
Supplementary Material for

A Homogeneity Likelihood Ratio Measure

for Hidden Jump-sets in Generalized Spatial Regression

Pei-Sheng Lin Jun Zhu Katherine J. Curtis

1 Technical Details

1.1 Assumptions

We first briefly introduce assumptions and theorems that are developed for the proposed method.

Assumption 1 (a) The mean functions satisfy max{|θi|4 : i = 1, . . . , n} is finite. (b) The explana-

tory variables xi are not multiples of a binary variable. (c) The link function g(·) is one-to-one.

(d) The first- and second-order derivatives of the link function g(·) are continuous. (e) There exists

a smooth function V (·) such that var(Yi) = V (θi, σ), where σ is a nuisance parameter.

Assumption 1(b) ensures identifiability between the regression coefficients and status vectors, while

the remainder of Assumption 1 are common regularity conditions for generalized linear models. We

next impose some mixing conditions for the responses to ensure the validity of the QL estimation

for the jump-set model. Let Ξ ⊆ D and let YΞ =
∏
si∈Ξ Y (si). Let ρk,l(h) = sup

{
|corr(YΞ1 ,YΞ2)| :

|Ξ1| ≤ k, |Ξ2| ≤ l, d(Ξ1,Ξ2) ≥ h
}

, where corr(·, ·) denotes a correlation function, and d(Ξ1,Ξ2) =

inf{‖s1 − s2‖ : si ∈ Ξi} (see, e.g., Lin, 2008).

Assumption 2 The mixing coefficient ρk,l(h) satisfies the following conditions: (a) ρ1,1(h) =

O(h−2−k1) for some k1 > 0. (b) ρk,l(h) = o(h−2) for k + l ≤ 4. (c) ρ1,1(h) is positive definite.

Assumption 2 holds for the case of spatial independence and various spatial correlation models,

including the exponential and spherical models. By Assumption 2(a), we have
∑n

i=1 Λi,j = O(1)
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for all j = 1, . . . , n and thus, (∇λδθδ)′Λλδ(∇λδθδ) = O(n). It is therefore reasonable to make the

following assumption.

Assumption 3 The information matrix −n−1(∇λδθδ)′Λλδ(∇λδθδ) converges to a positive-definite

matrix I(λδ; τ ) as n→∞.

1.2 Theorems

To investigate the asymptotic properties, we consider an increasing domain. Let
P−→ and

L−→

denote convergence in probability and in distribution, respectively, as n → ∞. Also, let o∗(nq)

denote a vector containing either 0 or 1 with a sum on the order o(nq) as n → ∞. Let B(si, r)

denote a ball with center si and radius r. Under suitable regularity conditions, we first establish

the convergence of τ̂ from (2.9).

Proposition 1 Suppose |B(si, r) ∩D| = O(r2) for i = 1, . . . , n and Assumptions 1–2 hold. Then,

τ̂ = τ † + Op(n
−1) for some constants τ †. Furthermore, if the selected variogram model γτ (h) is

correctly specified, then τ̂ = τ +Op(n
−1), where τ is the true vector of covariance parameters.

Let nψ =
∑n

i=1 ψi and nδ =
∑n

i=1 δi. Also, let ψ0 be a given status vector with ψ0 = δ+ o∗(n1/2).

We have the following results for asymptotic properties of the HLR method.

Theorem 1 Suppose nδ = O(n) and Assumptions 1–3 hold. Then, at each iteration m = 0, 1, 2, . . .

of Algorithm 1, the QL estimates λ̂
(m)
ψ0

are consistent in the sense that λ̂
(m)
ψ0

P−→ λδ, as n→∞.

Theorem 1 states that, when a candidate status vector and the true status vector are asymptotically

equivalent, the QL estimates associated with the corresponding candidate model are consistent.

In more typical iterative estimation methods, the consistency of regression parameter estimates

hinges on the consistency of covariance parameter estimates. Here, in contrast, the estimates of the

regression coefficients and the jump coefficient can be consistent, even if the covariance parameter

estimates are biased.

Next, we study the asymptotic behavior of the jump coefficient estimate ξ̂ψ for an arbitrary

status vector ψ. Let ∆ψ = {j : ψj = 1} and ∆c
ψ = {j : ψj = 0} denote the jump set and the

complement set of ∆ψ, respectively, associated with ψ. At the mth iteration of Algorithm 1, let
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λ̂
(m)
ψ = (β̂

(m)
0 , β̂

(m)
ψ , ξ̂

(m)
ψ )′ denote the QL estimate for λψ. Let θ̂

(m)
ψ = g−1

{
β̂

(m)
0 +Xβ

(m)
ψ + ξ̂

(m)
ψ ψ

}
with the jth element θ̂

(m)
j;ψ . Let θ̂

(m)
ψc = g−1

{
(β̂

(m)
0 + ξ̂

(m)
ψ ) +Xβ̂

(m)
ψc − ξ̂

(m)
ψc ψ

c
}

with the jth element

θ̂
(m)
j;ψc . Also, let V {λ̂(m)

ψ ; τ̂ (m)} denote the working covariance matrix evaluated at the QL estimates

and let Λ{λ̂(m)
ψ ; τ̂ (m)} denote the inverse of V {λ̂(m)

ψ ; τ̂ (m)} with the (i, j)th element denoted as

Λ̂
(m)
i,j;ψ.

Proposition 2 Let ψ be an arbitrary status vector satisfying nψ = O(n). Under Assumptions 1–3,

we have, as n→∞,∑
j∈∆ψ

n∑
i=1

θ̂
(m)
j;ψ Λ̂

(m)
j,i;ψ{β0 + ξδδi − β̂

(m)
0 − ξ̂(m)

ψ ψi} = Op(n
1/2),

and
∑
j∈∆c

ψ

n∑
i=1

θ̂
(m)
j;ψcΛ̂

(m)
j,i;ψc{(β0 + ξδ)− ξδδci − (β̂

(m)
0 + ξ̂

(m)
ψ ) + ξ̂

(m)
ψc ψ

c
i } = Op(n

1/2).

There are several remarks for Proposition 2. First, unlike Theorem 1, no assumption about the

size of the true jump set is made and thus, Proposition 2 can be applied to the case of no jump

set. Second, when a candidate status vector ψ is mis-specified, Proposition 2 states that ξ̂
(m)
ψ is

biased. This result reveals that, if ξ̂
(m)
ψ is consistent, then ψ is asymptotically equivalent to δ (on

the order of n1/2). By Theorem 1 and Proposition 2, the following Corollary 1 holds.

Corollary 1 Under the assumptions of Theorem 1, we have λ̂
(m)
ψ

P−→ λδ and λ̂
(m)
ψc

P−→ λδc if and

only if ψ ≡ ψ0 = δ + o∗(n1/2), where λδc = (β0 + ξδ,β
′,−ξδ)′.

The asymptotic normality of λ̂
(m)
ψ0

and λ̂
(m)
ψc0

can be established on the consistency in the following

Corollary 2.

Corollary 2 Under the assumptions of Proposition 1 and Theorem 1, we have, as n → ∞,

n1/2λ̂
(m)
ψ0

L−→ N
(
λδ, I

−1(λδ; τ
†)
)

and n1/2λ̂
(m)
ψc0

L−→ N
(
λδc , I

−1(λδc ; τ
†)
)

where I(λδ; τ
†) is given

in Assumption 3. Moreover, if the selected variogram model is correctly specified, then, as n→∞,

n1/2λ̂
(m)
ψ0

L−→ N
(
λδ, I

−1(λδ; τ )
)
, and n1/2λ̂

(m)
ψc0

L−→ N
(
λδc , I

−1(λδ; τ )
)
.

Further, the following Theorems 2 and 3 show that the QL homogeneity measure (2.5) has a

(unique) minimum value when the candidate jump set is (asymptotically) equal to the true jump set.

