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Supplementary Material

This supplement contains the proofs of main theorems, propositions and corollaries (Section S1),

proofs of technical lemmas (Section S2), an argument establishing the asymptotic equivalence of

FSR and mFSR (Section S3), numerical illustrations of the effects of shrinkage factor (Section

S4), additional simulation result on a “boarderline sparse” setting (Section S5), additional

numerical results on a lung cancer data (Section S6), an example showing the advantage LASS

has over LPD (Section S7) and a proof showing class-specific FSR control implies global FSR

control (Section S8).

S1 Proofs of main theorems, propositions and corol-

laries

We swap the proofs of Theorems 4 and 3 as the latter is simpler. Other

proofs are arranged according to the orders in the text.
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S1.1 Proof of Theorem 1

We only need to show δjOR = 2I(T j < t2OR) controls mFSR2 at level α2 and

maximizes E {
∑m

i=1 I(θj = 2, δj = 2)}. The same argument can be used to

show that δjOR = I(1−T j < t1OR) controls mFSR1 at level α1 and maximizes

E {
∑m

i=1 I(θj = 1, δj = 1)}. The theorem is proved when we combine these

two statements.

The proof is divided into two parts. In part (a), we establish two prop-

erties of the classification rule δδδ2(t) = {2I(T j < t) : 1 ≤ j ≤ m}. We

show that it produces mFSR2 < t for all t ∈ (0, 1) and that its mFSR2 is

monotonic in t. In part (b) we show that when the threshold is t2OR, the clas-

sification rule has mFSR2 = α2 and maximizes E {
∑m

i=1 I(θj = 2, δj = 2)}

amongst all valid classification rule with mFSR2 ≤ α2.

Part(a). Consider classification rule {2 · I(T j < t) : 1 ≤ j ≤ m}. Let

Q2(t) = αt be its the mFSR2 level. We first show that αt < t. Since

T j = P (θj = 1|WWW j), then

E

{
m∑
j=1

I(θj = 1, δj = 2)

}
= EWWW

[{
m∑
j=1

Eθ|Wθ|Wθ|W I(θj = 1, δj = 2)

}]
= EWWW

{
m∑
i=1

T jI(δj = 2)

}
,

where E is the expectation over (W, θW, θW, θ), EW is the expectation over WWW , and

Eθ|Wθ|Wθ|W is the expectation over θθθ holding WWW fixed. Recall Q2
OR(t) = αt is the
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FSR2 level of the classification rule {2 · I(T j < t) : 1 ≤ i ≤ m}, we have

EWWW

{
m∑
j=1

(T j − αt)I(T j < t)

}
= 0. (S1.1)

This implies that αt < t. To see this, if αt ≥ t, then (T j−αt)I(T j < t) < 0,

which contradicts the right hand side.

Next, we show that Q2(t) is nondecreasing in t. That is, letting Q2(tj) =

αtj , if t1 < t2, then αt1 ≤ αt2 . We argue by contradiction. Suppose that

t1 < t2 but αt1 > αt2 . Then

(T j − αt2)I(T j < t2) (S1.2)

=(T j − αt1)I(T j < t1) + (αt1 − αt2)I(T j < t1) + (T j − αt2)I(t1 ≤ T j < t2)

≥(T j − αt1)I(T j < t1) + (αt1 − αt2)I(T j < t1) + (T j − αt1)I(t1 ≤ T j < t2).

By (S1.1) we have E
{∑m

j=1(T j − αt1)I(T j < t1)
}

= 0, together with the

fact that αt1 < t1 we have E
{∑m

j=1(T j − αt2)I(T j < t2)
}
> 0, contradict-

ing (S1.1).

Part(b). Define t2OR = supt{t ∈ (0, 1) : Q2(t) ≤ α}. By part (a), Q2(t) is

non–decreasing in t. By continuity, Q2(T ) = α2. Next, consider the oracle

rule δδδ2
OR = (δ2,1

OR, . . . , δ
2,m
OR ) = {2I(T j < t2OR) : 1 ≤ j ≤ m} and an arbitrary

rule δδδ∗ = (δ1
∗, · · · , δm∗ ) such that mFSR2

δδδ∗ ≤ α2. Using the result in part
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(a), we have

E

{
m∑
j=1

(T j − α)I(δ2,j
OR = 2)

}
= 0 and E

{
m∑
j=1

(T j − α)I(δj∗ = 2)

}
≤ 0.

