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The supplement is organized as follows. In Section S1 we state sufficient

conditions for the asymptotic analysis in Section 4. In Section S2 we develop

an importance sampling approach for the efficient implementation of the

proposed tests when the error probabilities are small. In Section S3 we

illustrate the general theory in three specific testing problems. In Section

S4 we present the results of numerical studies. All proofs are presented in

Section S5.

Before starting, we introduce some extra notations. For an event A, we

denote by 1{A} its indicator function. For a set A ⊆ R, we denote by Ao

its interior. For a function f : R → (−∞,∞], we call {x ∈ R : f(x) < ∞}

the effective domain of f , and denote by f(x+) (resp. f(x−)) the right

(resp. left) limit of f at x ∈ R when it exists.
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S1 Sufficient conditions

In this section we state sufficient conditions for the existence of functions

ψ0, ψ1 that satisfy (4.9)–(4.10), which we also specify. To this end, we rely

on the Gärtner-Ellis theorem from large deviation theory. We start by

stating a version of this theorem that focuses on events of form (κ,∞) or

(−∞, κ], where κ ∈ R, and requires somewhat weaker conditions compared

to standard formulations in the literature, such as (Dembo and Zeitouni,

1998, Theorem 2.3.6) or (Bucklew, 2010, Theorem 3.2.1).

S1.1 The Gärtner-Ellis theorem

In this subsection we consider an arbitrary P ∈ P and for every θ ∈ R we

set

ϕn(θ) ≡
1

n
log E [exp{n θ Tn}] , n ∈ N,

and assume that

ϕ(θ) ≡ lim
n
ϕn(θ) exists in (−∞,∞]. (S1.1)

We denote by Θ the effective domain of ϕ, i.e., Θ ≡ {θ ∈ R : ϕ(θ) < ∞},

and by ϕ∗ its Legendre-Fenchel transform:

ϕ∗(κ) ≡ sup
θ∈R

{θκ− ϕ(θ)}, κ ∈ R.
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We further assume that Θo ̸= ∅, and that

ϕ is strictly convex and continuous in Θ and differentiable in Θo. (S1.2)

This assumption implies that ϕ′ is strictly increasing in Θo, that ϕ′(Θo) is

a non-trivial open interval, and as a result that

ϕ∗(κ) = ϑ(κ)κ− ϕ(ϑ(κ)), for any κ ∈ ϕ′(Θo),

where ϑ is the inverse of ϕ′ in Θo.

Finally, we assume that for every θ ∈ Θ there exists a distribution of

X, Qθ, such that

dQθ

dP
(Fn) = exp{n (θ Tn − ϕn(θ))}, for any n ∈ N. (S1.3)

This is known as an exponential tilting of P, and for its existence it suffices,

for example, that S be Polish (see, e.g., (Parthasarathy, 2005, p. 144, The-

orem 5.1)).

Theorem S1. Suppose (S1.1) (S1.2) (S1.3) hold.

(i) If Θo ∩ (0,∞) ̸= ∅, then ϕ∗(ϕ′(0+)) = 0, ϕ∗ is strictly increasing in

ϕ′(Θo ∩ (0,∞)) and, for every κ ∈ ϕ′(Θo ∩ (0,∞)),

lim
n

1

n
logP (Tn > κ) = −ϕ∗(κ). (S1.4)
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(ii) If Θo ∩ (−∞, 0) ̸= ∅, then ϕ∗(ϕ′(0−)) = 0, ϕ∗ is strictly decreasing in

ϕ′(Θo ∩ (−∞, 0)) and, for every κ ∈ ϕ′(Θo ∩ (−∞, 0)),

lim
n

1

n
logP (Tn ≤ κ) = −ϕ∗(κ). (S1.5)

(iii) For every θ ∈ Θo, Qθ (Tn → ϕ′(θ)) = 1.

Proof. Section S5.4.

Remark S1. 1) Theorem S1 implies that, for any ϵ > 0, P (Tn > ϕ′(0+) + ϵ)

decays exponentially fast in n if Θo intersects (0,∞), and P(Tn ≤ ϕ′(0−)−ϵ)

decays exponentially fast in n if Θo intersects (−∞, 0).

2) In standard formulations of the Gärtner-Ellis theorem, such as (Dembo

and Zeitouni, 1998, Theorem 2.3.6) or (Bucklew, 2010, Theorem 3.2.1), it

is additionally assumed that 0 ∈ Θo, in which case the conditions in both

(i) and (ii) of Theorem S1 hold, ϕ′(0) exists, and thus P(|Tn − ϕ′(0)| > ϵ)

decays exponentially fast in n for any ϵ > 0, and P(Tn → ϕ′(0)) = 1. It

is also assumed that ϕ is steep, i.e., ϕ′(Θo) = R, (see, e.g., (Dembo and

Zeitouni, 1998, Definition 2.3.5)), in which case

ϕ′(Θo ∩ (0,∞)) = (ϕ′(0),∞) and ϕ′(Θo ∩ (−∞, 0)) = (−∞, ϕ′(0)).
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S1.2 Sufficient conditions for the asymptotic theory of Section 4

We next apply Theorem S1 to establish sufficient conditions for the asymp-

totic theory of Section 4. To this end, when the assumptions of Subsection

S1.1 hold for P = Pi, where i ∈ {0, 1}, we write ϕi,n, ϕi,Θi, ϕ
∗
i , ϑi instead

of ϕn, ϕ,Θ, ϕ
∗, ϑ and, for each θ ∈ Θo

i , we denote by Qi,θ the exponential

tilting of Pi, i.e.,

dQi,θ

dPi

(Fn) = exp {n (θ Tn − ϕi,n(θ))} , for any n ∈ N. (S1.6)

Corollary S1. Suppose (4.8) holds for some J0, J1 ∈ R so that J0 < J1.

(i) If the assumptions of Subsection S1.1 hold for P = P0 and

Θo
0 ∩ (0,∞) ̸= ∅, ϕ′

0(0+) = J0,

and there exists θ0 ∈ Θ0 ∩ (0,∞) : ϕ′
0(θ0−) = J1,

(S1.7)

then (4.9) holds, with ψ0 = ϕ∗
0, for every κ ∈ (J0, J1). If also θ0 ∈ Θo

0,

then (4.9) holds, with ψ0 = ϕ∗
0, in a neighborhood of J1.

(ii) If the assumptions of Subsection S1.1 hold for P = P1 and

Θo
1 ∩ (−∞, 0) ̸= ∅, ϕ′

1(0−) = J1,

and there exists θ1 ∈ Θ1 ∩ (−∞, 0) : ϕ′
1(θ1+) = J0,

(S1.8)

then (4.10) holds, with ψ1 = ϕ∗
1, for every κ ∈ (J0, J1). If also θ1 ∈ Θo

1,

then (4.10) holds, with ψ1 = ϕ∗
1, in a neighborhood of J0.



YIMING XING AND GEORGIOS FELLOURIS

(iii) For i ∈ {0, 1}, if the assumptions of Subsection S1.1 hold for P = Pi,

then

Qi,θ (Tn → ϕ′
i(θ)) = 1 for any θ ∈ Θo

i .

Proof. We only prove (i), as the proof of (ii) is similar, whereas that of (iii)

follows directly from Theorem S1.(iii). Since ϕ′
0(Θ

o
0) is, by assumption, an

open interval, (S1.7) implies that

(J0, J1) ⊆ ϕ′
0 (Θ

o
0 ∩ (0,∞)) , (S1.9)

and the first claim in (i) follows by an application of Theorem S1.(i).

If also θ0 ∈ Θo
0, (S1.7) implies that

(J0, J1] ⊆ ϕ′
0(Θ

o
0 ∩ (0,∞)), (S1.10)

and the second claim in (i) follows again by an application of Theorem

S1.(i).

Corollary S2. Suppose that the assumptions of Subsection S1.1 hold for

both P = P0 and P = P1.

(i) If 0 ∈ Θo
0 ∩ Θo

1 and ϕ′
0(0) < ϕ′

1(0), then (4.8) holds with Ji = ϕ′
i(0),

i ∈ {0, 1}.

(ii) If, also, both ϕ0 and ϕ1 are steep, then (4.9) holds, with ψ0 = ϕ∗
0, for

every κ > J0, and (4.10) holds, with ψ1 = ϕ∗
1, for every κ < J1.
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Proof. This is a direct consequence of Remark S1.

Remark S2. The conditions in Corollary S1 are weaker than the conditions

in Corollary S2. In what follows, we consider an example in which the

former are satisfied while the latter are not, in the sense that 0 is not in

the interior of either Θ0 or Θ1.

S1.3 The likelihood ratio case

In what follows, we focus on the case where T = Λ̄ and the assumptions of

Subsection S1.1 hold for P = P0. Then, in view of the fact that

E1[exp{θΛn}] = E0[exp{(θ + 1)Λn}], for any n ∈ N, θ ∈ R,

the assumptions of Subsection S1.1 also hold for P = P1, with

ϕ1(θ) = ϕ0(θ + 1), θ ∈ R, (S1.11)

Θ1 = Θ0 − 1, (S1.12)

ϕ∗
1(κ) = ϕ∗

0(κ)− κ, κ ∈ R. (S1.13)

From (S1.11) it follows that 1 is the non-zero root of ϕ0 and, as a result,

[0, 1] ⊆ Θ0 since Θ0 is an interval. Since also ϕ0 is strictly convex and

continuous in [0, 1], and differentiable in (0, 1), we conclude that

−∞ < ϕ′
0(0+) < 0 < ϕ′

0(1−) <∞.
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From (S1.11) and (S1.12) it similarly follows that −1 is the non-zero root

of ϕ1, [−1, 0] ⊆ Θ1, and

−∞ < ϕ′
1(−1+) < 0 < ϕ′

1(0−) <∞.