These results consequently ensure the selection consistency for the proposed jump-set identification

procedure.
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Theorem 2 Suppose nδ = O(n), nψ = O(n), and Assumptions 1–3 hold. Then, at each itera-

tion m = 0, 1, . . . of Algorithm 1, we have an inequality minψ∈ΩH
{
θ(λ̂

(m)
ψ ),θ(λ̂

(m)
ψc )

}
≥ 0, with

probability one. In addition, the equality (asymptotically) holds if and only if ψ ≡ ψ0; that is,

H
{
θ(λ̂

(m)
ψ ),θ(λ̂

(m)
ψc )

}
= op(n

−1) if and only if ψ = δ + o∗(n1/2).

Assume that Ω (asymptotically) contains the true status vector δ in the sense that at least one

status vector ψ0 is in Ω. By Theorem 2, H
{
θ(λ̂

(m)
ψ0

),θ(λ̂
(m)
ψc0

)
}

is (asymptotically) equal to zero,

where ψc0 = 1 − ψ0. This implies that ψ0 minimizes H
{
θ(λ̂

(m)
ψ ),θ(λ̂

(m)
ψc )

}
, which gives existence

of minψ∈ΩH
{
θ(λ̂

(m)
ψ ),θ(λ̂

(m)
ψc )

}
.

Also, recall that the estimated status vector at the mth iteration of Algorithm 1 is denoted by

δ̂(m) = minψ∈ΩH
{
θ(λ̂

(m)
ψ ),θ(λ̂

(m)
ψc )

}
. Then, we have the following result about the consistency

of the jump-set selection.

Theorem 3 Suppose that Ω (asymptotically) contains the true status vector δ and that the as-

sumptions of Theorem 2 hold. We have, at each iteration m = 0, 1, . . . of Algorithm 1, δ̂(m) =

minψ∈ΩH
{
θ(λ̂

(m)
ψ ),θ(λ̂

(m)
ψc )

}
if and only if δ̂(m) = δ + o∗(n1/2).

Theorem 3 states that the estimated status vector from the minimizer of the homogeneity measure

is asymptotically equivalent to the true status vector. That is, Algorithm 1 asymptotically selects

the true jump set and thus is consistent in the jump-set identification. Finally, we consider the

asymptotic behavior of the case that there is no jump set (i.e., δ = 0).

Theorem 4 Suppose that there is no jump set and Assumptions 1–3 hold. Then, the following

results hold. (a) The difference between the two jump coefficient estimates is asymptotically equiv-

alent such that (ξ̂ψ + ξ̂ψc)
P−→ 0 for any ψ ∈ Ω, as n → ∞. (b) The test statistic Zψ follows the

standard normal distribution.

By Theorem 4, when there is no jump set, the test statistic Zψ is asymptotically normal and thus

an approximate normal test can be performed. The proofs of Propositions 1–2, Theorems 1–4, and

Corollaries 1–2 above are given in the next section.

Let Q̇(λδ; τ ) = ∂Q(λδ; τ )/∂λδ denote a derivative matrix of Q(λδ; τ ) with respect to λδ.

Below we show convergence for the proposed estimation method.
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Theorem 5 Under Assumptions 1–3, the derivative of n−1Q̇(λδ; τ ) converges in probability to the

positive-definite matrix I(λδ; τ ) of Assumption 3 as n → ∞. Furthermore, the derivative of the

QL function is uniformly bounded in probability as n→∞. That is, ‖Q̇(λδ; τ )‖ ≤M as n→∞.

Corollary 3 Under Assumptions 1-3, Q̇(λδ; τ ) satisfies the Lipschitz condition in probability as

n→∞. That is, ‖Q̇(λδ; τ )− Q̇(λ∗δ ; τ )‖ ≤ l‖λδ − λ∗δ‖ in probability for some l > 0 as n→∞.

Corollary 4 Under Assumptions 1-3, a Newton iteration of the QL function is globally convergent

in probability as n→∞.

Corollary 5 Under Assumptions 1-3, the iterative procedure of Algorithm 1 converges in probabil-

ity as n→∞.

1.3 Proofs of Theorems

1.3.1 Derivation for the homogeneity measure

Let `{θ(λψ)} and `{θ(λψc)} denote the corresponding log-QL functions for Υ{θ(λψ); τ} and

Υ{θ(λψc); τ}, respectively. Since it is tenuous to have an explicit expression for the log-QL function

when data are correlated, we apply a first-order Taylor series to expand Υ{θ(λψ)} at the reference

point λ+. An approximation for the log-QL function can thus be given by

`{θ(λψ)} ≈ (1/2){θ(λψ)− θ(λ+)}′Λλ+ [{θ(λψ)− θ(λ+)}+ 2{Y − θ(λ+)}], (1.1)

Let λ̂ψ and λ̂ψc denote the QL estimates of λψ and λψc , respectively. The log-QL ratio can thus be

expressed as a difference between the log-QL functions under λ̂ψ and λ̂ψc by H0{θ(λψ),θ(λψc)} =

`{θ(λ̂ψ)} − `{θ(λ̂ψc)}. We can thus approximate H0{θ(λψ),θ(λψc)} by

(1/2){θ(λ̂ψ)− θ(λ̂ψc)}′Λλ+{θ(λ̂ψ)− θ(λ̂ψc)} − {θ(λ̂ψ)− θ(λ̂ψc)}′Λλ+{Y − θ(λ+)}.

We choose λ+ to satisfy the estimating equation {θ(λ̂ψ) − θ(λ̂ψc)}′Λ̄λ+{y − θ(λ+)} = 0, where

Λ̄λ+ = (1/2)(Λλ̂ψ + Λλ̂ψc ), and thus H0{θ(λψ),θ(λψc)} can be further simplified to the homo-

geneity measure. �
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1.3.2 Proof of Proposition 1

We first show Proposition 1 holds for spatial data on a regular grid with size m1×m2. Recall that

the number of pairs at distance h can be approximated by |N(h)| .= 2m1m2h (Fingleton, 1983).

Let Γ = var(γ̂) denote the covariance matrix of γ̂ = (γ̂(1), . . . , γ̂(Mn))′ with the (i, j)th element

Γi,j . Also, let hn denote a sequence satisfying ρi,j(hn)(Mn)1/2 → 0 and (hn)−2(Mn)1/2 → ∞, as

n→∞. Note that Mn = O(n). It can be shown that

∑
i

∑
j

Γi,j =

∑
i≤hn

∑
j≤hn

cov{γ̂(i), γ̂(j)}

 {1 + o(1)}. (A1)

Next, let An =
∑

i≤hn
∑

j≤hn cov{γ̂(i), γ̂(j)}. Then there exists some C∗ > 0 such that

An ≤ C∗n−2
∑∑

‖sk−sl‖≤hn,‖sk′−sl′‖≤hn

corr(εkεl, εk′εl′){1 + o(n−1/4)}. (A2)

In (A2), the correlation corr(εkεl, εk′εl′) can be separated into two parts: (i) if ‖sk−sk′‖ = h ≥ 3hn,

then corr(εkεl, εk′εl′) ≤ α2,2(h − 2hn), and (ii) if min{‖sk − sk′‖, ‖sk − sl‖, ‖sl − sl′‖} = h ≤ 3hn,

then corr(εkεl, εk′εl′) ≤ k0α1,3(h) for some k0 > 0. Thus, (A2) becomes

An ≤ Cn−2(hn)4


∞∑

h=3hn

α2,2(h− 2hn) +

3hn∑
h=0

α1,3(h)

 , (A3)

for some C > 0, which is of the order o(1) and implies that var{(∇τγτ )′(γ̂−γτ )} = (∇τγτ )′Γ(∇τγτ ) =

o(n). By the Chebyshev’s inequality, we have

sup
τ

{
‖(∇τγτ )′(γ̂ − γτ )‖
‖(∇τγτ )′(∇τγτ )‖

}
P−→ 0,

as n→∞. Thus the convergence of the Newton-Raphson method for τ̂ is ensured. For irregularly

grid of data, since |B(si, r) ∩D| = O(r2), it follows that (A1)–(A3) still hold. This completes the

proof. �

1.3.3 Proof of Theorem 1

For a given candidate status vector ψ such that |ψ − δ| = o∗(n1/2), we have

(∇λψθψ)′{V (λψ, τ
†)}−1(∇λψθψ) = (∇λδθδ)

