindsten et al., 2017).

To compare the four resampling schemes we consider the mean squared
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error (MSE) for each component i using the example of Section 4.1,

MSE(xt(i)) := E
[
(x̄t(i)− µt,i)2

]
, (S1.1)

where x̄t(i) denotes the estimate of the mean of component i at time t and

µt,i denotes the true mean of xt(i)|y1:t obtained from the Kalman filter. To

approximate (S1.1) we consider an empirical average over 50 repetitions.

Figure 1 shows the average (over component) MSE of the estimates

obtained for d = 128 and t = 10 time steps as a function of runtime. The

linear cost version of DaC-SMC has the smallest runtime, however, the re-

sults in terms of MSE are the worst among the four algorithms. In fact, this

linear cost version does not use mixture weights at the point of selection,

and therefore does not take into account the mismatch between γt,Cu and

γt,u when resampling (this is corrected for with a subsequent importance

reweighting). The full mixture resampling has a higher cost, and becomes

unmanageable for large N (it is, in fact, not included for N = 1000, 5000);

the non-adaptive version of lightweight mixture resampling also becomes

too expensive for large N although the increase in cost is less steep than

that of the full mixture resampling (the non-adaptive lightweight mixture

resampling has manageable cost for N = 1000 but it is not included for

N = 5000). The MSE achieved by the non-adaptive lightweight mixture
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Figure 1: Average (over dimensions) MSE at t = 10 over 50 runs for d = 128 as function
of runtime for the linear cost version of DaC in Lindsten et al. (2017) and Algorithm 2
with lightweight mixture resampling, adaptive lightweight mixture resampling and full
mixture resampling. The boxes, from left to right, correspond to increasing number
of particles, N = 100, 500, 1000, 5000. Due to the excessive cost, the results for mix-
ture resampling are not reported for N = 1000, 5000 and those for lightweight mixture
resampling with no adaptation are not reported for N = 5000.

resampling is equivalent to that of the full mixture resampling, at a consid-

erably lower cost. For small N , the adaptive lightweight mixture resampling

also gives comparable results, but, as N increases, the MSE stops improving

and eventually settles around 0.02. This is likely due to the fact that, as it

is the case of Figure 2, sometimes the target ESS is not reached at level 1

and more permutations would be needed to obtain a good importance sam-

pling proposal. One could then consider to add tempering steps to obtain

better samples or, alternatively, to increase the target ESS. By how much

the target ESS should be increased is a challenging question which we have

not investigated further in this work.
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S2 Tempering Strategy

If the product of the marginals over the two child nodes merged via mixture

resampling provides a poor approximation for γt,u (which in some circum-

stances could be detected, for example, by Algorithm 3 failing to achieve

the target ESS), one could expect to alleviate this mismatch via a temper-

ing strategy. Here, we describe an adaptive tempering strategy of the sort

described in Lindsten et al. (2017, Section 4.2) adapted to our context.

We define the following sequence of targets π̂αu,j = γ̂αu,j/γ̂αu,j(1) where

γ̂αu,j(zt,u,j) = [γt,Cu(zt,u,j)]
1−αu,j γt,u(zt,u,j)

αu,j

for zt,u,j ∈ R|Vu| and αu,j ∈ [0, 1], which interpolates from the proposal

γt,Cu to the target at node u, γt,u. In a standard approach to tempering

we would start from αu,j = 0 and select the next value adaptively (see e.g.

Wang et al. (2020); Zhou et al. (2016)). However, Algorithm 3 corresponds

to a first tempering step which moves the proposal γt,Cu closer to the target

γt,u; therefore, instead of starting the tempering schedule at αu,j = 0, we

identify the value of α? which corresponds to the intermediate tempered

target obtained after mixture resampling and carry on with tempering from
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there until αu,j = 1. To identify the value of α we consider the ESS

ESS(α) :=

(
N∑
n=1

(w̃nt,u)
α

)2

/
N∑
n=1

(w̃nt,u)
2α,

and solve ESS(α) = ESS?, where ESS? is the target ESS in Section 3.3. The

equally weighted particles after mixture resampling, {zt,Cu , ωu,j = 1}Nn=1, ap-

proximate π̂α? . The following values of the tempering sequence are chosen

adaptively as described in, e.g., Zhou et al. (2016, Section 3.3.2 and Algo-

rithm 4) and Wang et al. (2020, Algorithm 4), using the conditional ESS

CESSj(α) := N

(
N∑
n=1

ω̄nu,j(w̃
n
t,u)