Based on these observations, we can see that the conditions of Corollary S1

simplify considerably.

Corollary S3. If T = Λ̄, the assumptions of Subsection S1.1 hold for

P = P0, and (4.2) holds with I0 = −ϕ′
0(0+) and I1 = ϕ′

0(1−), then (4.9) and

(4.10) hold for every κ ∈ (−I0, I1) with ψ0 = ϕ∗
0 and ψ1 = ϕ∗

1, respectively.

Moreover,

C = ϕ∗
0(0) = ϕ∗

1(0) = − inf
θ∈R

ϕ0(θ), (S1.14)

where C is defined in (4.13).

Proof. From the discussion prior to statement of Corollary S3 it follows

that the conditions of Corollary S1 are satisfied, by applying which (4.9)

and (4.10) follow. To show (S1.14), we note that the supremum in the

definition of C in (4.13) is attained when ψ0 = ψ1, or equivalently when

ϕ∗
0 = ϕ∗

1. Comparing with (S1.13) completes the proof.

Remark S3. Suppose that T = Λ̄ and that the assumptions of Subsection

S1.1 hold for P = P0. Then, from Corollary S2 it follows that a sufficient
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condition for (4.2), with I0 = −ϕ′
0(0) and I1 = ϕ′

0(1), is that {0, 1} ⊂ Θo
0.

However, as we mentioned earlier, the assumptions of Corollary S3 may hold

even when Θ0 = [0, 1], in which case Θ1 = [−1, 0] and (−I0, I1) = ϕ′
i(Θ

o
i ),

i ∈ {0, 1}. The importance of this observation becomes clear in the iid

setup, on which we focus next.

The iid setup

We show that the conditions of Corollary S3 are satisfied in the iid setup

of Subsection 4.1.1 as long as the Kullback-Leibler divergences defined

in (4.6) are positive and finite, or equivalently, the expectation of Λ1 =

log (f1(X1)/f0(X1)) is non-zero and finite under both P0 and P1.

Indeed, in this case, (4.2) holds with I0 = D(f0∥f1) and I1 = D(f1∥f0)

by Kolmogorov’s Strong Law of Large Numbers, and clearly

ϕ0(θ) = log E0[exp{θΛ1}], θ ∈ R.

Since ϕ0 is the cumulant generating function of a non-degenerate distri-

bution and [0, 1] ⊆ Θ0, ϕ0 is strictly convex in Θ0, differentiable in Θo
0,

continuous at 0 and 1, and satisfies

ϕ′
0(0+) = E0[Λ1] = −I0 and ϕ′(1−) =

E0[Λ1 exp{Λ1}]
E0[exp{Λ1}]

= I1

(see, e.g. (Dembo and Zeitouni, 1998, Excercise 2.2.24)).
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Remark S4. As a quick summary of this section, for the asymptotic anal-

ysis in Section 4 to apply,

• when T ̸= Λ̄, it suffices to check the conditions in Corollary S1 or S2,

where the latter is stronger than the former,

• when T = Λ̄, it suffices to check the conditions in Corollary S3;

when, in particular, X is an iid sequence, it suffices to check that

the Kullback-Leibler divergences are positive and finite.

S2 Implementation via importance sampling

The proposed designs for the multistage tests in Section 2 require knowledge

of the functions n∗ and κ∗, defined in (2.4). These do not admit, in general,

closed-form expressions and need to be approximated. For any given α

and β in (0, 1), n∗(α, β) and κ∗(α, β) can be approximated by estimating

P0(Tn > κ) and P1(Tn ≤ κ) for different n and κ, and finding the minimum

n for which there exists a κ so that the first probability does not exceed α

and the second does not exceed β.

If it is convenient to simulate the sequence X under P0 and P1, a simple

method for the estimation of P0(Tn > κ) and P1(Tn ≤ κ) is plain Monte-

Carlo simulation. However, when these probabilities are very small, this
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approach may not be efficient, or even feasible. Indeed, if the probability

of interest is 10−a for some a > 0, the minimum number of simulation runs

needed for the relative error of the Monte-Carlo estimator to be at most

1% is 10a+4. Therefore, when the probability of interest is very small, a

different method is needed for its estimation, such as importance sampling

Bucklew (2010).

To illustrate this method, we focus on the estimation of P0(Tn > κ), as

a completely analogous discussion applies to the estimation of P1(Tn ≤ κ).

We observe that if Q is a distribution of X that is mutually absolutely

continuous with P0 on Fn for every n ∈ N, then P0(Tn > κ) = EQ [Zn,κ(Q)],

where

Zn,κ(Q) ≡ dP0

dQ
(Fn) · 1{Tn > κ} (S2.15)

and EQ denotes expectation under Q. Thus, if it is possible to simulate X

under Q, P0(Tn > κ) can be estimated by averaging Zn,κ(Q) over a large

number of independent realizations of X in which it is distributed according

to Q.

The question then is how to select the importance sampling distribution

Q, so that the relative error of the induced estimator is small even when

P0(Tn > κ) is small. To answer it, we assume that the assumptions of

Corollary S1.(i) (resp. Corollary S3) hold when T ̸= Λ̄ (resp. T = Λ̄)
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and fix κ in (J0, J1) (resp. (−I0, I1)), in which case P0(Tn > κ) decays

exponentially fast in n. Then, squaring both sides in (S2.15), applying the

Cauchy-Schwarz inequality, taking logarithms on both sides, dividing by n,

letting n→ ∞, and applying (4.9), we obtain

lim
n

1

n
log EQ

[
Z2

n,κ(Q)
]
≥ −2ψ0(κ). (S2.16)

The latter is essentially a universal asymptotic lower bound on the variance

of any importance sampling estimator. As it is common in the relevant

literature (see, e.g., (Bucklew, 2010, Chapter 5)), we refer to Q as log-

arithmically efficient for the estimation of P0(Tn > κ) if it attains this

asymptotic lower bound, i.e., if

lim
n

1

n
log EQ

[
Z2

n,κ(Q)
]
≤ −2ψ0(κ). (S2.17)

Recalling the definition of the exponential tilting Q0,θ in (S1.3), for

every n ∈ N and θ ∈ Θo
0 we have

EQ0,θ

[
Z2

n,κ(Q0,θ)
]
= EQ0,θ

[exp{−2n (θ Tn − ϕ0,n(θ))}; Tn > κ]

≤ exp{−2n(θ κ− ϕ0,n(θ))}.

Taking logarithms, dividing by n and letting n→ ∞ we obtain

lim
n

1

n
log EQ0,θ

[
Z2

n,κ(Q0,θ)
]
≤ −2(θ κ− ϕ0(θ)).
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Therefore, when θ = ϑ0(κ), where ϑ0 is the inverse function of ϕ′
0, the right-

hand-side is equal to −2ψ0(κ), which proves that Q0,ϑ0(κ) is logarithmically

efficient for the estimation of P0(Tn > κ).

Working similarly, we can see that if the assumptions of Corollary S1.(ii)

(resp. Corollary S3) hold when T ̸= Λ̄ (resp. T = Λ̄), a logarithmically

efficient importance sampling distribution for the estimation of P1(Tn ≤ κ)

is Q1,ϑ1(κ), where ϑ1 is the inverse function of ϕ′
1. In Subsection S3.1, we

show that in the case of testing in a one-parameter exponential family,

Q0,ϑ0(κ) and Q1,ϑ1(κ) coincide.

Finally, we observe that by Corollary S1.(iii) it follows that Qi,ϑi(κ)(Tn →

κ) = 1, i ∈ {0, 1}. This suggests that if it is not convenient to simulate X

under the logarithmically efficient importance sampling distributions, a po-

tential strategy for estimating P0(Tn > κ) and P1(Tn ≤ κ), simultaneously,

is to apply importance sampling using a distribution under which it is con-

venient to simulate X and Tn converges almost surely to κ as n→ ∞. We

apply this strategy successfully in two non–iid testing problems in Section

S4.
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S3 Examples

In this section we focus on three concrete testing problems, with which we

illustrate the general results of the previous sections. Specifically, for each

of these testing problems we show that the conditions of Subsection 4.1

hold, and also that the conditions of Subsection 4.2 hold for T = Λ̄, as well

as for an alternative test statistic. In view of Theorem 3 and 4, we can

see that the asymptotic relative efficiency of the proposed multistage tests

when T ̸= Λ̄ and (4.11) holds, against when T = Λ̄, under P0 and P1, as

α, β → 0 satisfying the required relative decay rates, can be written as

ARE0 ≡
ψ1(J0)

I0
and ARE1 ≡

ψ0(J1)

I1
, (S3.18)

which we also compute in these examples.