(S1.3)

Taking the difference of the two equations in (S1.3), we have

E

{
m∑
j=1

(T j − α)I(δ2,j
OR = 2)− (T j − α)I(δj∗ = 2)

}
≥ 0. (S1.4)

Next consider the transformation f(x) = (x−α)/(1−x). Note that f ′(x) =

(1−α)/(1−x)2 > 0, f(x) is monotonically increasing, the order is preserved

by this transformation: if T i < t2OR then f(T i) < f(t2OR). This means we

can rewrite the oracle rule as

δ2,i
OR = 2I

[{
(T i − α)/(1− T i)

}
< λ2

OR

]
,

where λ2
OR = (t2OR − α)/(1− t2OR). It will be useful to note that, from part

(a), we have αt2 < t2OR < 1, which implies that λ2
OR > 0. Note that

E

[
m∑
j=1

{
I(δ2,j

OR = 2)− I(δj∗ = 2)
}{

(T j − α)− λ2
OR(1− T j)

}]
≤ 0 (S1.5)

To see this, consider that if I(δ2,j
OR = 2) − I(δj∗ = 2) 6= 0, then either (i)

I(δ2,j
OR = 2) − I(δj∗ = 2) > 0 or (ii) I(δ2,j

OR = 2) − I(δj∗ = 2) < 0 holds. If
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(i) holds, then δ2,j
OR = 2 and it follows that {(T j − α)/(1− T j)} < λ2

OR. If

(ii) holds, then δjOR 6= 2 and {(T j − α)/(1− T j)} ≥ λ2
OR. In both cases, we

have

{
I(δ2,j

OR = 2)− I(δj∗ = 2)
}{

(T j − α)− λ2
OR(1− T i)

}
≤ 0.

Summing over all m terms and taking the expectation yields (S1.5).

Combining (S1.4) and (S1.5), we obtain

0 ≤ λ2
ORE

[
m∑
j=1

{
I(δ2,j

OR = 2)− I(δj∗ = 2)
}

(1− T j)

]

Finally, since λ2
OR > 0, it follows that

E

[
m∑
i=1

{
I(δjOR = 2)− I(δj∗ = 2)

}
(1− T j)

]
≥ 0.

S1.2 Proof of Theorem 2

As in the proof of Theorem 1, we will show δδδ∗2OR={δ∗2,jOR = 2I(T j < t̂2OR), j =

1, . . . ,m} controls mFSR2 and FSR2 at level α2. Let θθθ = (θ1, . . . , θm). Note
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that

FSR2 = E

[∑m
j=1 δ

∗2,j
OR I(θj 6= 2)

{
∑m

j=1 δ
∗2,j
OR } ∨ 1

]
= Eδδδ∗2OREθθθ|δδδ∗2OR

[∑m
j=1 δ

∗2,j
OR I(θj 6= 2)

{
∑m

j=1 δ
∗2,j
OR } ∨ 1

∣∣∣∣δδδ∗2OR
]
.

By definition of the rule δδδ∗2OR, if
∑m

j=1 δ
∗2,j
OR = k ≥ 1 then

Eθθθ|δδδ∗2OR

m∑
j=1

δ∗2,jOR I(θj 6= 2) =
m∑
i=1

P(θj 6= 2)δ∗2,jOR ≤ kα2.

It follows that Eθθθ|δδδ∗2OR

[∑m
j=1 δ

∗2,j
OR I(θj 6= 2)

{
∑m

j=1 δ
∗2,j
OR } ∨ 1

∣∣∣∣δδδ∗2OR
]
≤ α, and FSR2 ≤ α2.

Let W = (WWW 1, . . . ,WWWm). For mFSR2 we have

E
(∑m

j=1 I(θj 6= 2)δ∗2,jOR

)
E
(∑m

j=1 δ
∗2,j
OR

) =
EWEθθθ|W

{∑m
j=1 I(θj 6= 2)δ∗2,jOR

}
E
(∑m

j=1 δ
∗2,j
OR

)
=

EWEθθθ|W
{

(
∑m

j=1 δ
∗2,j
OR )

(∑m
j=1 I(θj 6= 2)δ∗2,jOR /

∑m
j=1 δ

∗2,j
OR

)}
E
(∑m

j=1 δ
∗2,j
OR

)
=

EW
(∑

j=1 δ
∗2,j
OR

)
EW

{
Eθθθ|W

(∑m
j=1 I(θj 6= 2)δ∗2,jOR /

∑
j=1 δ

∗2,j
OR

)}
EW

(∑m
j=1 δ

∗2,j
OR

)
= EW

{
Eθθθ|W

(
m∑
j=1

I(θj 6= 2)δ∗2,jOR /
∑
j=1

δ∗2,jOR

)}
.