α−αu,j−1

)2

/
N∑
n=1

ω̄nu,j(w̃
n
t,u)

2(α−αu,j−1), (S2.2)

where ω̄nu,j ∝ ωnu,j. Given a decay threshold β > 0, we find the next value

αu,j solving CESSj(α) = β, then we update the weights, perform a resam-

pling step if necessary, and rejuvenate the particles using a π̂αu,j -invariant

kernel K ′αu,j . This process is repeated until αu,j = 1. The resulting temper-

ing strategy is summarized in Algorithm 1.

S3 Further Details on the Experiments

We collect here further details on the models considered in Section 4.



FRANCESCA R. CRUCINIO AND ADAM M. JOHANSEN

Algorithm 1 Tempering.

1: Initialize: set αu,1 to be the solution of ESS(α) = ESS? and set ωnu,1 = 1 for n ≤ N .

2: Set: j = 1.
3: while αu,j < 1 do
4: Adapt: set j = j + 1 and find αu,j solving CESSj(α) = β for α ∈ (αu,j−1, 1) using

bisection.
5: Reweight: compute the weights ωnu,j = ωn,Nu,j−1(w̃nt,u)αu,j−αu,j−1 for n ≤ N and

compute the ESS.
6: if ESS < N/2 then

7: Resample: draw new zn,Nt,u,j−1 independently with weights ωnu,j and update ωnu,j =
1 for n ≤ N .

8: end if
9: Propose: draw znt,u,j ∼ K ′αu,j

(·, znt,u,j−1) from a π̂αu,j invariant kernel for n ≤ N .
10: end while

S3.1 Simple Linear Gaussian Model

We consider the simple linear Gaussian model used in the experiments in

Næsseth et al. (2015, Section 6.1):

X1 ∼ Nd(0, Idd)

Xt = 0.5AXt−1 + Ut, Ut ∼Nd(0,Σ)

Yt = Xt + Vt, Vt ∼Nd(0, σ2
yIdd),
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with A = A1A
−1
2 where

A1 =



τ + λ 0 0 . . . . . . 0 0

0 τ 0 0 . . . 0 0

0
. . . . . . . . . . . . 0 0

...
. . . . . . . . . . . .

...
...

...
. . . . . . . . . . . .

...
...

0 0 0 0 0 τ 0

0 0 0 0 0 0 τ



,

A2 =



τ + λ 0 0 . . . . . . 0 0

−λ τ + λ 0 0 . . . 0 0

0
. . . . . . . . . . . . 0 0

...
. . . . . . . . . . . .

...
...

...
. . . . . . . . . . . .

...
...

0 0 0 0 −λ τ + λ 0

0 0 0 0 0 −λ τ + λ



−1

,
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and

Σ−1 = AT2



τ 0 0 . . . . . . 0 0

0 τ + λ 0 0 . . . 0 0

0
. . . . . . . . . . . . 0 0

...
. . . . . . . . . . . .

...
...

...
. . . . . . . . . . . .

...
...

0 0 0 0 0 τ + λ 0

0 0 0 0 0 0 τ + λ



A2,

with τ = λ = 1 and σ2
y = 0.52.

To derive the mixture weights for our divide-and-conquer approach we

write the joint density of (X1:t, Y1:t):

p(x1:t, y1:t) ∝
t∏

k=1

[
exp

(
−1

2
(xk − 0.5Axk−1)

TΣ−1(xk − 0.5Axk−1)

)

×
d∏
i=1

N (yk(i);xk(i), σ
2
y)

]
.
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The functions ft,u, gt,u in the definition of γt,u in (3.1) are

ft,u(xt−1, xt(Vu)) ∝

exp

(
−1

2
(xt(Vu)− 0.5A|Vuxt−1(Vu))TΣ−1|Vu(xt(Vu)− 0.5A|Vuxt−1(Vu))

)
,

gt,u(xt(Vu), (yt(i))i∈Vu) ∝
∏
i∈Vu

N (yt(i);xt(i), σ
2
y),

where we denote xt(Vu) = (xt(i))i∈Vu and A|Vu ,Σ
−1
|Vu are the restrictions

of A,Σ−1, respectively, to Vu, i.e. A|Vu is the matrix obtained discarding

the elements of A corresponding to components which are not in Vu, and

similarly for Σ−1|Vu .