S3.1 Testing in a one-parameter exponential family

In the first example of this section we let h be a density with respect to a

σ-finite measure ν on S such that M ̸= ∅, where

M ≡ {µ ∈ R : φ(µ) <∞}o, φ(µ) ≡ log

∫
S
eµx h(x) ν(dx), (S3.19)

and, for each µ ∈M , we set

hµ(x) ≡ h(x) eµx−φ(µ), x ∈ S.
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Noting that hµ is also a density with respect to ν, with the same support

as h, we denote by Pµ the distribution of X, and by Eµ the corresponding

expectation, when X is a sequence of independent random elements with

common density hµ, and consider the testing setup of Subsection 2.1. In

this context, the log-likelihood ratio statistic in (4.7) becomes

Λn = (µ1 − µ0)
n∑

i=1

Xi − n (φ(µ1)− φ(µ0)), n ∈ N, (S3.20)

and, for any µ ∈M , it is a random walk under Pµ with drift

Eµ[Λ1] = (µ1 − µ0)φ
′(µ)− (φ(µ1)− φ(µ0)). (S3.21)

Thus, setting µ equal to µ0 and µ1, we obtain the following expressions for

the Kullback-Leibler divergences in (4.6):

D(f0||f1) = −
(
(µ1 − µ0)φ

′(µ0)− (φ(µ1)− φ(µ0))
)

D(f1||f0) = (µ1 − µ0)φ
′(µ1)− (φ(µ1)− φ(µ0)) .

Since these quantities are positive and finite, by the discussion in Subsection

S1.3 it follows that all assumptions in Subsections 4.1-4.2 hold with

I0 =D(f0∥f1), I1 = D(f1∥f0), C = ψ0(0),

ψ0(κ) = ϑ0(κ)κ− ϕ0(ϑ0(κ)), for any κ ∈ (−I0, I1)

ψ1(κ) = ϑ1(κ)κ− ϕ1(ϑ1(κ)), for any κ ∈ (−I0, I1),

(S3.22)
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where ϑi is the inverse of ϕ′
i, i ∈ {0, 1}, and

ϕ0(θ) = φ(µ0 + θ(µ1 − µ0))− (φ(µ0) + θ(φ(µ1)− φ(µ0))) , θ ∈ [0, 1]

ϕ1(θ) = φ(µ1 + θ(µ1 − µ0))− (φ(µ1) + θ(φ(µ1)− φ(µ0))) , θ ∈ [−1, 0].

(S3.23)

As a result, in this context, the asymptotic optimality of the proposed

multistage tests holds when T = Λ̄. In fact, it also holds when

T = X̄ ≡ {X̄n, n ∈ N}, where X̄n ≡ 1

n

n∑
i=1

Xi, n ∈ N, (S3.24)

regardless of µ0, µ1 ∈ M o. This is because there is a bijection between Λ̄n

and X̄n:

Λ̄n = (µ1 − µ0) X̄n − (φ(µ1)− φ(µ0)), n ∈ N, (S3.25)

which implies that the values of n∗(α, β) and κ∗(α, β), which in general

depend on the choice of the test statistic T , coincide when T = X̄ and

when T = Λ̄.

Importance sampling distributions

In this setup, it is convenient to obtain an explicit form for the logarith-

mically efficient importance sampling distributions for the estimation of

both P0(Λ̄n > κ) and P1(Λ̄n ≤ κ) for any κ ∈ (−I0, I1). Indeed, for any

κ ∈ (−I0, I1) we have:

Q0,ϑ0(κ) = Q1,ϑ1(κ) = Pµ,
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where µ ∈ (µ0, µ1) is such that Eµ[Λ1] = κ. To prove this statement, we

first note that for any n ∈ N and θ ∈ (0, 1), by (S3.20) we have

Λn

(
Pµ0+θ(µ1−µ0),P0

)
= Λn

(
Pµ0+θ(µ1−µ0),Pµ0

)
= θ(µ1 − µ0)

n∑
i=1

Xi − n (φ(µ0 + θ(µ1 − µ0))− φ(µ0))

= n
(
θΛ̄n − ϕ0(θ)

)
,

and similarly, for any n ∈ N and θ ∈ (−1, 0),

Λn

(
Pµ1+θ(µ1−µ0),P1

)
= n

(
θΛ̄n − ϕ1(θ)

)
.

Thus, the exponential tiltings of P0 and P1, defined in (S1.6), are given by

Q0,θ = Pµ0+θ(µ1−µ0), θ ∈ (0, 1),

Q1,θ = Pµ1+θ(µ1−µ0), θ ∈ (−1, 0).

Differentiating the identities in (S3.23) and comparing with (S3.21) we ob-

tain

Eµ0+θ(µ1−µ0)[Λ1] = ϕ′
0(θ), θ ∈ (0, 1),

Eµ1+θ(µ1−µ0)[Λ1] = ϕ′
1(θ), θ ∈ (−1, 0).

(S3.26)

The statement now follows by the definition of ϑi as the inverse of ϕ
′
i, where

i ∈ {0, 1}.
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A binary statistic

An approach to the testing problem of this subsection, which can be mo-

tivated by practical constraints or robustness considerations, is to binarize

the data, recording only whether each observation is larger, or not, than

some user-specified value in the interior of the support of h, say x∗. Then,

the test statistic can be written as

T = Z̄ ≡ {Z̄n, n ∈ N},

Zn ≡ 1{Xn > x∗}, Z̄n ≡ 1

n

n∑
i=1

Zi, n ∈ N,
(S3.27)

and all assumptions in Subsection 4.2, including (4.11), are satisfied with

Ji = Pi(X1 > x∗), C = − log
√

4 J0 J1,

ϕi(θ) = log
(
Ji e

θ + (1− Ji)
)
, θ ∈ R,

ψi(κ) = Ber(κ||Ji), κ ∈ (0, 1),

where i ∈ {0, 1}, and Ber(x||y) is the Kullback-Leibler divergence between

two Bernoulli distributions with success probability x and y respectively,

i.e.,

Ber(x||y) ≡ x log(x/y)+(1−x) log((1−x)/(1−y)), x, y ∈ (0, 1). (S3.28)
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Testing the Gaussian mean

We next specialize the above results to the special case of testing the mean

of a Gaussian distribution with unit variance, i.e., whenM = R and φ(µ) =

µ2/2 for every µ ∈ R in (S3.19). For simplicity, we assume that the two

parameter values under which we control the two error probabilities, µ0 and

µ1, are opposite, i.e., µ1 = −µ0 = η for some η > 0.

In this case, n∗(α, β) and κ∗(α, β) in (2.4) can be computed explicitly

when T = Λ̄, for any α, β ∈ (0, 1). Specifically, we have

I0 = I1 = 2η2 ≡ I, C = 4I

ϕ0(θ) = θ(θ − 1) I, ϕ1(θ) = θ(θ + 1) I, θ ∈ R

ψ0(κ) = (I + κ)2/(4I), ψ1(κ) = (I − κ)2/(4I), κ ∈ R,

and, for any α, β ∈ (0, 1),

n∗(α, β) =

⌈
(zα + zβ)

2

2I

⌉
, κ∗(α, β) =

zα − zβ

2
√
n∗(α, β)

, (S3.29)

where zp is the upper p-quantile of the standard Gaussian distribution. In

Figure 1a we plot the functions ψ0, ψ1, for T = Λ̄ and T = Z̄ in (S3.27)

with x∗ = 0, when η = 0.5.

Finally, we note that in this case the asymptotic relative efficiencies in
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(S3.18) coincide when T = Z̄, since

ARE0 =
Ber(Φ(−η)||Φ(η))

2η2
=

Ber(Φ(η)||Φ(−η))
2η2

= ARE1, (S3.30)

where Φ denotes the cumulative distribution function of the standard Gaus-

sian distribution and the function Ber(x||y) is defined in (S3.28). We note

also that this quantity converges to 0.25 as η → ∞ and to 2/π as η → 0. In

Figure 1b we plot the asymptotic relative efficiency in (S3.30) as a function

of η ∈ (0, 5).

S3.2 Testing the coefficient of a first-order autoregressive model

In the second example of this section we assume that X follows a Gaussian

first-order autoregressive model, i.e.,

Xn = µXn−1 + ϵn, n ∈ N,

where X0 = 0, {ϵn, n ∈ N} are iid standard Gaussian, and µ is an unknown

parameter taking values in M = (−1, 1). We denote by Pµ the distribution

and by Eµ the corresponding expectation when the true parameter is µ,

and consider the testing problem of Subsection 2.1.

In this setup, the log-likelihood ratio statistic in (4.1) becomes

Λn = (µ1 − µ0)

(
n∑

i=1

Xi−1Xi −
µ1 + µ0

2

n∑
i=1

X2
i−1

)
, n ∈ N. (S3.31)
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(a) (b)

(c) (d)

(e) (f)

Table 1: Each row represents an example considered in Section S3. The left column draws

the function images of ψ0 and ψ1 when T = Λ̄ and when T is the alternative test statistic

considered, where to distinguish them, they are denoted by ζ0 and ζ1 when T = Λ̄. The

right column draws the corresponding asymptotic relative efficiencies, defined in (S3.18).
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For every µ ∈ M , from (Brockwell and Davis, 1986, Chapter 3) it follows

that

1

n

n∑
i=1

X2
i−1 →

1

1− µ2
and

1

n

n∑
i=1

Xi−1Xi →
µ

1− µ2
Pµ − a.s.,

(S3.32)

and consequently

Λ̄n → µ1 − µ0

1− µ2

(
µ− µ1 + µ0

2

)
Pµ − a.s. (S3.33)

Moreover, from Bercu et al. (1997) it follows that, for every µ ∈M ,

1

n
logEµ

[
eθΛn

]
→ −1

2
log

(
1

2
pµ(θ) +

1

2

√
p2µ(θ)− 4q2µ(θ)

)
≡ ϕ(θ;µ),

(S3.34)

where θ ∈ Dµ ≡ Dµ,1 ∪ Dµ,2 ∪ Dµ,3,

Dµ,1 ≡
{
θ ∈ R : µ2 < pµ(θ) ≤ 2µ2, q2µ(θ) ≤ µ2(pµ(θ)− µ2)

}
,

Dµ,2 ≡
{
θ ∈ R : 2µ2 < pµ(θ) < 2, pµ(θ) > 2|qµ(θ)|

}
,

Dµ,3 ≡
{
θ ∈ R : pµ(θ) ≥ 2, q2µ(θ) ≤ pµ(θ)− 1

}
,

and pµ(θ) ≡ 1 + µ2 + (µ1 − µ0)(µ1 + µ0) θ,

qµ(θ) ≡ −µ− (µ1 − µ0)θ.