The fourth equality holds because δδδ∗2OR depends on θθθ only throughW . Now
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given W and that
∑

i δ
∗2,j
OR = k, we have

EW

{
Eθθθ|W

(
m∑
j=1

I(θj 6= 2)δ∗2,jOR /

m∑
j=1

δ∗2,jOR

)}
= EW

Eθθθ|W
(∑m

j=1 I(θj 6= 2)
)
δ∗2,jOR

k


= EW

(∑m
j=1 T

jδ∗2,jOR

k

)
.

By the definition of δδδ∗2OR, we have

EW

(∑m
j=1 T

jδ∗2,jOR

k

)
≤ α2.

Hence δδδ∗2OR satisfies mFSR2 ≤ α2.

S1.3 Proof of Proposition 1

Let qk(x) := g̃1k(|x|)/{g0(|x|) + g̃1k(|x|)}, where g0 and g̃1k are the density

function ofN
(

0, n1+n2

n1n2

)
andN

({
(2 + b)

√
σkk +

√
(2 + b)2σkk + 4

}√
(n1+n2)
2n1n2

log p, n1+n2

n1n2

)
respectively. We will assume without loss of generality that dk > 0.

We shall first prove the result when the true variance σkk is known

and then argue that with probability greater than 1 − pe−O(n) the result

still holds when σkk is replaced by σ̂kk. Let g2k be the density function

of N
(
dk, σkk

n1+n2

n1n2

)
. Assume dk is strong, we investigate the asymptotic
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behavior of

1− E{qk(X)|X ∼ g2k} =

∫ ∞
−∞

g0(|x|)g2k(x)

g0(|x|) + g̃1k(|x|)
dx (S1.6)

=

∫ dk− ε4

√
(n1+n2)
2n1n2

log p

−∞

g0(|x|)g2k(x)

g0(|x|) + g̃1k(|x|)
dx

+

∫ ∞
dk− ε4

√
(n1+n2)
2n1n2

log p

g0(|x|)g2k(x)

g0(|x|) + g̃1k(|x|)
dx.

Consider the first term, it is easy to see that

∫ dk− ε4

√
(n1+n2)
2n1n2

log p

−∞

g0(|x|)g2k(x)

g0(|x|) + g̃1k(|x|)
dx ≤

∫ dk− ε4

√
(n1+n2)
2n1n2

log p

−∞
g2k(x)dx = O(p−ε

2/(64σkk)).

Since dk ∈ G1, we have x > (ak/2 + 3ε/4)
√

(n1+n2)
2n1n2

log p if

(
dk − (ε/4)

√
(n1+n2)
2n1n2

log p,∞
)

;

on this interval we have

g̃1k(|x|)
g0(|x|)

= exp

2ak|x|
√

(n1+n2)
2n1n2

log p− a2
k

(n1+n2)
2n1n2

log p

2n1+n2

n1n2


≥ exp

(
1

2
ak(ak/2 + 3ε/4) log p− 1

4
a2
k log p

)
≥ exp

(
3akε

8
log p

)
≥ p3akε/8.
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It follows that

∫ ∞
(dk−ε/4)

√
(n1+n2)
2n1n2

log p

g0(|x|)g2k(x)

g0(|x|) + g̃1k(|x|)
dx ≤ sup

x>(dk−ε/4)

√
(n1+n2)
2n1n2

log p

1

1 + g̃1k(x)/g0(x)

≤ p−3akε/8.

Using (S1.6), we have E(qk|θk = 1) = O(p−ε1), where ε1 > 0 is some

constant.

Next, when dk ∈ G3, we can similarly show that

E{qk(X)|X ∼ g2k} =

∣∣∣∣1− ∫ ∞
−∞

g0(|x|)g2k(x)

g0(|x|) + g̃1k(|x|)
dx

∣∣∣∣ = O(p−ε2).