Expanding the quadratic form in the display above, we find that we can

decouple the dependence on the current time step from that on the past

and decompose

ft,u(xt−1, (xt(i))i∈Vu) = f
(1)
t,u (xt−1, (xt(i))i∈Vu)

∏
i∈Vu,i 6=j1u

f̃(xt(i− 1), xt(i)),
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with

f
(1)
t,u (xt−1, (xt(i))i∈Vu) ∝

∏
i∈Vu,i 6=j1u

[
exp

(
−τ + λ

2

(
xt(i)− 0.5

τ

τ + λ
xt−1(i)

)2
)

× exp

(
−1

2

λτ

τ + λ
xt(i− 1)xt−1(i)

)]

×


exp

(
− τ+λ

2

(
xt(j

1
u)− 0.5 τ

τ+λ
xt−1(j

1
u)
)2)

if j1u 6= 1

exp
(
− τ

2
(xt(1)− 0.5xt−1(1))2

)
if j1u = 1

,

where j1u denotes the first index associated with node u, and

f̃(s1, s2) := exp

(
−1

2

[
λ2

τ + λ
s21 − 2λs1s2

])
.

The mixture weights are then given by

mt,u(zt,Cu) ∝f̃
(
zt,`(u)(i

n`(u)
`(u) ), zt,r(u)(i

1
r(u))

)
×

∑N
n=1 f

(1)
t,u (znt−1,R, zt,Cu)∑N

n=1 f
(1)
t,`(u)(z

n
t−1,R, zt,`(u))

∑N
n=1 f

(1)
t,r(u)(z

n
t−1,R, zt,r(u))

,

where we recall that zt,u in (3.1) corresponds to zt,u = (xt(i))i∈Vu , i
n`(u)
`(u) is

the last index associated with node `(u) and i1r(u) is the first index associated

with r(u).
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S3.2 Spatial Model

The joint density of (X1:t, Y1:t) is

p(x1:t, y1:t) ∝
t∏

k=1

(∏
v∈V

N
(
xk(v);xk−1(v), σ2

x

)

×

1 + ν−1
∑
v∈V

(yk(v)− xk(v))
∑

j:D(v,j)≤ry

τD(v,j)(yk(j)− xk(j))

−(ν+|V |)/2


with initial distribution X1 ∼
∏

v∈V N (xk(v); 0, σ2
x). The functions ft,u, gt,u

in the definition of γt,u in (3.1) are

ft,u(xt−1, (xt(i))i∈Vu) ∝
∏
v∈Vu

N
(
xk(v);xk−1(v), σ2

x

)
gt,u((xt(i))i∈Vu , (yt(i))i∈Vu) ∝1 + ν−1

∑
v∈Vu

(yk(v)− xk(v))
∑

j:D(v,j)≤ry ,j∈Vu

τD(v,j)(yk(j)− xk(j))

−(ν+|Vu|)/2 ,
where we recall that zt,u in (3.1) corresponds to zt,u = (xt(i))i∈Vu . From the

above, we obtain that the mixture weights (3.5) are given by mt,u(zt,Cu) =

Rf
t,u(zt,Cu)Rg

t,u(zt,Cu), where

Rf
t,u(zt,Cu) =

N−1
∑N

n=1 ft,u(z
n
t−1,R, zt,Cu)

N−1
∑N

n=1 ft,`(u)(z
n
t−1,R, zt,`(u))N

−1
∑N

n=1 ft,r(u)(z
n
t−1,R, zt,r(u))

∝
∑N

n=1

∏
v∈Vu N

(
zt,Cu(v); znt−1,R(v), σ2

x

)∑N
n1=1

∏
v∈V`(u) N

(
zt,`(u)(v); zn1

t−1,R(v), σ2
x

)∑N
n2=1

∏
v∈r(u)N

(
zt,r(u)(v); zn2

t−1,R(v), σ2
x

)
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and

Rg
t,u(zt,Cu) =

gt,u(zt,Cu , (yt(i))i∈Vu)

gt,`(u)(zt,`(u), (yt(i))i∈V`(u))gt,r(u)(zt,r(u), (yt(i))i∈Vr(u))