The function ϕ(·;µ) in (S3.34) is differentiable in Do
µ, and

0 ∈ Do
µ0,2

, 1 ∈ (Dµ0,1 ∪ Dµ0,2)
o.
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Thus, setting µ equal to µ0 and µ1 in (S3.33)-(S3.34), we conclude that all

assumptions in Corollary S3 are satisfied with

I0 =
(µ1 − µ0)

2

2(1− µ2
0)
, I1 =

µ2
1 − µ2

0

2(1− µ2
1)
, ϕi = ϕ(·;µi), i ∈ {0, 1}.

Moreover, from (S1.14) it follows, by minimizing ϕ(·;µ0), that

C = log

√
1− µ0 µ1

1− (µ0 + µ1)2/4
. (S3.35)

The functions ψ0 and ψ1 in this context are computed numerically and

are plotted in Figure 1c when µ1 = −µ0 = 0.5. We note that, in this case,

they are symmetric about the y-axis, a property that does not hold, in

general, when µ1 ̸= −µ0.

The Yule-Walker estimator

An alternative test statistic for this testing problem is the Yule-Walker

estimator, i.e., T = µ̂ ≡ {µ̂n, n ∈ N}, where

µ̂n ≡
∑n

i=1Xi−1Xi∑n
i=1X

2
i

, n ∈ N. (S3.36)

From (S3.32) it follows that µ̂n is a strongly consistent estimator of µ,

i.e., for every µ ∈M ,

Pµ(µ̂n → µ) = 1. (S3.37)
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Moreover, from Bercu et al. (1997) it follows that, for any µ ∈M ,

− 1

n
logPµ(µ̂n > κ) → ψ(κ;µ), for any κ ∈ (µ, 1)

− 1

n
logPµ(µ̂n ≤ κ) → ψ(κ;µ), for any κ ∈ (−1, µ),

(S3.38)

where the function

ψ(κ;µ) ≡ log

√
1 + µ2 − 2µκ

1− κ2
, κ ∈ (−1, 1)

is strictly convex, has a unique root at µ, and goes to ∞ as κ goes to −1 or

1. Therefore, setting µ equal to µ0 and µ1 in (S3.37)-(S3.38), we conclude

that assumptions (4.8)-(4.11) hold with

Ji = µi, ψi = ψ(·;µi), i ∈ {0, 1}.

Interestingly, equating ψ0 and ψ1 we obtain the same value for C as

in (S3.35). In view of (S5.52), this implies that using µ̂, instead of Λ̄, as

the test statistic, does not reduce the asymptotic relative efficiency of the

fixed-sample-size test as α, β → 0 so that | logα| ∼ | log β|. This is not the

case for the proposed multistage tests, as can be seen in Figure 1d, where

we plot ARE0 and ARE1 when µ0 = −µ1, in which case they coincide, for

different values of µ1 in (0, 1).

S3.3 Testing the transition matrix of a Markov chain

In the third example of this section we assume that X is an irreducible and

recurrent Markov chain with state space [I] = {0, 1, . . . , I} where I ∈ N,
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initial value X0 = 0, transition matrix Π, and stationary distribution π.

Moreover, we note that (see, e.g., (Durrett, 2010, Theorem 5.5.9))

Y ≡ {Yn ≡ (Xn−1, Xn), n ∈ N}

is also an irreducible and recurrent Markov chain, with state space [I]2,

transition matrix ΠY whose ((i1, i2), (i3, i4))-th element is

Π(i3, i4) 1{i2 = i3}, (i1, i2), (i3, i4) ∈ [I]2,

and stationary distribution πY whose (i, j)-th element is

π(i)Π(i, j), i, j ∈ [I].

For simplicity, we identify the family of all possible distributions of

X, P , with the class of all irreducible and recurrent transition matrices of

dimension I + 1. For each Π ∈ P , we denote by PΠ the distribution of X,

and by EΠ the corresponding expectation, when the transition matrix of X

is Π. We consider the general testing setup of Section 2, where P0 and P1

are two arbitrary subclasses of P , and

Pi ≡ PΠi
, i ∈ {0, 1}

for some arbitrary Πi ∈ Pi, i ∈ {0, 1}. In this setup, the log-likelihood ratio

statistic in (4.1) takes the form:

Λn =
∑

(i,j)∈[I]2
r(i, j)Nn(i, j) =

n∑
m=1

U(Ym), n ∈ N,
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where, for each (i, j), y ∈ [I]2,

r(i, j) ≡ log

(
Π1(i, j)

Π0(i, j)

)
, Nn(i, j) ≡

n∑
m=1

1{Ym = (i, j)},

U(y) ≡
∑

(i,j)∈[I]2
r(i, j) · 1{y = (i, j)}.

For any Π ∈ P , from (Durrett, 2010, Example 6.2.4) it follows that, for

every (i, j) ∈ [I]2,

1

n
Nn(i, j) → πY(i, j) PΠ − a.s.

and, as a result,

Λ̄n →
∑

(i,j)∈[I]2
r(i, j)πY(i, j) PΠ − a.s. (S3.39)

Moreover, by (Dembo and Zeitouni, 1998, Theorem 3.1.1 & 3.1.2), it follows

that, for any Π ∈ P ,

1

n
log EΠ[exp{θΛn}] → log ξ

(
ΠY

θ,U
)
≡ ϕ(θ; Π), for every θ ∈ R, (S3.40)

where ξ is the functional that maps a matrix to its greatest eigenvalue, ΠY
θ,U

is a matrix of the same dimension as ΠY whose ((i1, i2), (i3, i4))-th element

is

ΠY((i1, i2), (i3, i4)) exp{θ U((i3, i4))}, (i1, i2), (i3, i4) ∈ [I]2,

and the limit in (S3.40) is a finite and differentiable function of θ. There-

fore, setting Π equal to Π0 and Π1 in (S3.39)-(S3.40) we conclude that
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all assumptions in Corollary S3 are satisfied, and Ii, ψi, i ∈ {0, 1} can be

computed accordingly.

The two-state case

We next specialize the previous setup to the case that I = 1, where the

transition matrix and stationary distribution of X are of the form

Π =

 p 1− p

1− µ µ

 , π =

(
1− µ

2− p− µ
,

1− p

2− p− µ

)
, where p, µ ∈ (0, 1).

We fix p ∈ (0, 1), so that the only unknown parameter is µ, which takes

values in M = (0, 1). Thus, we now denote by Pµ the distribution, and by

Eµ the corresponding expectation, of X when the unknown parameter is

µ, and consider the testing setup of Subsection 2.1. In this case, (S3.39)

reduces to

Λ̄n → 1− p

2− p− µ

(
Ber(µ||µ0)− Ber(µ||µ1)

)
Pµ − a.s., (S3.41)

where Ber(x||y) is defined in (S3.28), and I0, I1 become

I0 =
1− p

2− p− µ0

Ber(µ0∥µ1), I1 =
1− p

2− p− µ1

Ber(µ1∥µ0).

An alternative test statistic in this setup is the sample average in

(S3.24), or equivalently,

Tn = X̄n ≡ 1

n

n∑
m=1

V(xm), where V(x) = x.
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Unlike the first example of this section, however, this test statistic does

not lead to asymptotic optimality, as it does not admit a bijection with

the log-likelihood ratio, as in (S3.25). To compute the resulting asymptotic

relative efficiency, (S3.18), we note that, by (Durrett, 2010, Example 6.2.4),

for any µ ∈M ,

X̄n →
∑
i∈[I]

i π(i) =
1− p

2− p− µ
Pµ − a.s. (S3.42)

Moreover, by (Dembo and Zeitouni, 1998, Theorem 3.1.1 & 3.1.2) it follows

that, for any µ ∈M ,

1

n
log Eµ[exp{θ n X̄n}] → log ξ(Πθ,V) ≡ ϕ(θ; Π), for any θ ∈ R, (S3.43)

where Πθ,V is a matrix of the same dimension as Π, whose (i, j)-th element

is

Π(i, j) eθ V(j), i, j ∈ [I],

and the limit is finite, differentiable and steep in R as a function of θ.

Therefore, setting µ equal to µ0 and µ1 in (S3.42)-(S3.43) we conclude that

all assumptions in Corollary S2 are satisfied, with

Ji =
1− p

2− p− µi

and ϕi(θ) = ϕ(θ; Πi), for any θ ∈ R, i ∈ {0, 1}.