Finally, consider the the case when dk ∈ G2. We have

∫ ∞
−∞

g0(|x|)g2k(x)

g0(|x|) + g̃1k(|x|)
dx =

∫ ∞
−∞

g2k(x)

1 + exp

2ak

√
(n1+n2)
2n1n2

log p|x| − ak2 (n1+n2)
2n1n2

log p

2n1+n2

n1n2


dx

=

∫ ∞
−∞

g2k(x)

1 + exp
(

1√
2
ak|x|

√
n1n2

n1+n2
log p− ak2

4
log p

)dx.
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Let At =
{
x : −t/

√
2n1n2

n1+n2
+ dk ≤ x ≤ t/

√
2n1n2

n1+n2
+ dk

}
,

∫ ∞
−∞

g2k(x)

1 + exp
(

1√
2
ak|x|

√
n1n2

n1+n2
log p− ak2

4
log p

) − g2k(x)dx

=

∫
x∈Act

g2k(x)

1 + exp
(

1√
2
ak|x|

√
n1n2

n1+n2
log p− ak2

4
log p

) − g2k(x)dx

+

∫
x∈At

g2k(x)

1 + exp
(

1√
2
ak|x|

√
n1n2

n1+n2
log p− ak2

4
log p

) − g2k(x)dx.

Some algebra shows that

∣∣∣∣∣∣∣
∫
x∈Act

g2k(x)

1 + exp
(

1√
2
ak|x|

√
n1n2

n1+n2
log p− ak2

4
log p

) − g2k(x)dx

∣∣∣∣∣∣∣
≤

∫
x∈Act

g2k(x)dx = O

(
e
− t2

4σkk

)
, and (S1.7)∣∣∣∣∣∣∣

∫
x∈At

g2k(x)

1 + exp
(

1√
2
ak|x|

√
n1n2

n1+n2
log p− ak2

4
log p

)dx
∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∫x∈At φ2k(x)

1 + exp
(

1
2
akt
√

log p+ o(log p)− a2k
4

log p
) − g2k(x)dx

∣∣∣∣∣∣ .(S1.8)

Take t = (2 + b/2)
√
σkk log p, we can see that (S1.7) is bounded by o(1/p1+b).

For (S1.8) to be bounded by o(1/p1+a) for some constant a > 0, we need

ak
2/4− (1 + b/4)ak

√
σkk > 1 + c for some constant c > 0. Some computa-

tion shows that ak > (2 + b/2)
√
σkk +

√
(2 + b/2)2σkk + 4 can satisfy both

requirements. Since we take ak = (2 + b)
√
σkk +

√
(2 + b)2σkk + 4 we have
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(S1.8) is bounded by:

∣∣∣∣∫
x∈At

g2k(x)

1 + o(1/p1+ε3)
− g2k(x)dx

∣∣∣∣ = O(1/p1+ε3)

∫
g2k(x)dx = O(1/p1+ε3),

where ε3 > 0 is some constant. Use the fact that
∫
φ2kdx = 1 we conclude

that

E{qk(X)|X ∼ g2k} =

∣∣∣∣1− ∫ ∞
−∞

g0(|x|)g2k(x)

g0(|x|) + g̃1k(|x|)
dx

∣∣∣∣ = O(1/p1+ε3).

Take γ = min(ε1, ε2, ε3), the results follow.

Define âk = (2 + b)
√
σ̂kk +

√
(2 + b)2σ̂kk + 4. From the above proof,

we can see that if we would like the results to hold when we replace ak

by âk, we need x > (âk/2 + 3ε′/4)
√

(n1+n2)
2n1n2

log p on the interval (dk −

(ε/4)
√

(n1+n2)
2n1n2

log p,∞) when dk is strong and âk > (2+b/2)
√
σkk+

√
(2 + b/2)2σkk + 4

when di is weak. Here ε′ is some positive constant less than ε and depends

solely on ε. As ak satisfies these two conditions, we can choose a constant d

which depends solely on ε′ and b such that âk satisfies these two conditions

when |âk − ak| < d.