′{V (λδ, τ
†)}−1(∇λδθδ) + o(n).
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Thus, ∇λψQ(λψ; τ †) = Kn{(Y −θδ)+(θδ−θλψ)}− (∇λδθδ)′{V (λ, τ †)}−1(∇λδθδ)+op(n), where

Kn is formed by λψ and τ †. By a central limit theorem (Lin, 2008), we have

n−1∇λψQ(λψ; τ †) ≡ n−1∇λδQ(λδ; τ
†)

P−→ I(λδ; τ
†). (A4)

Further, by the inverse function theorem, there exists an open ball, B(λδ, r) that centers at λδ with

radius r > 0, such that n−1Q(λψ) is a one-to-one mapping on the ball with probability tending to

one. Also, for this given radius r, there is some r0 > 0 such that

B{n−1Q(λδ; τ
†), r0} ⊆ n−1Q

(
B(λδ, r); τ

†
)
. (A5)

By Proposition 1, τ̂ = τ † + Op(n
−1) for some τ †. To establish the consistency of the QL

estimate λ̂
(m)
ψ , we observe that

n−1‖Q(λδ; τ
†)−Q

(
λ̂

(m)
ψ ; τ (m)

)
‖ ≤ n−1(‖B1‖+ ‖B2‖+ ‖B3‖),

where B1 = Q(λδ; τ
†) − Q(λψ; τ †), B2 = Q(λψ; τ †) − Q(λψ; τ̂ (m)), and B3 = Q(λψ; τ̂ (m)) −

Q
(
λ̂

(m)
ψ ; τ (m)

)
. SinceB1 =

[
(∇λδθδ)′{V (λδ, τ

†)}−1 − (∇λψθψ)′{V (λψ, τ
†)}−1

]
(Y −θδ)+op(n1/2),

we have sup{n−1‖B1‖ : λ ∈ Rq+2} = Op(n
−1/2) by the central limit theorem. This implies that

P (n−1‖B1‖ < r0/3)→ 0 uniformly as n→∞.

Next, since τ̂ = τ † + Op(n
−1) by Proposition 1, we have B2 = (∇λψθψ)′[{V (λψ, τ

†)}−1 −

{V (λψ, τ
(m))}−1](Y − θψ) = op(1) and thus

P (sup
λ
n−1‖B2‖ < r0/3)→ 0 uniformly as n→∞.

ForB3,Q
(
λ̂

(m)
ψ ; τ̂ (m)

)
= 0 almost surely. It can be shown that n−1Q(λψ; τ̂ (m)) = n−1(∇λδθδ)′Λλδ(Y −

θδ) + op(n
−1/2), which converges to zero uniformly in probability as n→∞. Thus,

P (n−1‖B3‖ < r0/3)→ 0 uniformly as n→∞.

Combining the results above, we have, as n→∞,

P
(

sup{n−1‖Q(λδ; τ
†)−Q

(
λ̂

(m)
ψ ; τ̂ (m)

)
‖ : λ ∈ Rq+2} < r0

)
→ 1 (A6)

It follows from (A5) and (A6) that,

n−1Q
{
λ̂

(m)
ψ ; τ̂ (m)

}
∈ B{n−1Q(λδ; τ

†), r0} ⊆ n−1Q[B{(λδ; τ †), r}], (A7)

with probability tending to one as n→∞. Since r can be arbitrarily small in (A7), the consistency

of the QL estimate λ̂
(m)
ψ follows. �
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1.3.4 Proof of Proposition 2

In the three-step computational algorithm, the covariance parameter estimates τ̂ (m) are fixed for

all ψ ∈ Ω. Let ∇ξψ θ̂
(m)
ψ = (∇ξψθψ)

∣∣
λ=λ̂

(m)
ψ

. It follows from Proposition 1 that

{∇ξψ θ̂
(m)
ψ }

′{V (λ̂
(m)
ψ , τ (m))}−1(Y − θψ) = {∇ξψ θ̂

(m)
ψ }

′{V (λ̂
(m)
ψ , τ †)}−1(Y − θδ) +Op(1). (A8)

Let Lλ̂ψ = {∇ξψ θ̂
(m)
ψ }

′{V (λ̂
(m)
ψ , τ †)}−1, which is a random function associated with λ̂ψ. Note

that, given λ̂ψ, L′
λ̂ψ

is an n-dimensional vector with constant elements. So, Lλ̂ψ(Y − θδ)
∣∣∣ λ̂ψ =

Op(n
1/2). Since var{Lλ̂ψ(Y − θδ)} = E[var{Lλ̂ψ(Y − θ − δ)}

∣∣∣ λ̂ψ] + var[E{Lλ̂ψ(Y − θ)}|λ̂ψ], we

have var{n−1/2Lλ̂ψ(Y −θδ)} = O(1). Thus, (A8) becomes {∇ξψ θ̂
(m)
ψ }

′{V (λ̂
(m)
ψ , τ̂ (m))}−1(Y −θδ) =

Op(n
1/2). Also, the QL estimating equation gives {∇ξψ θ̂

(m)
ψ }

′{V (λ̂
(m)
ψ , τ̂ (m))}−1

{
Y − θ̂(m)

ψ

}
=

0 almost surely. Combining these results, we have {∇ξψ θ̂
(m)
ψ }

′{V (λ̂
(m)
ψ , τ̂ (m))}−1{θδ − θ̂

(m)
ψ } =

Op(n
1/2), which implies that

∑
j∈∆ψ

θ̂
(m)
j;ψ

[
n∑
i=1

Λ̂
(m)
j,i;ψ{g

−1(β0 + x′iβ + ξδδi)− g−1(β̂
(m)
0 + x′iβ̂

(m)
ψ + ξ̂

(m)
ψ ψi)}

]
= Op(n

1/2). (A9)

Next, it can be shown that β̂
(m)
ψ = β + op(n

−1). Let

t1 = g−1(β0 + x′iβ + ξδδi) and t2 = g−1
{
β̂

(m)
0 + x′iβ̂

(m)
ψ + ξ̂

(m)
ψ ψi

}
.

Since M0|t1 − t2| ≥ |g(t1)− g(t2)| for some M0 > 0 by the mean value theorem, (A9) implies that∑
j∈∆ψ

n∑
i=1

θ̂
(m)
j;ψ Λ̂

(m)
j,i;ψ{β0 + ξδδi − β̂

(m)
0 − ξ̂(m)

ψ ψi} = Op(n
1/2). (A10)

Similarly, for the complement of the jump set, we have∑
j∈∆c

ψ

n∑
i=1

θ̂
(m)
j;ψcΛ̂

(m)
j,i;ψc{(β0 + ξδ)− ξδδci − (β̂

(m)
0 + ξ̂

(m)
ψ ) + ξ̂

(m)
ψc ψ

c
i } = Op(n

1/2), (A11)

which completes the proof of Proposition 2. �

1.3.5 Proof of Corollary 2

Since λ̂
(m)
ψ0

P−→ λδ as n→∞ by Corollary 1, a first-order Taylor expansion implies that

Q
(
λ̂

(m)
ψ0

; τ †
)

= Q(λδ; τ
†) +

{
∇λψQ(λψ; τ †)

∣∣∣
λψ=λ̂

(m)
ψ0

}
{λ̂(m)

ψ0
− λδ}+ o(‖λ̂(m)

ψ0
− λδ‖). (A12)
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Also, by Proposition 2 and the central limit theorem, we have

Q
(
λ̂

(m)
ψ0

; τ †
)
−Q

(
λ̂

(m)
ψ0

; τ (m)
)

= Op(n
−1/2). (A13)

Combining (A12) and (A13) gives that, with an order of n−1/2,

Q
(
λ̂

(m)
ψ0

; τ̂ (m)
)

= Q(λδ; τ
†) +

{
∇λψQ(λψ; τ †)

∣∣∣
λψ=λ̂

(m)
ψ0

}
{λ̂(m)

ψ0
− λδ}+ o(‖λ̂(m)

ψ0
− λδ‖).