In Figure 1e we plot the functions ψ0, ψ1 for T = Λ̄ and T = X̄ when

µ0 = 1−µ1 = 0.25. In Figure 1f we plot the asymptotic relative efficiencies

in (S3.18) against µ0 = 1− µ1 for different values of µ0 ∈ (0, 0.5).
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S4 Numerical studies

In this section we present the results of two numerical studies in which we

compare the 3-stage test, χ̃, the 4-stage test, χ̂, both with T = Λ̄, against

the SPRT, χ′, when

• testing the mean of an iid Gaussian sequence with unit variance (Sub-

section S3.1), with µ1 = −µ0 = 0.5,

• testing the correlation coefficient of a first-order autoregression (Sub-

section S3.2), with µ1 = −µ0 = 0.5,

• testing an entry in the transition matrix of a two-state Markov chain

(Subsection S3.3), with p = 0.5 and µ1 = 1− µ0 = 0.75.

Before we describe the two studies and present the main findings, we discuss

how the tests are designed and how their average sample sizes are computed.

S4.1 Design of tests

In all cases, the SPRT in (4.4) is designed with B = | logα| and A = | log β|,

whereas the multistage tests are designed according to Theorems 1 and 2,

with free parameters selected according to (3.14) and (3.29). The functions

n∗ and κ∗, defined in (2.4), are evaluated using the closed-form expressions

in (S3.29) in the first testing problem and using the importance sampling
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method of Section S2 in the other two.

Specifically, in the latter two examples, for n from 1 to a sufficiently

large integer (we used 150) and for κ in a sufficiently fine grid over (J0, J1)

(we used 100 equidistant points), we estimate, via importance sampling,

P0(Tn > κ) and P1(Tn ≤ κ). The importance sampling distribution we

employed in the second (resp. third) example is the distribution Pµ under

which the limit in (S3.33) (resp. (S3.41)) is equal to κ. For each pair of n

and κ, we implemented 104 simulation runs, which leads to relative errors

below 0.5% in all cases. Moreover, grid search with 104 grid points is used

for the determination of the free parameters.

S4.2 Computation of the expected sample sizes

The expected sample sizes of the multistage tests are computed using the

formulas (3.8)-(3.9) and (3.20)-(3.22) in the first testing problem, as it is

possible to compute the multivariate Gaussian probabilities in these expres-

sions, and plain Monte Carlo in the other two. The expected sample size of

the SPRT is estimated with plain Monte Carlo in all cases. In each Monte

Carlo application, 104 replications are run, leading to relative errors below

0.5% in all cases.
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S4.3 The first study

In the first study we compare the expected sample sizes of χ̃, χ̂ and χ′ under

P0, with the understanding that analogous results can be obtained when

comparing χ̃, χ̌ and χ′ under P1. Specifically, we evaluate E0[τ̃ ]/E0[τ
′] and

E0[τ̂ ]/E0[τ
′], i.e., the ratio of the expected sample sizes under H0 of χ̃ and

χ̂ over that of χ′, in the context of the first testing problem, for different

values of β, when α is given by one of the following relationships:

α = β, α = β4, | logα| = | log β|1.5, | logα| = | log β|/β0.08. (S4.44)

In the left column of Figure 2 and 3 we present these ratios, together

with the non-asymptotic bounds implied by (3.12)-(3.13) and (3.25)-(3.26).

In these graphs we observe a slow, downward trend, as α and β decrease, in

all ratios but the one that corresponds to χ̃ in the last asymptotic regime.

This is consistent with Theorem 3, in which χ̂ is shown to achieve asymp-

totic optimality under P0 in all asymptotic regimes in (S4.44), whereas χ̃

only in the first three.

From these graphs we also see that, under P0, the average sample of

the 4-stage test, χ̂, is substantially smaller than that of the 3-stage test, χ̃,

in all cases, and exceeds that of the SPRT by about 20% ∼ 40%

Finally, we see that the upper bounds are very accurate approximations
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(a) α = β, ratios of expected sample sizes (b) Optimally selected free parameters

(c) | logα| = 4 | log β| (d)

Table 2: In this and the next tables, each row represents an asymptotic relationship

between α and β in (S4.44), the left column draws E0[τ̃ ]/E0[τ
′] and E0[τ̂ ]/E0[τ

′], along

with the corresponding bounds from Section 2, against | lg β|, in testing the mean of an

iid Gaussian sequence with unit variance, and the right column draws the corresponding

optimally selected | lg γ̃| in χ̃ and | lg γ̂|, | lg γ̂′| in χ̂, against | lg β|.
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(a) | logα| = | log β|1.5 (b)

(c) | logα| = | log β|/β0.08 (d)

Table 3
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to the expected sample sizes in all cases, even for large values of α and β. On

the other hand, the lower bounds are similarly accurate for χ̃, but relatively

conservative for χ̂. To illustrate the selection of the free parameters of the

two multistage tests, in the right column of Figure 2 and 3 we plot γ̃ in χ̃

and γ̂, γ̂′ in χ̂, against β, all of them in the | lg(·)| scale.

S4.4 The second study

In the second study we compare the expected sample sizes of the four tests

when the true distribution is not necessarily P0 or P1. Specifically, we

compute Eµ[τ ] for different values of µ, in each of the three testing problems

considered in Section S3, when α = β = 10−4 and when α = 10−8, β = 10−2.

The results are presented in Figure 4, where each row represents a testing

problem, each column represents a pair of error probabilities, and the values

of the parameter at which we control the error probabilities are highlighted

on the x-axis. Consistent with our discussion in Subsection 4.3.1, we can

see that when the true parameter is around the middle of µ0 and µ1, the

expected sample sizes of the multistage tests are much smaller than that

of the SPRT. On the other hand, the expected sample size of the SPRT

further decreases to the left of µ0 and to the right of µ1, while that of the

multistage tests is lower bounded, at least by n0 ∧ n1.
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(a) IID Gaussian, α = β = 10−4 (b) α = 10−8, β = 10−2

(c) AR(1), α = β = 10−4 (d) α = 10−8, β = 10−2

(e) Two-state Markov, α = β = 10−4 (f) α = 10−8, β = 10−2

Table 4
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S5 Proofs

This section is devoted to presenting all the proofs that are omitted in the

main content and in Section S1 of the supplement. It is organized as follows.

In Section S5.1, we list some preliminary results about asymptotic bounds

and approximations to the fixed-sample-size test, which, as mentioned at

the beginning of Subsection 4.3, are the building blocks for the asymptotic

analysis of the proposed multistage tests. In Section S5.2 we prove these

preliminary results. In Subsection S5.3 we prove Lemma 1, Theorem 3

and Theorem 4, which are the main theoretical results of this work. In

Subsection S5.4, we prove Theorem S1 in Section S1.

S5.1 Asymptotic analysis for the fixed-sample-size test

The asymptotic results in this subsection are based on the assumptions of

Subsection 4.1 and 4.2, and, unless specifically mentioned, hold as at least

one of α and β goes to 0, while the other one either goes to 0 as well or

remains fixed. When any of these asymptotic regimes holds, we simply

write α ∧ β → 0.
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Asymptotic bounds

Theorem S2. As α ∧ β → 0,

min

{
| log β|
ψ1(κ)

,
| logα|
ψ0(κ)

}
≲ n∗(α, β) ≲ max

{
| log β|
ψ1(κ)

,
| logα|
ψ0(κ)

}
(S5.45)

for every κ ∈ (J0, J1), and consequently

n∗(α, β) ≲
| log(α ∧ β)|

C
, (S5.46)

where C is defined as in (4.13).

We present the following asymptotic lower bounds separately when T =

Λ̄ and when T ̸= Λ̄, as in the latter case we also need assumption (4.11).

Theorem S3. (i) If T = Λ̄, then

n∗(α, β) ≳ max

{
| log β|
I0

,
| logα|
I1

}
as α ∧ β → 0. (S5.47)

(ii) If T ̸= Λ̄ and (4.11) holds, then

n∗(α, β) ≳ max

{
| log β|
ψ1(J0)

,
| logα|
ψ0(J1)

}
as α ∧ β → 0. (S5.48)

Asymptotic approximations

Unlike the preceding bounds, asymptotic approximations to n∗(α, β) de-

pend on the relative decay rate of α and β. To describe them, we introduce

the following function:

g(κ) ≡ ψ0(κ)

ψ1(κ)
, κ ∈ (J0, J1), (S5.49)
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which, by assumption, is continuous and strictly increasing in (J0, J1) with

g(J0+) = 0 and g(J1−) = ∞. As a result, its inverse, g−1, is well-defined

in (0,∞) and satisfies g−1(0,∞) = (J0, J1).

We start with the asymptotic regime where α, β → 0 so that

| logα| ∼ r | log β| for some r ∈ (0,∞), (S5.50)

in which case the approximation is expressed in terms of the function g.

Corollary S4. As α, β → 0 so that (S5.50) holds,

n∗(α, β) ∼ | logα|
ψ0(g−1(r))

∼ | log β|
ψ1(g−1(r))

. (S5.51)

When in particular, r = 1,

n∗(α, β) ∼ | logα|
C

∼ | log β|
C

. (S5.52)

Remark S5. From the previous corollary and the asymptotically optimal

performance in (4.5) we obtain the asymptotic relative efficiency of the

fixed-sample-size test as α, β → 0 so that (S5.50) holds. Specifically,

n∗(α, β) ∼ I1
ψ0(g−1(r))

L1(α, β) ∼
I0

ψ1(g−1(r))
L0(α, β), (S5.53)

and when in particular r = 1,

n∗(α, β) ∼ I1
C

L1(α, β) ∼
I0
C

L0(α, β). (S5.54)

When α ∧ β → 0 so that | logα|/| log β| either goes to zero or diverges,

the asymptotic lower bounds in Theorem S3 turn out to be sharp.
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Corollary S5. Let T = Λ̄.