∝

1 + ν−1
∑
v∈Vu

(yt(v)− zt,Cu(v))
∑

j:D(v,j)≤ry
j∈Vu

τD(v,j)(yt(j)− zt,Cu(j))



− ν+|Vu|

2

×

1 + ν−1
∑

v∈V`(u)

(yt(v)− zt,`(u)(v))
∑

j:D(v,j)≤ry
j∈V`(u)

τD(v,j)(yt(j)− zt,`(u)(j))



ν+|V`(u)|

2

×

1 + ν−1
∑

v∈Vr(u)

(yt(v)− zt,r(u)(v))
∑

j:D(v,j)≤ry
j∈Vr(u)

τD(v,j)(yt(j)− zt,r(u)(j))



ν+|Vr(u)|

2

.

S4 Additional Results for the Experiments

S4.1 Simple Linear Gaussian Model

To further characterize the quality of the estimates obtained with Algo-

rithm 2, we consider the relative mean squared error (RMSE) for component

i at time t,

RMSE(xt(i)) :=
E [(x̄t(i)− µt,i)2]

σ2
t,i

,
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Figure 2: Average (over dimension) RMSE for 50 runs of DaC, NSMC and STPF. Due
to their excessive cost, we do not include the results for STPF with d = 2048 and those
of the non-adaptive version of DaC for d = 2048, N = 1000.

where x̄t(i) denotes the estimate of the mean of component i at time t

and µt,i, σ
2
t,i denote the true mean and true variance of xt(i)|y1:t obtained

from the Kalman filter. As for (S1.1), we approximate the RMSE using an

empirical average over 50 repetitions.

As observed in Section 4.1, for small d, STPF performs better than

DaC and NSMC (Figure 2 top row), however, as the dimension increases,

the estimates provided by STPF become poor and their computational

cost is prohibitive for large d (Figure 2 bottom row). Contrary to the other
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approaches, NSMC does not seem to significantly improve as N increases.

S4.2 Spatial Model

To validate the results for the spatial model in Section 4.2 we compare

the approximations obtained by Algorithm 2 with both adaptive and non-

adaptive lightweight mixture resampling with those of the standard boot-

strap particle filter (see, e.g., Chopin and Papaspiliopoulos (2020, Chapter

10)) on a 2 × 2 grid (Figure 3). Given the low dimensionality of the state

space, we expect the bootstrap PF with a large number of particles to pro-

vide a good proxy for the filtering distribution p(xt|y1:t). The results for the

three algorithms seem to be in good agreement, and the variance of both

DaC algorithms with large N = 5 · 103, 104 is comparable with that of the

particle filter with N = 105.

To show how the increasing dimension causes instability of the simple

bootstrap PF we report in Figure 4 the filtering mean estimates for two

nodes of a 4 × 4 grid. Contrary to Figure 3, in which the bootstrap PF

with N = 105 particles provides accurate estimates (first quartile, mean and

third quartile coincide), when the dimension slightly increases the variance

of the particle filter with N = 105 blows up and the recovered estimates

are poor. On the other hand, both DaC approaches are stable and provide
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Figure 3: Filtering mean estimates obtained with DaC on a 2×2 grid. The reference lines
show the average value of the filtering mean estimate and the interquartile range obtained
with 50 repetitions of a bootstrap PF with N = 105 particles. The boxplots from left to
right report the distributions over 50 repetitions for N = 100, 500, 1000, 5000 and 10000.
The results for the non-adaptive version of DaC and N = 10000 are not included due to
the excessive cost.
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Figure 4: Filtering mean estimates obtained with DaC for node (1, 1) and (2, 3) of a
4× 4 grid. The reference lines show the average value of the filtering mean estimate and
the interquartile range obtained with 50 repetitions of a bootstrap PF with N = 105

particles. The boxplots from left to right report the distributions over 50 repetitions for
N = 100, 500, 1000, 5000 and 10000. The results for the non-adaptive version of DaC
and N = 10000 are not included due to the excessive cost.

better and better estimates for values of N which are at least 10 times

smaller than N = 105.
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