Since Q
(
λ̂

(m)
ψ0

; τ̂ (m)
)

= 0, the above equation becomes

{λ̂(m)
ψ0
− λδ}{1 + op(1)} = −

{
∇λψQ(λψ; τ †)

∣∣∣
λψ=λ̂

(m)
ψ0

}−1

Q(λψ; τ †), (A14)

which implies that

n1/2{λ̂(m)
ψ0
− λδ} = −n1/2Q(λψ; τ †)I−1(λδ; τ

†). (A15)

Similarly, we have

n1/2{λ̂(m)
ψc0
− λδc} = −n1/2Q∗(λδc ; τ

†)I−1(λδ; τ
†). (A16)

Applying the central limit theorem to (A15) and (A16) gives Corollary 2. �

1.3.6 Proof of Theorem 2

If |ψ−δ| = o∗(n1/2), then by Corollary 1, we have ξ̂
(m)
ψ = ξδ+Op(n

−1/2) and ξ̂
(m)
ψc = −ξδ+Op(n−1/2).

Recall that β̂(m) = β + op(n
−1/2). We thus have θ̂

(m)
ψ − θ̂(m)

ψc = op(n
−1/2), and therefore

H
{
θ(λ̂

(m)
ψ ),θ(λ̂

(m)
ψc )

}
= op(n

−1).

On the other hand, assume that there is one status vector ψ such that n−1/2−c1‖δ − ψ‖ ≥ M

for some M > 0 and c1 > 0. That is, the number of misclassified sites is O(nk) for some k > 1/2.

Then, ∑
j∈∆ψ

n∑
i=1

θ̂
(m)
j;ψ Λ̂

(m)
j,i;ψ(ψi − δi) = Op(n

1/2+c1), (A17)

and ∑
j∈∆c

ψ

n∑
i=1

θ̂
(m)
j;ψcΛ̂

(m)
j,i;ψc(ψ

c
i − δci ) = Op(n

1/2+c1). (A18)

9



Let c0 ∈ (0, c1). By (A10), we have

n−1/2−c0 sup

∑
j∈∆ψ

n∑
i=1

θ̂
(m)
j;ψ Λ̂

(m)
j,i;ψ{β0 + ξδδi − β̂

(m)
0 − ξ̂(m)

ψ ψi}

 P−→ 0, (A19)

and by (A11),

n−1/2−c0 sup

∑
j∈∆c

ψ

n∑
i=1

θ̂
(m)
j;ψcΛ̂

(m)
j,i;ψc{(β0 + ξδ)− ξδδci − (β̂

(m)
0 + ξ̂

(m)
ψ ) + ξ̂

(m)
ψc ψ

c
i }

 P−→ 0. (A20)

One comparison between (A17) and (A19) then gives that ξ̂
(m)
ψ + β̂

(m)
0 ∈ (β0, β0 + ξδ) + op(n

−c1+c0)

if
∑

(ψi − δi) ≥ 0, and the other comparison between (A18) and (A20) gives that ξ̂
(m)
ψc + β̂

(m)
0 ∈

(β0−ξδ, β0)+op(n
−c1+c0) if

∑
(ψi−δi) < 0. This leads to H

{
θ(λ̂

(m)
ψ ),θ(λ̂

(m)
ψc )

}
> 0 almost surely.

This proves the “only if” part and thus completes the proof of Theorem 2. �

1.3.7 Proof of Theorem 3

If δ(m) = δ+o∗p(n
1/2), then by Theorem 2, H

{
θ(λ̂

(m)

δ(m)),θ(λ̂
(m)

δ(m)c)
}

P−→ 0 = minψ∈ΩH
{
θ(λ̂ψ),θ(λ̂ψc)

}
.

So, δ(m) = arg minψ∈ΩH
{
θ(λ̂ψ),θ(λ̂ψc)

}
. To show the “only if” part, let δ∗ = δ + o∗(n1/2) ∈ Ω

and let δ∗c = 1− δ∗. Then, we have

H
{
θ(λ̂

(m)

δ(m)),θ(λ̂
(m)

δ(m)c)
}

= min
ψ∈Ω

H
{
θ(λ̂ψ),θ(λ̂ψc)

}
≤ H

{
θ(λ̂δ∗),θ(λ̂δ∗c)

}
.

Since by Theorem 2, H
{
θ(λ̂δ∗),θ(λ̂δ∗c)

}
+ op(n

−1), we have

H
{
θ(λ̂

(m)

δ(m)),θ(λ̂
(m)

δ(m)c)
}

= H
{
θ(λ̂δ∗),θ(λ̂δ∗c)

}
+ op(n

−1).

Note that the homogeneity measure is a quadratic function with a unique minimum value at δ, and

we thus have δ(m) ≡ δ∗ = δ + o∗p(n
1/2). This completes the proof. �

1.3.8 Proof of Theorem 4

Note that
∑

j∈∆ψ

∑n
i=1 θ̂

(m)
j;ψ Λ̂

(m)
j,i;ψ(ξδδi + ψi) = Op(n), and therefore when δi = 0 for all i, we

have ξ̂
(m)
ψ = Op(n

−1/2). Also, by (A11), ξ̂
(m)
ψc = Op(n

−1/2), and thus ξ̂
(m)
ψ + ξ̂

(m)
ψc = Op(n

−1/2)

when δ ≡ 0. This implies part (a) of Theorem 4. Furthermore, since (ξ̂
(m)
ψ + ξ̂

(m)
ψc )

P−→ 0 as

n → ∞, a Taylor expansion for Q(λ̂
(m)
ψ ; τ̂ (m)) + Q∗(λ̂

(m)

δ̄c
; τ (m)) with respect to ξψ = 0 then

gives n1/2{ξ̂(m)
ψ + ξ̂

(m)
ψc } = n−1σ−1

ψ

[
U ′ψ(Y − θδ)

]
. Applying the central limit theorem leads to the

asymptotic normal distribution of Zψ. �
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1.3.9 Proof of Theorem 5

For convenience, let D = ∇λδθδ denote an n × (q + 2) matrix. Also, we use V −1 to denote an

inverse matrix of the covariance matrix V . We define a matrix operator by (A1, . . . , Ak) � B =

(A1B, . . . , AkB), where A1, . . . , Ak and B are matrices. Then

Q̇(λδ; τ ) =(∂D′/∂β0, . . . , ∂D
′/∂βq, ∂D

′/∂ξ)� V −1(Y − θδ)+

D′ � (∂V −1/∂β0, . . . , ∂V
−1/∂βq, ∂V

−1/∂ξ)(Y − θδ)−D′V −1D. (A21)

By Assumptions 1-2, (∂D′/∂β0, . . . , ∂D
′/∂ξ)� V −1 and D′ � (∂V −1/∂β0, . . . , ∂V

−1/∂ξ) are

bounded vectors. A central limit theorem for random fields (Guyon, 1995) implies that a multi-

variate normal random variable exists W such that

n−1/2{(∂D′/∂β0, . . . , ∂D
′/∂ξ)� V −1 +D′ � (∂V −1/∂β0, . . . , ∂V

−1/∂ξ)}(Y − θδ) = W + op(1),

which implies that

{(∂D′/∂β0, . . . , ∂D
′/∂ξ)� V −1 +D′ � (∂V −1/∂β0, . . . , ∂V

−1/∂ξ)}(Y − θδ) = Op(n
1/2).

Plugging the above result into (A21) thus gives

n−1Q̇(λδ; τ ) = Op(n
−1/2)− n−1D′V −1D, (A22)

which converges in probability to a positive-definite matrix I0(λδ; τ ) as n→∞ by Assumption 3.