(i) If α ∧ β → 0 so that | logα| ≪ | log β|, then n∗(α, β) ∼ | log β|/I0.

(ii) If α ∧ β → 0 so that | logα| ≫ | log β|, then n∗(α, β) ∼ | logα|/I1.

Corollary S6. Let T ̸= Λ̄ and assume that (4.11) holds.

(i) If α∧β → 0 so that | logα| ≪ | log β|, then n∗(α, β) ∼ | log β|/ψ1(J0).

(ii) If α∧β → 0 so that | logα| ≫ | log β|, then n∗(α, β) ∼ | logα|/ψ0(J1).

Remark S6. When T = Λ̄ and one of α and β is fixed, Corollary S5

is known as Stein’s lemma (see, e.g., (Dembo and Zeitouni, 1998, Lemma

3.4.7)). We stress, however, that both α and β are allowed to go to 0 in the

previous corollaries.

When both α and β go to 0, Corollary S5, in conjunction with (4.5), im-

plies that the fixed-sample-size test is asymptotically optimal under one of

the two hypotheses, while being of a larger order of magnitude compared to

the optimal under the other hypothesis. This is formalized in the following

corollary.

Corollary S7. Let T = Λ̄.

(i) If α, β → 0 so that | logα| ≪ | log β|, then

L1(α, β) ≪ n∗(α, β) ∼ L0(α, β).
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(ii) If α, β → 0 so that | logα| ≫ | log β|, then

L0(α, β) ≪ n∗(α, β) ∼ L1(α, β).

We end this subsection with the corresponding result when T ̸= Λ̄.

Corollary S8. Let T ̸= Λ̄ and assume that (4.11) holds.

(i) If α, β → 0 so that | logα| ≪ | log β|, then

L1(α, β) ≪ n∗(α, β) ∼ I0
ψ1(J0)

L0(α, β).

(ii) If α, β → 0 so that | logα| ≫ | log β|, then

L0(α, β) ≪ n∗(α, β) ∼ I1
ψ0(J1)

L1(α, β).

S5.2 Proof of results in Section S5.1

We start with a preliminary lemma, which holds under only some of the

assumptions of Section 4.

Lemma S1. (i) If, for every n ∈ N, P1 and P0 are mutually absolutely

continuous when restricted to Fn, then

n∗(α, β) → ∞ as α ∧ β → 0.

(ii) If also (4.8) holds, then

J0 ≤ lim κ∗(α, β) and lim κ∗(α, β) ≤ J1 as α ∧ β → 0.
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Proof. (i) Since n∗(·, ·) is decreasing in both its arguments, it suffices to

show n∗(α, β) goes to infinity when one of α and β goes to 0, while the

other one is fixed. Without loss of generality, we assume that α is fixed

and β → 0. We argue by contradiction and suppose that n∗(α, β) ̸→ ∞ as

β → 0. From this assumption and the fact that n∗ is decreasing in both

its arguments we conclude that there exists an m ∈ N and a sequence (βn)

with βn → 0 such that n∗(α, βn) = m for any n ∈ N. Then, for every n ∈ N

we have κ∗(α, βn) ≥ zα, where

zα ≡ inf{z ∈ R : P0(Tm > z) ≤ α} > −∞,

and subsequently

βn ≥ P1(Tn∗(α,βn) ≤ κ∗(α, βn)) = P1(Tm ≤ κ∗(α, βn)) ≥ P1(Tm ≤ zα).

Letting n→ ∞ we obtain P1(Tm ≤ zα) = 0. By the definition of zα we also

have P0(Tm ≤ zα) ≥ 1 − α > 0. This violates the assumption that P0 is

absolutely continuous to P1 when restricted to Fm, thus, we have reached

a contradiction.

(ii) We only prove the first inequality, as the proof of the second is

similar. We argue by contradiction and suppose that limκ∗(α, β) < J0 as

α ∧ β → 0. Then there exists an ϵ > 0 and a sequence (αn, βn)n∈N such

that at least one of (αn)n∈N or (βn)n∈N converges to zero, both are bounded
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away from one, and κ∗(αn, βn) ≤ J0 − ϵ for every n ∈ N. Then for every

n ∈ N,

αn ≥ P0(Tn∗(αn,βn) > κ∗(αn, βn)) ≥ P0(Tn∗(αn,βn) > J0 − ϵ).

In view of (i) and assumption (4.8), the lower bound goes to 1 as n → ∞,

which contradicts the fact that the sequence (αn)n∈N is bounded away from

one.

Proof of Theorem S2. The upper bound in (S5.45) implies that

n∗(α, β) ≲
| logα| ∨ | log β|
ψ1(κ) ∧ ψ0(κ)

=
| log(α ∧ β)|
ψ1(κ) ∧ ψ0(κ)

for every κ ∈ (J0, J1),

and optimizing with respect to κ we obtain (S5.46). Therefore, it suffices

to show (S5.45).

We first fix arbitrary α, β ∈ (0, 1). To lighten the notation, we write

n∗(α, β) and κ∗(α, β) as n∗ and κ∗. By the definitions of these quantities

we have

P0(Tn∗ > κ∗) ≤ α and P1(Tn∗ ≤ κ∗) ≤ β = α
| log β|
| logα| ,

and as a result

max
{
P0(Tn∗ > κ∗), P1(Tn∗ ≤ κ∗)

| logα|
| log β|

}
≤ α.
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Since for any n ∈ N and κ1, κ2 ∈ R,

either P0(Tn > κ1) ≥ P0(Tn > κ2) or P1(Tn ≤ κ1) ≥ P1(Tn ≤ κ2),

we have, for any κ ∈ (J0, J1),

min
{
P0(Tn∗ > κ), P1(Tn∗ ≤ κ)

| logα|
| log β|

}
≤ α,

and consequently

min
{

1
n∗ logP0(Tn∗ > κ), 1

n∗ logP1(Tn∗ ≤ κ) · | logα|
| log β|

}
1
n∗ logα

≥ 1. (S5.55)

On the other hand, the definition of n∗ also implies

either α < P0(Tn∗−1 > κ∗) or β < P1(Tn∗−1 ≤ κ∗),

and consequently

α < max
{
P0(Tn∗−1 > κ∗), P1(Tn∗−1 ≤ κ∗)

| logα|
| log β|

}
.

Similarly we conclude that, for any κ ∈ (J0, J1),

max
{

1
n∗−1

logP0(Tn∗−1 > κ), 1
n∗−1

logP1(Tn∗−1 ≤ κ) · | logα|
| log β|

}
1

n∗−1
logα

< 1.

(S5.56)

Now, we let α ∧ β → 0 in (S5.55) and (S5.56). Based on Lemma S1

and (4.9)-(4.10) we conclude that for any κ ∈ (J0, J1),

lim
n∗(α, β)

logα
min

{
−ψ0(κ), −ψ1(κ) ·

| logα|
| log β|

}
≥ 1,
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and

lim
n∗(α, β)

logα
max

{
−ψ0(κ), −ψ1(κ) ·

| logα|
| log β|

}
≤ 1.

which complete the proof of (S5.45).

Proof of Theorem S3. (i) When both α and β go to 0, this follows from the

universal asymptotic lower bound in (4.5). Therefore, it suffices to consider

the case that only one of them goes to 0, while the other one is fixed.

Without loss of generality, we assume that β → 0, while α is fixed, in which

case it suffices to show that, for every ϵ > 0,

lim
log β

n∗(α, β)
≥ −I0 − ϵ.

To this end, we fix ϵ > 0 and observe that, by Lemma S1.(ii), for β small

enough we have κ∗(α, β) > −I0 − ϵ and consequently

β ≥ P1(Λ̄n∗(α,β) ≤ κ∗(α, β))

≥ P1(−I0 − ϵ < Λ̄n∗(α,β) ≤ κ∗(α, β))

= E0

[
exp{Λn∗(α,β)}; −I0 − ϵ < Λ̄n∗(α,β) ≤ κ∗(α, β)

]
≥ exp{−n∗(α, β) (I0 + ϵ)} · P0(−I0 − ϵ < Λ̄n∗(α,β) ≤ κ∗(α, β)).

(S5.57)
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Moreover, for any α, β ∈ (0, 1) we have

P0(−I0 − ϵ < Λ̄n∗(α,β) ≤ κ∗(α, β))

= 1− P0(Λ̄n∗(α,β) ≤ −I0 − ϵ)− P0(Λ̄n∗(α,β) > κ∗(α, β))

≥ 1− P0(Λ̄n∗(α,β) ≤ −I0 − ϵ)− α,

(S5.58)

and the probability in the lower bound of (S5.58) goes to zero as β → 0 be-

cause of Lemma S1.(i) and assumption (4.2). Therefore, taking logarithms

on both sides of (S5.57), dividing by n∗(α, β) and letting β → 0 complete

the proof.

(ii) We only prove that, as α ∧ β → 0,

n∗(α, β) ≳
| log β|
ψ1(J0)

,

as the proof that n∗(α, β) ≳ | logα|/ψ0(J1) is similar. By assumption (4.11),

there is an ϵ > 0 so that ψ1 is finite and (4.10) holds in (J0 − 2ϵ, J1). From

Lemma S1.(ii) it follows that, when at least one of α and β is small enough,

κ∗(α, β) > J0 − ϵ and consequently

β ≥ P1(Tn∗(α,β) ≤ κ∗(α, β)) ≥ P1(Tn∗(α,β) ≤ J0 − ϵ).

Thus, taking logarithms, dividing by n∗(α, β) and letting α ∧ β → 0 we

obtain

lim
log β

n∗(α, β)
≥ lim

1

n∗(α, β)
logP1(Tn∗(α,β) ≤ J0 − ϵ) = −ψ1(J0 − ϵ),
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where the equality follows from Lemma S1.(i) and assumption (4.10). Since

ψ1 is convex, it is continuous in the interior of its effective domain. Thus,

letting ϵ ↓ 0 completes the proof.

Proof of Corollary S4. The first asymptotic approximation in (S5.51) fol-

lows by setting κ = g−1(r) in (S5.45), whereas the second by the definition

of g which implies

ψ0

(
g−1(r)

)
= r ψ1

(
g−1(r)

)
for any r ∈ (0,∞).

To prove (S5.52) it suffices to show that

C = ψ0(g
−1(1)) = ψ1(g

−1(1)).

Indeed, the strict monotonicity of ψ0 and ψ1 in (J0, J1) implies the supre-

mum in (4.13) is attained when ψ0 = ψ1, or equivalently, when g = 1.

Proofs of Corollaries S5 and S6. In view of the asymptotic lower bounds in

Theorem S3, it satisfies to establish only the corresponding upper bounds.

We only prove part (i) of each Corollary, as the proof of (ii) is similar.

We first show that, for any test statistic T , even if (4.11) does not hold,

n∗(α, β) ≲
| log β|
ψ1(J0)

, or equivalently, ψ1(J0) ≲
| log β|
n∗(α, β)

,
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as α ∧ β → 0 so that | logα| ≪ | log β|.

By assumption, ψ1 is continuous in [J0, J1]. Therefore, to prove the

above claim it suffices to show that, as α∧β → 0 so that | logα| ≪ | log β|,

ψ1(κ) ≲
| log β|
n∗(α, β)

, for any κ ∈ (J0, J1),

which follows directly by Theorem S2. When T ̸= Λ̄, the proof is complete.

When T = Λ̄, it remains to show that ψ1(−I0) ≥ I0. Since ψ1 is continuous

in [−I0, I1], it suffices to show that ψ1(κ) ≥ −κ for every κ ∈ (−I0, 0).

Indeed, for any κ < 0, by Markov’s inequality we have

P1(Λ̄n ≤ κ) ≤ enκ E0[exp{Λn}] = enκ for all n ∈ N.

Taking logarithms, dividing by n, letting n → ∞, and applying (4.10) for

κ in (−I0, 0) complete the proof.

S5.3 Proof of results in Section 4.3

Proof of Lemma 1. We only prove the asymptotic lower bounds under P0,

as those under P1 are similar. We first prove the result for χ̃, in which case

it suffices to show that, for any ϵ ∈ (0, 1),

inf
γ∈[α∨β

2
,1)

E0[τ̃ ] ≳ (1− ϵ)
| log β|
ψ1(J0)

as α, β → 0. (S5.59)
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Fix ϵ ∈ (0, 1). By the non-asymptotic lower bound in (3.12) it follows that,

for any α, β ∈ (0, 1) and γ ∈ [(α ∨ β)/2, 1),

E0[τ̃ ] ≥ max
{
n∗(γ, β/2) · (1− α/2), n∗(α/2, β/2) · (γ − α/2)

}
.

When, in particular, γ ≤ 1− ϵ,

E0[τ̃ ] ≥ n∗(γ, β/2) · (1− α/2) ≥ n∗(1− ϵ, β/2) · (1− α/2).

and when γ ≥ 1− ϵ,

E0[τ̃ ] ≥ n∗(α/2, β/2) · (γ − α/2) ≥ n∗(α/2, β/2) · (1− ϵ− α/2).

By Theorem S3.(ii) it then follows that, as α, β → 0,

inf
γ∈[α∨β

2
,1−ϵ]

E0[τ̃ ] ≳ n∗(1− ϵ, β/2) ≳
| log β|
ψ1(J0)

,

inf
γ∈[1−ϵ,1)

E0[τ̃ ] ≳ (1− ϵ) · n∗(α/2, β/2) ≳ (1− ϵ)
| log β|
ψ1(J0)

,

and they imply (S5.59).

The proof for χ̌ is similar and omitted.

To prove the result for χ̂, it suffices to show that, for any ϵ ∈ (0, 1),

inf
(α

2
∨β

3 )≤γ′≤γ<1
E0[τ̂ ] ≳ (1− 2ϵ)

| log β|
ψ1(J0)

as α, β → 0. (S5.60)

Fix ϵ ∈ (0, 1). By the non-asymptotic lower bound in (3.25) it follows that,

for any α, β ∈ (0, 1) and (α/2) ∨ (β/3) ≤ γ′ ≤ γ < 1,

E0[τ̂ ] ≥ max
{
n∗(γ, β/3) · (1− α/2), n∗(γ′, β/3) · (γ − α/2),

n∗(α/2, β/3) · ((1− α/2)− (1− γ)− (1− γ′))
}
.



S5. PROOFS

When, in particular, γ ≤ 1− ϵ,

E0[τ̂ ] ≥ n∗(γ, β/3) · (1− α/2) ≥ n∗(1− ϵ, β/3) · (1− α/2),

when γ′ ≤ 1− ϵ ≤ γ,

E0[τ̂ ] ≥ n∗(γ′, β/3) · (γ − α/2) ≥ n∗(1− ϵ, β/3) · (1− ϵ− α/2),

and when γ′ ≥ 1− ϵ,

E0[τ̂ ] ≥ n∗(α/2, β/3) · ((1− α/2)− (1− γ)− (1− γ′))

≥ n∗(α/2, β/3) · (1− 2ϵ− α/2).

By Theorem S3.(ii) it then follows that, as α, β → 0,

inf
(α

2
∨β

3 )≤γ′≤γ≤1−ϵ

E0[τ̂ ] ≳ n∗(1− ϵ, β/3) ≳
| log β|
ψ1(J0)

,

inf
(α

2
∨β

3 )≤γ′≤1−ϵ≤γ

E0[τ̂ ] ≳ n∗(1− ϵ, β/3) · (1− ϵ) ≳ (1− ϵ)
| log β|
ψ1(J0)

,

inf
1−ϵ≤γ′≤γ<1

E0[τ̂ ] ≳ n∗(α/2, β/3) · (1− 2ϵ) ≳ (1− 2ϵ)
| log β|
ψ1(J0)

,

which together imply (S5.60).

The proof of Theorem 3 is omitted, as it is almost identical to that of

Theorem 4. For the proof of the latter, in view of Lemma 1, it suffices to

prove in each case the corresponding asymptotic upper bounds.

Our technique is to show that the asymptotic upper bounds hold for the

proposed tests as long as the free parameters are selected to meet certain
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very mild asymptotic relationships with α and β, these asymptotic rela-

tionships must be satisfied by a sequence of points on the grids, and thus,

the asymptotic upper bounds must hold if the free parameters are selected

as the minimizers over the grids.

Proof of Theorem 4. (i) We first prove the result for χ̃. First, suppose that

there is a δα,β such that δα,β ∈ [(α ∨ β)/2, 1) for every α, β ∈ (0, 1), and

| log δα,β| ≪ | logα|, | log(α ∧ β)| δα,β ≪ | logα| (S5.61)

as α, β → 0. Then, if we select δ as δα,β, by (3.13), Corollary S5.(ii) and

Theorem S2 we have, as α, β → 0,

E1[τ̃ ] ≤ n∗(α/2, δα,β) +
(
n∗(α/2, β/2)− n∗(α/2, δα,β)

)
· δα,β

≤ n∗(α/2, δα,β) + n∗(α/2, β/2) · δα,β

≲
| logα|
ψ0(J1)

+
| log(α ∧ β)|

C
δα,β ∼ | logα|

ψ0(J1)
.

Second, for any α, β ∈ (0, 1) let δL̃α,β denote the grid point on L̃α,β that

is the closest to δα,β. If, also, the grid-length goes to 0 so that

|δL̃α,β − δα,β| ≤ l̃α,β ≪ δα,β (S5.62)

as α, β → 0, then δL̃α,β satisfies (S5.61) as well and, consequently, the same

asymptotic upper bound on E1[τ̃ ] holds for δ ≡ δL̃α,β and, furthermore, for δ

that is selected as the minimizer over L̃α,β.
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Thus, it remains to show that it is possible to find such δα,β and l̃α,β

that satisfy (S5.61)-(S5.62). This is not always possible if α and β go to 0

at arbitrary rates. However, when α, β → 0 so that | logα| ≳ | log β|, an

example of such a selection is

l̃α,β = | log(α ∧ β)|−1 and

δα,β = | log(α ∧ β)|−ϵ ∨ ((α ∨ β)/2)
(S5.63)

for some ϵ ∈ (0, 1). This completes the proof for χ̃.

The proof for χ̂ is similar and omitted.

To prove the result for χ̌, we observe that by (3.28) it follows that

n∗(α/3, δ) + (n∗(α/3, δ′)− n∗(α/3, δ)) · δ + (n∗(α/3, β/2)− n∗(α/3, δ′) · δ′

≤ n∗(α/3, δ) + n∗(α/3, β/2) · δ

for any α, β ∈ (0, 1) and δ, δ′ such that (α/3) ∨ (β/2) ≤ δ′ ≤ δ < 1. The

proof then continues in exactly the same way as for χ̃.