Note that this result also implies that n−1Q̇(λδ; τ ) is uniformly bounded over n in probability. �

1.3.10 Proof of Corollary 3

For two parameter vectors λδ and λ∗δ , it follows from (A22) that n−1Q̇(λδ; τ ) = Op(n
−1/2) −

n−1D′1V
−1

1 D1 and n−1Q̇(λ∗δ ; τ ) = Op(n
−1/2)− n−1D′2V

−1
2 D2, where D1 ≡ ∇λδθδ, D2 ≡ ∇λ∗δθδ,

V −1
1 ≡ V −1

λδ
, and V −1

2 ≡ V −1
λ∗δ

. Then, n−1‖Q̇(λδ; τ ) − Q̇(λ∗δ ; τ )‖ ≤ n−1{‖(D1 −D2)′V −1
1 D1‖ +

D′2(V1 − V2)−1D1‖ + ‖D′2V
−1

2 (D1 − D2)′‖} + Op(n
−1/2). Recall that D = ∂g−1(β0 + Xβ +

ξδδ)/∂(β0,β, ξ). It thus follows from Assumptions 1 and 2 that ‖D‖ and V ‖ are bounded for any

given parameters λδ. Since D′V D is uniformly bounded by Proposition 3, we can find a constant

l∗ > 0 such that n−1‖(D1 −D2)′V −1
1 D1‖, n−1‖D′2(V1 −V2)−1D1‖, and n−1‖D′2V

−1
2 (D1 −D2)′‖

are all uniformly bounded by l∗‖λδ − λ∗δ‖ over n. This completes the proof for the Lipschitz

condition of Q̇(λδ; τ ). �
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1.3.11 Proof of Corollary 4

By proof of Proposition 3, we have, for any λδ, Q(λδ; τ ) = Op(n
1/2) and {Q̇(λδ); τ )}−1 = Op(n

−1),

which implies that ‖{Q̇(λδ); τ )}−1Q(λδ; τ )‖ = O(n−1/2) → 0 as n → ∞. This implies that, as

n→∞, the Newton-Kantorovich method (Argyros, 2008) for the QL function converges under any

initial values. �

1.3.12 Proof of Corollary 5

First, recall that the initial estimate λ̂δ is computed under an independence assumption. By

McCullagh (1983), the QL estimate λ̂δ is consistent, and a Newton iteration for the QL function

converges in the initial step. Also, note that Assumptions 1-3 satisfy required conditions for linear

convergence shown in Theorem 1 of Jiang et al. (2007). The iterative estimation procedure of

Algorithm 1 thus converges in probability as n→∞. �

2 Extra Simulation Studies

2.1 Studies for Convergency and Consistency

We conducted a simulation study to evaluate the finite-sample performance of the homogeneity

measure. An l×l grid was considered for l = 12, 18, or 24 and thus the sample sizes are n = 122, 182,

or 242. For the ith cell on the grid, we let the upper-left corner point si = (r − 1, c − 1)′ be the

representative site for the cell on the rth row (from top to bottom) and the cth column (from left

to right).

We considered two cases for the jump sets, as shown in Figure A1 for 24×24 grids. The first case

(Figure A1(a)) has a single jump set C1 in the top one-third of the spatial domain with cardinality

|C1| = n/3. The second case (Figure A1(b)) also has a single jump set C2 in the top 72/l rows;

that is the jump set size is fixed at |C2| ≡ 72 for different l (or n). Let δCt =
(
δCt1 , . . . , δ

Ct
n

)′
denote

the status vector such that δCti = I[si ∈ Ct] for t = 1, 2, and let ξt denote the jump coefficient

associated with δCt . We used horizontal lines to define candidate jump sets. Let Lk denote the

horizontal line r = k − 1, for k = 1, . . . , l and the rth row. Define the kth candidate status vector

ψk = (ψk(s1), . . . , ψk(sn))′ where ψk(si) = I[si is above or on the line Lk]. Thus, the collection of

12



all candidate status vectors is Ωl = {ψk : k = 1, . . . , l} for the l × l grid. Note that the number of

candidate status vectors |Ωl| increases with the sample size.

We generated random effects εi from a Gaussian distribution with mean zero, variance σ2, and

correlation ρi,j = ρ‖si−sj‖ for i, j = 1, . . . , n. The covariate xi was generated from a standard normal

distribution. Given εi and xi, we considered two types of response variables. First, we generated

continuous responses by a Gaussian model Y G
i = β0+β1xi+ξtδ

Ct
i +εi, t = 1, 2. Next, count responses

were generated by a Poisson model with the conditional mean θP
i;εi

= exp
(
β0 + β1xi + ξtδ

Ct
i + εi

)
,

for t = 1, 2. By the moment generating functions, the unconditional marginal means are θP
i =

exp
(

0.5σ2 + β0 + β1xi + ξtδ
Ct
i

)
, for t = 1, 2. The jump coefficients were ξ1 = ξ2 = 1 for the

single jump set. We also let β0 = 0, β1 = 1, σ2 = 0.5, and ρ = 0.5. For each setting, we

simulated 500 data sets. In the simulation, the covariance function for the continuous data is

Cov(Y G
i , Y

G
j ) = σ2ρi,j , and for the count responses, the covariance structure can be computed as

var(Y P
i ) = θP

i +
(
θP
i

)2 {exp(σ2)− 1} and cov(Y P
i , Y

P
j ) = θP

i θ
P
j {exp(σ2ρi,j)− 1} for i 6= j. We then

use the homogeneity measure to identify the jump sets in various simulation settings.

Table A1 shows identification rates for the single jump set cases C1 and C2 at various sample sizes

and iteration numbers m = 1 and M , where M denotes a total number of iterations for convergency.

In Table A1, we find that for all the iteration numbers, the identification rate of the true jump

set increases as the sample size increases. These simulation results support the theory that the

homogeneity measure is consistent. Additionally, Table A1 indicates that the homogeneity measure

can achieve convergency quite quickly for the Gaussian and Poisson responses, as can be seen

that the identification results for iteration numbers 1 and M are pretty close. Specifically, for the

Gaussian responses, M = 1 in about 95% of simulation runs, while for the Poisson responses, M = 4

in about 90% of simulation runs. Nevertheless, we also find that the identification performance

would be affected by linearity of the link function. For example, for the 12 × 12, 18 × 18, and

24 × 24 grids, the identification rates for the Gaussian responses with an identity link are around

90%, 95%, and 99%, respectively, while those decrease to 75%, 85%, and 90%, respectively, for the

Poisson responses with a log link. The result that the homogeneity measure has better performance

in the Gaussian distribution than that in the Poisson distribution is not unexpected. As shown in

(2.5), the homogeneity measure is derived from a linear approximation for the log-QL ratio, and

therefore performance of the proposed method would lean on linearity of the link function.
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For estimation results of the model parameters, Table A2 shows sample means and sample

variances for HLR estimates of β1 and ξ1 in the Gaussian and Poisson models. (The estimation

result for ξ2 is similar to that of ξ1, so we present only the estimation result for ξ1.) The estimates

of β1 and ξ1 are quite unbiased on the 18× 18 and 24× 24 grids for both the Gaussian and Poisson

models. Table A2 also shows consistency for the HLR estimates of β1 and ξ1, as the sample variance

decreases when the sample size increases. Nevertheless, when comparing sample variances between

different models, we find that the homogeneity measure also has better performance in the linear

model than that in the log-linear model. This pattern is similar to the identification result in Table

A1.

2.2 Validation Studies for the Weighted Least Squares Errors

To evaluate whether the weighted least squares errors used in Section 5 is suitable for model selection

in the data analysis, we conduct a simulation study based on a geographic structure similar to the

analysis result for the Midwest data. In this simulation study, four jump sets, ∆1, . . . ,∆4, are chosen

with |∆1| = 5, |∆2| = 20, |∆3| = 150, and |∆4| = 160 (Figure A3). The jump sets include about 64%

of the total counties. We then generate data by a procedure similar to that in Section 4. Specifically,

for each simulation run, we generate θ∗i = β0+
∑5

q=1 βqxq,i+
∑4

k=1 ξkδk,i+εi, where δk,i = I[si ∈ ∆k]

denotes the status variable associated with ∆k, k = 1, . . . , 4, i = 1, . . . , 535. The spatial noise εi

is generated from a multivariate Gaussian distribution with mean zero, σ = 0.01, and correlation

corr(εi, εj) = 0.6 exp(−0.5‖si − sj‖). Let Y ∗i = exp(θ∗i )/{1 + exp(θ∗i )}, i = 1, . . . , 535. We follow

the transformation process in the data analysis to generate responses by Yi = log{Y ∗i /(1 − Y ∗i )}.