(ii) If γ ≡ γα,β, γ
′ ≡ γ′α,β satisfy

(α/2) ∨ (β/3) ≤ γ′α,β ≤ γα,β < 1
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for every α, β ∈ (0, 1), and

| log γα,β| ≪ | log β|

| log(γ′α,β ∧ β)| γα,β ≪ | log β|

| log(α ∧ β)| γ′α,β ≪ | log β|

(S5.64)

as α, β → 0, then, by (3.25), Corollary S5.(i) and Theorem S2 we conclude

that, as α, β → 0,

E0[τ̂ ] ≤ n∗(γα,β, β/3) +
(
n∗(γ′α,β, β/3)− n∗(γα,β, β/3)

)
· γα,β

+
(
n∗(α/2, β/3)− n∗(γ′α,β, β/3)

)
· γ′α,β

≤ n∗(γα,β, β/3) + n∗(γ′α,β, β/3) · γα,β + n∗(α/2, β/3) · γ′α,β

≲
| log β|
ψ1(J0)

+
| log(γ′α,β ∧ β)|

C
γα,β +

| log(α ∧ β)|
C

γ′α,β ∼ | log β|
ψ1(J0)

.

For any α, β ∈ (0, 1), let γL̂α,β and γ′L̂α,β denote the grid points on L̂α,β

that are the closest to γα,β and γ′α,β respectively. If the grid lengths satisfy

|γL̂α,β − γα,β|, |γ′L̂α,β − γ′α,β| ≤ l̂α,β ≪ γ′α,β,

as α, β → 0, then γL̂α,β and γ′L̂α,β satisfy (S5.64) as well and, consequently,

the same asymptotic upper bound on E0[τ̂ ] holds for γ ≡ γL̂α,β, γ
′ ≡ γ′L̂α,β

and, furthermore, for γ, γ′ that are selected as the minimizers over L̂α,β.

Now, it remains to find such γα,β, γ
′
α,β and l̂α,β, when α, β → 0 so that
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| log β| ≲ | logα| ≲ | log β|/βr for some r > 0. The following is an example:

l̂α,β = | log(α ∧ β)|−1

γα,β = | log β|−ϵ ∨ α

2
∨ β

3
,

γ′α,β =

(
| log β|ϵ′

| logα|
∧ γα,β

)
∨ α

2
∨ β

3

(S5.65)

for some ϵ, ϵ′ ∈ (0, 1).

(iii) To prove the result for χ̃, note that if γ ≡ γα,β satisfies γα,β ∈

[(α ∨ β)/2, 1) for every α, β ∈ (0, 1), and

| log γα,β| ≪ | log β|, | log(α ∧ β)| γα,β ≪ | log β|, (S5.66)

as α, β → 0, then, by (3.12), Corollary S5.(i) and Theorem S2 we conclude

that, as α, β → 0,

E0[τ̃ ] ≤ n∗(γα,β, β/2) +
(
n∗(α/2, β/2)− n∗(γα,β, β/2)

)
· γα,β

≤ n∗(γα,β, β/2) + n∗(α/2, β/2) · γα,β

≲
| log β|
ψ1(J0)

+
| log(α ∧ β)|

C
γα,β ∼ | log β|

ψ1(J0)
.

The rest then follows by a similar argument as in the previous cases. An

example of γα,β and ľα,β that satisfy (S5.66) and ľα,β ≪ γα,β when α, β → 0
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so that | log β| ≲ | logα| ≲ | log β|r for some r ≥ 1 is:

ľα,β = | log(α ∧ β)|−1

γα,β =
| log β|ϵ

| logα|
∨ α

2
∨ β

2
for some ϵ ∈ (0, 1).

(S5.67)

The proof for χ̌ is essentially the same with α/2 replaced by α/3.

S5.4 Proof of Theorem S1

This is a version of the Gärtner-Ellis Theorem. Its proof follows the same

technique as in (Dembo and Zeitouni, 1998, Theorem 2.3.6) or (Bucklew,

2010, Theorem 3.2.1), and is presented only for completeness. Specifically,

we establish first the asymptotic upper bounds in (i) and (ii). Using these,

we establish (iii). Finally, using (iii), we establish the asymptotic lower

bounds in (i) and (ii).

Proof of Theorem S1. We establish the asymptotic upper bound only for

(i), as the corresponding proof for (ii) is similar. Thus, we assume that

Θo ∩ (0,∞) ̸= ∅. For any κ1, κ2 ∈ ϕ′(Θo ∩ (0,∞)) such that κ1 < κ2,

ϕ∗(κ1) = ϑ(κ1)κ1 − ϕ(ϑ(κ1)) < ϑ(κ1)κ2 − ϕ(ϑ(κ1)) ≤ ϕ∗(κ2),

which proves that ϕ∗ is strictly increasing in ϕ′(Θo∩ (0,∞)). From (Dembo

and Zeitouni, 1998, Lemma 2.2.5)) it follows that the Legendre-Fenchel
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transform of ϕ, ϕ∗, is non-negative and lower-semicontinuous, and these

properties imply that

0 ≤ ϕ∗ (ϕ′(0+)) ≤ lim
θ↓0

ϕ∗ (ϕ′(θ)) = lim
θ↓0

{θϕ′(θ)− ϕ(θ)} = 0.

Since ϕ′(Θo ∩ (0,∞)) is an open interval (whose right endpoint may be

infinity), to show that (S1.4) holds for every κ ∈ ϕ′(Θo ∩ (0,∞)) it suffices

to show that it holds for every κ ∈ ϕ′((0, θ∗)), where θ∗ ∈ Θo∩(0,∞). Thus,

we fix θ∗ ∈ Θo ∩ (0,∞) and denote ϕ′((0, θ∗)) ≡ (a, b), where a ≡ ϕ′(0+)

and b ≡ ϕ′(θ∗).

For any κ ∈ (a, b) and θ ∈ (0, θ∗), we have

P(Tn > κ) ≤ exp{−n θ κ}E [exp{n θ Tn}] = exp{−n(θκ− ϕn(θ))},

which, after taking logarithm, dividing by n and letting n→ ∞, gives

lim
n

1

n
logP(Tn > κ) ≤ − (θκ− ϕ(θ)) .

Optimizing the right-hand-side with respect to θ ∈ (0, θ∗), we obtain−ϕ∗(κ).

The proof for the asymptotic upper bounds is complete.

Note that this asymptotic upper bound is non-trivial for every κ ∈

(a,∞) since ϕ∗(a) = 0 and ϕ∗ is strictly increasing in (a, b). Therefore, it

implies that P (Tn − ϕ′(0+) > ϵ) is exponentially decaying for every ϵ > 0.

Similarly it follows that if Θo ∩ (−∞, 0) ̸= ∅, then P (Tn − ϕ′(0−) ≤ −ϵ)

is exponentially decaying for every ϵ > 0. From these observations we
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conclude that if 0 ∈ Θo, then P (|Tn − ϕ′(0)| > ϵ) is exponentially decaying

for every ϵ > 0, and as a result P (Tn → ϕ′(0)) = 1. Therefore, (iii) follows

using exactly the same argument as long as the sequence of functions

λ ∈ R → 1

n
log EQθ

[exp{nλTn}] , n ∈ N

satisfies the assumptions of the theorem, 0 belongs to the interior of the

effective domain of its limit, and the derivative of its limit at 0 is ϕ′(θ). To

show this, we fix θ ∈ (0, θ∗). Then, for any λ ∈ R,

EQθ
[exp{nλTn}] = E [exp{n((λ+ θ)Tn − ϕn(θ))}]

= exp{n(ϕn(λ+ θ)− ϕn(θ))},

and consequently

lim
n

1

n
log EQθ

[exp{nλTn}] = ϕ(λ+ θ)− ϕ(θ).

The limit is finite for λ ∈ (−θ, θ∗ − θ), which contains 0 in its interior,

inherits all the smoothness properties of ϕ, and its derivative at λ = 0 is

ϕ′(θ). The proof for (iii) is complete.

It remains to prove the asymptotic lower bounds in (i) and (ii). Again,

we only do so for (i), as the proof for (ii) is similar. Fix κ ∈ (a, b). For any
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n ∈ N, θ ∈ (0, θ∗) and ϵ ∈ (0, b− κ),

P(Tn > κ) = EQθ
[exp{−n(θTn − ϕn(θ))}; Tn > κ]

≥ EQθ
[exp{−n(θTn − ϕn(θ))}; κ < Tn ≤ κ+ ϵ]

≥ exp{−n(θ(κ+ ϵ)− ϕn(θ))}Qθ(κ < Tn ≤ κ+ ϵ).

If we now set θ = ϑ(κ+ ϵ/2), take logarithms, divide by n and let n→ ∞,

by (iii) we obtain

lim
n

1

n
logP(Tn > κ) ≥ −ϑ(κ+ ϵ/2)(κ+ ϵ) + ϕ(ϑ(κ+ ϵ/2)).

To complete the proof, we let ϵ ↓ 0 and observe that the right-hand-side

converges to −
(
ϑ(κ)κ−ϕ(ϑ(κ))

)
= −ϕ∗(κ), since ϑ and ϕ are both contin-

uous in the corresponding neighborhoods.
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