The regression coefficients are set to be β0 = −1.5, β1 = 0.8, β2 = −0.2, β3 = 0.7, β4 = −4.5, and

β5 = 0.9, and the jump coefficients to be ξ1 = 1.6, ξ2 = 1.2, ξ3 = 0.8, and ξ = 0.5. We conduct a

total of 200 simulation runs to evaluate the performance.

Nevertheless, in this simulation setting, the HM-QL method tends to present only two identified

jump sets in most cases, in which ∆2, ∆3, and ∆4 are combined as a big jump set by the HM-QL

method. Therefore, we show the simulation result only for the HLR method. Tables A3 and A4

show the identification rate and estimation result, respectively, for the homogeneity measure. In

Table A4, we also compare average values of weighted least squares errors over the 200 replicates for

the regression model without jump sets and the jump set model with covariates and four identified
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jump sets. As can be seen from Table A3, when numbers of counties in the jump set increase, the

HLR method can still identify the jump sets ∆1, . . . ,∆4 very accurately. Also, for the estimation

result by the HLR method shown in Table A4, we find that most estimated coefficients are unbiased

and significant. On the other hand, most estimated coefficients in the regression model without the

jump sets are seriously biased, indicating that when jump sets exist, ignoring the jump set effects

would lead to incorrect statistical inference. Table A4 also shows that an average value of WLS

errors in the jump set model is about 0.5, while that in the regression model is about 50. With a

comparison to an F -distribution with degrees of freedom at 529 and 525, we find that the difference

in means of WLS errors between the two models is extremely significant. This may indicate that

using the WLS errors for model selection in the data analysis is suitable.

3 More Discussions

In the case study, we have found that the state-level jump sets are not significant except for

Michigan, suggesting a smaller scale for the spatial patterns of jump sets. Therefore, we have

analyzed a county-level socio-economic data set where jump sets are present to show interesting

patterns additional to the role of race and industrial structure in poverty prior to the war on poverty

in the 1960’s. The analysis resulted in 392 out of 535 counties (about 73%) that belonged to a

jump set; that is, their poverty rates are not adequately explained by the known race and industrial

structures. In contrast, the remaining 143 counties whose poverty rates can be fully explained by

the known race and industrial structures were among the wealthiest counties with the lower poverty

rates. In addition, the jump-set with the highest poverty rates (∆̄1) and the jump-set with the

lower poverty rates (∆̄4) took place both in Illinois. The state of Minnesota had more moderate

poverty rates with more middle-class counties whose poverty rate can’t be adequately explained by

the racial and industrial covariates.

We have also conduced simulation studies in Section 4 to compare the proposed approach with

an existing HM-QL method. The numerical examples have indicated that the HLR method is more

powerful than the HM-QL method in identifying jump sets for irregularly shaped geographical

cells when many covariates are involved. This is plausible because the HLR method compares

the difference between the marginal mean functions, while the HM-QL method relies on variable
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selection in nested models. In search of varying shapes of jump sets mixed with different types of

explanatory variables, our proposed method tends to be more robust in dealing with misspecified

models, while the HM-QL method is faster in computation and easier to maintain probability of

Type I errors within a desired level. Nevertheless, although the proposed HLR method can apply to

generalized linear models, its identification ability for jump sets has the best shot in linear models,

as can be seen from the derivation process for the homogeneity measure.

References

Argyros, Ioannis K. (2008). Convergence and Applications of Newtwon-type Iterations. Springer,

New York.

Fingleton, B. (1983). Independence, Stationarity, Categorical Spatial Data and the Chi-Squared

Test. Environment and Planning A 15, 483-499.

Guyon, X. (1995). Random Fields on a Network. Springer, New York.

Jiang, J., Luan, Y., Wang, Y.-G. (2007). Iterivative estimating equation: linear convergence and

asymptotic properties. Annals of Statistics 35, 2233-2260.

Lin, P.-S. (2008). Estimating equations for spatially correlated data in multi-dimensional space.

Biometrika 95, 847-858.

McCullagh, P. (1983). Quasi-likelihood functions. Annals of Statististics 11, 59-67.

16



Figure A1. Plots for two types of jump sets in a 24 × 24 grid of cells. (a) C1: the proportion of

the area of one jump set is fixed at 1/3 (grey). (b) C2: the area of one jump set is fixed at 4× 12

(grey).

(a) (b)
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Figure A2. A map for counties in the true jump sets, ∆1, . . . ,∆3, in the simulation.

∆1
∆2
∆3
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Figure A3. A map for counties in the true jump sets, ∆1, . . . ,∆4, in the simulation of the Supple-

mentary Material.

∆1
∆2
∆3
∆4
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Table A1. For a single jump-set (C1 and C2), numbers of simulation times that the true sets are

identified by the homogeneity measure at iteration m = 1 or M (final iteration), based on 500

replicates for Gaussian and Poisson models on the 12× 12, 18× 18, 24× 24 grids.

Gaussian Poisson

Iteration C1 C2 C1 C2

12× 12

1 459 453 381 378

M 460 454 385 381

18× 18

1 487 481 437 414

M 488 482 440 418

24× 24

1 496 488 468 439

M 496 488 471 441
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Table A2. Sample means and sample variances (in parenthesis) of the regression coefficient β1 and

the jump coefficients ξ1, based on 500 replicates in the Gaussian and Poisson models on the 12×12,

18× 18, 24× 24 grids for one jump set.

Gaussian Poisson

β1 ξ1 β1 ξ1

1 1 1 1

12× 12 1.00 0.94 1.04 1.05

(0.12) (0.52) (0.50) (0.74)

18× 18 1.00 0.99 1.00 1.00

(0.03) (0.19) (0.07) (0.36)

24× 24 1.00 1.00 1.00 0.99

(0.02) (0.15) (0.06) (0.27)
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Table A3. For the Midwest data structure, the average numbers of counties in the true jump set

∆i, i = 1, . . . , 4, that were classified into ∆̄j by HLR method. The numbers of counties in each

jump set are |∆1| = 5, |∆2| = 20, |∆3| = 150, and |∆4| = 160. The simulation result is based on

200 replicates.

True ∆̄1 ∆̄2 ∆̄3 ∆̄4

∆1 5.0 0.0 0.0 0.0

∆2 0.0 20.0 0.0 0.0

∆3 0.0 0.0 150.0 0.0

∆4 0.0 0.0 0.0 158.8
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Table A4. Estimation results for the simulation based on the poverty data. Sample means (Mean)

and sample variances× 100 (Var) are listed for estimates in the regression model (without jumpsets)

and the final jumpset model with covariates x1, . . . , x5, and four jumpsets ∆̄1, . . . , ∆̄4. Average

numbers of weighted least squares (WLS) errors are also reported. Simulation results are based on

200 replicates.

No Jumpsets With Jumpsets

True Mean Var Mean Var

β0 -1.5 -0.8 0.01 -1.5 0.009

β1 0.8 1.0 0.02 0.8 0.02

β2 -0.2 -1.3 0.02 -0.2 0.02

β3 0.7 1.8 0.05 0.73 0.2

β4 -4.5 -6.7 1.0 -4.6 4.0

β5 0.9 -0.3 0.03 0.85 1.0

ξ1 1.6 1.6 0.009

ξ2 1.2 1.2 0.007

ξ3 0.8 0.8 0.004

ξ4 0.5 0.5 0.003

WLS error 50.5 0.45
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Table A5. Parameter estimates with standard errors (in parentheses) and p-values for the poverty

case study based on the regression model (without jumpsets) and final jumpset model.

No Jumpsets With Jumpsets

explanatory variable Estimate p-value Estimate p-value

Intercept -1.6(0.12) <0.01 -1.8(0.08) <0.01

x1 2.1(0.14) <0.01 1.1(0.09) <0.01

x2 -0.7(0.14) <0.01 -0.3(0.09) <0.01

x3 1.3(0.34) <0.01 1.0(0.22) <0.01

x4 -6.9(0.10) <0.01 -4.7(0.66) <0.01

x5 2.3(0.27) <0.01 1.3(0.18) <0.01

∆̄1 1.2(0.06) <0.01

∆̄2 1.0(0.03) <0.01

∆̄3 0.7(0.03) <0.01

∆̄4 0.6(0.02) <0.01

∆̄5 0.3(0.02) <0.01

WLS error 494 125
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### Computer Code for Data Analysis 
 
library("gstat") 
# Input Midwest data 
dataset <- read.csv("upMidWestpov_Iowa_cluster_names_race_regime.csv") 
dataset.names <- names(dataset) 
dataset60 <-

dataset[,c("pindpov60","logitindpov60","pag60","pman60","pserve60","pfire60","pblk60","x","y
")] 

y_s <- dataset60$pindpov60; y <- log(y_s/(1-y_s)) 
covariate <- dataset60[,3:7] 
data.A <- dataset60 
n <- nrow(data.A) 
X <- cbind(1,covariate); R <- y 
xy <- data.frame(cbind(x=data.A$x,y=data.A$y)) 
 
# Euclidean distance matrix 
disL2 <- dist(xy, method="euclidean") 
dist2full <- function(dis){ 
  n <- attr(dis, "Size") ; full <- matrix(0, n, n) 
  full[lower.tri(full)] <- dis 
  return(full + t(full)) } 
L2 <- dist2full(disL2) 
 
# Creation of candidate jump sets 
range.seq <- seq(from=-2.8,to=0,by=0.01) 
m <- length(range.seq); W <- matrix(NA, n, m) 
for (i in 1:(m)){ 
  W[,i] <- ifelse(y> range.seq[i], 1, 0) } 
W_c <- 1-W # complementary of candidate jump sets 
 
# Estimation of Correlation  
vgm.est <- function(resi.in, loc.in, dist.in, yvar,cut.off) { 
  r <- resi.in # residuals 
  resid.loc <- as.data.frame(cbind(loc.in, r=r)) 
  gamma.vgm=variogram(r ~ x + y, locations = ~x + y,  
                      cutoff=sqrt(length(r))*sqrt(2)*2/3, data = resid.loc) 
  if(cut.off==T){ 



    gamma.vgm=variogram(r ~ x + y, locations = ~x + y, data = resid.loc) } 
fit.vgm <- tryCatch(  
{fit.variogram( gamma.vgm,model=vgm(psill=mean(gamma.vgm[,"gamma"]),                                  
model="Exp",range=which.max(abs(diff(gamma.vgm[1:5,"gamma"])))+1, 
Nugget=mean(gamma.vgm[, "gamma"])/10),fit.method=2)},warning = function(w) 
{rho.key=1;print(rho.key)} ) 

 return(corr) } 
 
# Quasi-likelihood Estimation 
QLE=function(beta.in,X.in,R.in,n_i,Corr,sigma2,fix_par) { 
  ly <- length(R.in)    # sample size 
  lb <- length(beta.in) # number of parameters 
  beta.in0 <- beta.in 
  X <- cbind(X.in)  
  fix_par <- fix_par 
  V1   <- Corr       # first component of the covariance matrix of Y 
  invI <- diag(0,lb) # cov(betahat): inverse of information matrix 
  iter <- 0  
  repeat{ 
    res=tryCatch({ 
      iter <- iter+1 
      mu <- as.vector(X%*%beta.in +sum(fix_par)) # E(Y) 
      D  <- X  # derivative matrix, depending on the link function 
      V  <- V1*sigma2 
      detV <- det(V) 
      invV <- solve(V,LINPACK=T,tol=1e-400) 
      I <- t(D)%*%invV%*%D  #information matrix for the QL estimates 
      detI <- det(I) 
      invI <- solve(I,LINPACK=T,tol=1e-400) # Cov(betahat) 
      beta1 <- beta.in 
      beta.in <- beta.in+(invI%*%t(D)%*%invV%*%(R.in-mu)) # Newton-Raphson 
  list(iteration=iter,betahat=beta.in,covbetahat=invI ) } 
 
# Merge jump sets 
Merg <- function(Max.T.all,W) { 
  N <- length(Max.T.all) 
  U <- array(0,c(nrow(W),n)) 
  u[,1] <- W[,sort(Max.T.all,decreasing = T)[1]] 



  for(i in 2:n){ 
    v <- rep(0,nrow(W)) 
    v[setdiff(which(W[,sort(Max.T.all,decreasing = T)[i]]==1), 

which(W[,sort(Max.T.all,decreasing = T)[i-1]]==1))] <- 1 
    u[,i] <- v } 
  u <- as.matrix(u)  } 
 
# Identification procedure for single jump set 
X1 <- as.matrix(covariate) 
X1_c <-as.matrix(covariate) 
QLR.S=sigma2=sigma2_xi =Z_w=p= array(NA,c(1,m)) 
par.out <- array(NA,c(7,m)) 
par.out_c <- array(NA,c(7,m)) 
for (k in 1:m){ 
# Estimation for main models 
  R.in <- R   
  X.in <- cbind(1,X1,W[,k]) 
  model1=lm(R.in~0+X.in[,-1],offset= rep((mean(R)),n)) # initial values 
  par.in = c((mean(R)),model1$coefficients) 
  yvar.in = as.vector(var(R.in-(X.in%*%par.in))) 
  qle.model1 <-  

QLE(beta.in= par.in[-1],X.in=X.in[,-1],R.in=R.in,n_i=1, 
Corr=diag(1,n),sigma2=yvar.in,fix_par=par.in[1])  

 # Estimation for complementary models 
R.in_c <- R  

  X.in_c <- cbind(1,X1_c,W_c[,k]) 
  model2 <- lm(R.in_c~0+X.in_c[,-1],offset= rep(sum(par.in[-2:-6]),n)) 
  par.in_c  <-  c((mean(R)),model2$coefficients)  
  yvar.in_c <- as.vector(var(R.in_c-(X.in_c%*%par.in_c))) 
  qle.model2 <-  

QLE(beta.in= par.in_c[-1],X.in=X.in_c[,-1],R.in=R.in_c,n_i=1, 
Corr=diag(1,n),sigma2=yvar.in_c,fix_par=par.in[-2:-6]) 

 
  tryCatch( 

{sigma2[k]=qle.model1$Sigma_u^2+qle.model2$Sigma_u^2},error=function(e){}) 
  par.out[,k]   <- c((mean(R)),qle.model1$betahat) 
  par.out_c[,k] <-  c((mean(R)),qle.model2$betahat) 
  theta.in   <- X.in%*%par.in 



  theta.in_c <- X.in_c%*%par.in_c 
  Vinv   <- diag(1,n)*yvar.in 
  Vinv_c <- diag(1,n)*yvar.in_c 
  QLR.S[k] <-  

((2*n)^(-1))*t(theta.in-theta.in_c)%*%(Vinv+Vinv_c)%*% (theta.in-theta.in_c) 
  
# Z-test for significance 
  U <- solve(t(W[,k])%*%Vinv%*%W[,k],tol=1e-300)%*%W[,k] + 
       solve(t(W_c[,k])%*%Vinv_c%*%W_c[,k],tol=1e-300)%*%W_c[,k] 
  sigma2_xi[k] <- U %*%Vinv%*%t(U) 
  Z_w[k] <- (par.out[7,k]-par.out_c[7,k])/sqrt(sigma2_xi[k]) 
  p[k]   <- (1-pnorm(Z_w[k]))*2  } 
 
Max.T= which.min(QLR.S) # estimated jump set 
 
# Search for multiple jump sets 
Count <- 0; Max.T2 <- -2 
Max.T.all <- NULL; Max.T2.all <- NULL 
QLR.S=sigma2=sigma2_xi =Z_w=p= array(NA,c(1,m)) 
while(Max.T2!=Max.T){ 
  count <- count+1 
  if(count!=1){Max.T=Max.T2} 
  R.in <- R 
  X.in <- cbind(1,X1,W[,Max.T]) 
  model1 <- lm(R.in~X.in[,-1]) 
  par.in <-  model1$coefficients 
  yvar.in <-  as.vector(var(R.in-(X.in%*%par.in))) 
   
  cov.vgm <- vgm.est(resi.in=(R.in-(X.in%*%par.in)),loc.in=xy,dist.in=L2, 

 yvar=yvar.in,cut.off=F) 
  Corr.out<- cov.vgm  
  qle.model1 <- QLE(beta.in=par.in[-1],X.in=X.in,R.in=R.in,n_i=1, 

Corr=Corr.out,sigma2=yvar.in,fix_par=0)  
  Corr.fix <- Corr.out           # correlation is fixed 
  para.fix <- qle.model1$betahat # intercept is fixed 
    
  QLR.S=sigma2 = array(NA,c(1,m)) 
  par.out=array(NA,c(ncol(X1)+1,m)) 



  par.out_c=array(NA,c(ncol(X1)+1,m)) 
  for (k in 1:m){ 
    R.in <- R 
    X.in <- cbind(X1,W[,k]) 
    par.in <- para.fix 
    model1 <- lm(R.in~0+X.in,offset= rep(par.in[1],n)) 
    par.in <- c(par.in[1],model1$coefficients) 
    theta.in <- (X.in%*%par.in[-1])+(par.in[1]) 
    yvar.in  <- as.vector(var(  R.in-  theta.in))  
    qle.model1 <- QLE(beta.in=par.in[-1], X.in=X.in,R.in=R.in,n_i=1, 

Corr=Corr.fix,sigma2=yvar.in,fix_par=par.in[1])  
    par.out[,k] <- qle.model1$betahat 
    

  R.in_c <- R  
    X.in_c <- cbind(X1_c,W_c[,k]) 
    model2 <- lm(R.in_c~0+X.in_c,offset= rep(sum(par.in[-2:-6]),n)) 
    par.in_c <- c(par.in[1],model2$coefficients) 
    theta.in_c <- as.vector((X.in_c%*%par.in_c[-1])+(sum(para.fix[-2:-6]))) 
    yvar.in_c  <- var(R.in_c-theta.in_c)  
    qle.model2 <- QLE(beta.in=par.in_c[-1], X.in=X.in_c,R.in=R.in_c,n_i=1, 

Corr=Corr.fix,sigma2=yvar.in_c,fix_par=para.fix[-2:-6]) 
    par.out_c[,k] <- qle.model2$betahat 
 
    Vinv   <- Corr.fix*yvar.in 
    Vinv_c <- Corr.fix*yvar.in_c 
    QLR.S[k] <-  

((2*n)^(-1))*t(theta.in-theta.in_c%*%(Vinv+Vinv_c)%*%(theta.in-theta.in_c) 
     
    U <- solve(t(W[,k])%*%Vinv%*%W[,k],tol=1e-300)%*%W[,k] + 
         solve(t(W_c[,k])%*%Vinv_c%*%W_c[,k],tol=1e-300)%*%W_c[,k] 
    sigma2_xi[k] <- U %*%Vinv%*%t(U) 
    Z_w[k] <- (par.out[ncol(X1)+1,k]-par.out_c[ncol(X1)+1,k])/sqrt(sigma2_xi[k]) 
    p[k]   <- (1-pnorm(Z_w[k]))*2  } 
   
  Max.T2=which.min(QLR.S) 
  Max.T2.all=c(Max.T2.all,Max.T2) 
  if(count==20){ 
    Max.T2=as.numeric( attr( which.max(table(Max.T2.all))[1],"names"));break } 



  if(Max.T2==Max.T) break 
  Max.T2 } 
Ans.0=Max.T2 
Max.T.all=c(Max.T.all,Ans.0) 
 
# Augmented models when at least two jump sets are selected 
count=0 
repeat{ 
  count <- count+1; cat(count) 
  QLR.S <- array(NA,c(1,m)) 
  X1   <- cbind(covariate,W[,Max.T.all]) 
  X1_c <- cbind(covariate,W_c[,Max.T.all]) 
  if(count!=1){ 
    X1   <- cbind(covariate,S) 
    X1_c <- cbind(covariate,1-S) } 
  par.out   <- array(NA,c(ncol(X1)+1,m)) 
  par.out_c <- array(NA,c(ncol(X1)+1,m)) 
  QLR.S <- sigma2=sigma2_xi=Z_w=p=array(NA,c(1,m)) 
   
  for (k in 1:m){ 
    if(sum(W[,k])%in%colSums(W[,Max.T.all,drop=F])){next} 
    R.in <- R 
    X.in <- as.matrix(cbind(X1,W[,k])) 
    par.in <- para.fix 
    model1 <- lm(R.in~0+X.in,offset= rep(par.in[1],n)) 
    par.in <- c(par.in[1],model1$coefficients) 
    theta.in=(X.in%*%par.in[-1])+(par.in[1]) 
    yvar.in = as.vector(var(R.in-theta.in)) 
    qle.model1 <- QLE(beta.in= par.in[-1],X.in=X.in,R.in=R.in,n_i=1, 

Corr=Corr.fix,sigma2=yvar.in,fix_par=par.in[1])  
    par.out[,k] <- qle.model1$betahat 
    
    R.in_c <- R  
    X.in_c <- as.matrix(cbind(X1_c,W_c[,k])) 
    model2 <- lm(R.in_c~0+X.in_c,offset= rep(sum(par.in[-2]),n)) 
    par.in_c   <- c(par.in[1],model2$coefficients) 
    theta.in_c <- as.vector((X.in_c%*%par.in_c[-1])+(sum(par.in[-2]))) 
    yvar.in_c  <- var(R.in_c-theta.in_c)  



    qle.model2 <- QLE(beta.in= par.in_c[-1],X.in=X.in_c,R.in=R.in_c,n_i=1, 
Corr=Corr.fix,sigma2=yvar.in_c,fix_par= sum(par.in[-2])) 

   par.out_c[,k]=qle.model2$betahat 
   Vinv=Corr.fix*yvar.in 
   Vinv_c=Corr.fix*yvar.in_c 
   QLR.S[k] <-  

((2*n)^(-1))*t(theta.in-theta.in_c)%*%(Vinv+Vinv_c)%*%(theta.in-theta.in_c) 
   U <- solve(t(W[,k])%*%Vinv%*%W[,k],tol=1e-300) %*% W[,k] + 
        solve(t(W_c[,k])%*%Vinv_c%*%W_c[,k],tol=1e-300) %*% W_c[,k] 
   sigma2_xi[k] <- U %*%Vinv%*%t(U) 
   Z_w[k] <- (par.out[ncol(X1)+1,k]-par.out_c[ncol(X1)+1,k])/sqrt(sigma2_xi[k]) 
   p[k] <- (1-pnorm(Z_w[k]))*2 } 
   
  if(min(p,na.rm = T)>1-(0.95)^(1/n)) break 
  Ans.1 <- which.min(QLR.S) 
  Max.T.all <- c(Max.T.all,Ans.1) 
  S <- Merg(Max.T.all,W) 
  R.in <- R 
  X.in <- as.matrix(cbind(1,covariate,S)) 
  model1 <- lm(R.in~X.in[,-1]) 
  par.in <- model1$coefficients 
  yvar.in <- as.vector(var(R.in-(X.in%*%par.in))) 
   
  cat("Estimated jump sets",Max.T,".") 
  cov.vgm <- vgm.est(resi.in=(R.in-(X.in%*%par.in)),loc.in=xy,dist.in=L2, 

yvar=yvar.in,cut.off=F) 
  Corr.out<- cov.vgm  
  qle.model1 <- QLE(beta.in= par.in,X.in=X.in,R.in=R.in,n_i=1, 

Corr=Corr.out,sigma2=yvar.in,fix_par=0)  
  Corr.fix=Corr.out 
  para.fix= qle.model1$betahat } 
 