When the true variance is unknown, we use the pooled sample variance

σ̂kk =
n1 − 1

n1 + n2 − 2

n1∑
i=1

(Xik − X̄k)
2 +

n2 − 1

n1 + n2 − 2

n2∑
i=1

(Yik − Ȳk)2
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to estimate σkk, and use âk to estimate ak. Since âk is a continuous function

of σ̂kk and âk = ak when σ̂kk = σkk, we can choose a constant λ small

enough such that |âk − ak| < d when |σ̂kk − σkk| < ε−1
0 λ. (Recall that ε−1

0

is the upper bound of σkk.) The constant λ here depends solely on d and

ε0, which are fixed and independent of n1, n2 and p. Recall that since

Xik are i.i.d for 1 ≤ i ≤ n1 and Yik are i.i.d for 1 ≤ i ≤ n2 , we have

(n1 +n2−2)σ̂kk/σkk ∼ χ2
n1+n2−2. Lemma 1 in Foygel and Drton (2010) and

Lemma 4 in Cai (2002) proved the following concentration inequality for χ2

random variable. For n ≥ 4λ−2 + 1, we have

P
{
χ2
n > n(1 + λ)

}
≤ 1

λ
√
πn

e−
n
2

(λ−log(1+λ));

P
{
χ2
n < n(1− λ)

}
≤ 1

λ
√
π(n− 1)

e−
n−1
2

(λ+log(1−λ)).

Noting that λ is a constant independent of n1, n2 and p, we apply the above

results to conclude that

P

(∣∣∣∣ σ̂kkσkk
− 1

∣∣∣∣ < λ

)
≥1− 1

λ
√
π(n1 + n2 − 2)

e−
n1+n2−2

2
(λ−log(1+λ)) − 1

λ
√
π(n1 + n2 − 3)

e−
n1+n2−3

2
(λ+log(1−λ))

=1− e−
n1+n2−2

2
(λ−log(1+λ))+O(log (n1+n2)) − e−

n1+n2−3
2

(λ+log(1−λ))+O(log (n1+n2)).

=1− e−O(n1+n2)
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Since P

(
p⋃
i=1

|σ̂kk − σkk| > ε−1
0 λ

)
≤
∑p

i=1 P
(
|σ̂kk − σkk| > ε−1

0 λ
)
≤
∑p

i=1 P (|σ̂kk − σkk| > σkkλ),

we have with probability greater than 1 − pe−O(n1+n2), |σ̂kk − σkk| < ε−1
0 λ

for all 1 ≤ i ≤ p.

Combining with the fact that E(qk) is bounded, the theorem follows.

S1.4 Proof of Theorem 4

Define ECC2
δδδ = E

{∑m
j=1 I(δj = 2, θj = 2)

}
. We will prove mFSR2

δ̂δδ
= mFSR2

δδδOR
+

o(1) and ECC2
δ̂δδ
/ECC2

δδδOR
= 1 + o(1). Then by the same argument one can

show mFSR1
δ̂δδ

= mFSR1
δδδOR

+ o(1) and ECC1
δ̂δδ
/ECC1

δδδOR
= 1 + o(1), then the

theorem follows.

We begin with a summary of notation used throughout the proof:

• Q(t) = m−1
{∑m

j=1(T j − α2)I(T j < t)
}

.

• Q̂(t) = m−1
{∑m

j=1(T̂ j − α2)I(T̂ j < t)
}

.

• Q∞(t) = E{(T − α2)I(T < t)}.

• t∞ = min{sup{t : Q∞(t) ≤ 0}, 0.5} is the “ideal” threshold.

Note that T j is a function of WWW j only. Since each WWW j are iid, it follows that

T j are also iid. Without loss of generality, assume the first s1 signals are

strong, the next s2 signals are moderate and the rest are weak. We break

the proof into 2 cases:
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Case 1:
∑s1

k=1 d
2
k <∞ as n, p→∞.

Case 2:
∑s1

k=1 d
2
k →∞ as n, p→∞.

Proof of case 1

We first show that mFSR2
δ̂δδ

= mFSR2
δδδOR

+ o(1). We define a continuous

version of Q̂(t) using the following procedure: If t1 and t2 are two adjacent

points of discontinuity, on the interval [t1, t2],

Q̂C(t) =
t− t2
t1 − t2

Q̂(t1) +
t− t1
t2 − t1

Q̂(t2).

As t∞ is proved to be larger than α1 in section S1.1, it is easy to verify

that Q̂C(t) is continuous and monotone on the interval [α1, 1). Hence, its

inverse Q̂−1
C is well–defined, continuous, and monotone.

Next, we shall show the following two results in turn: (i) Q̂(t)
p→ Q∞(t)

and (ii) Q̂−1
C (0)

p→ t∞. We shall need the following two lemmas, which are

proved later:

Lemma 1. E(T̂ − T )2 → 0.

Lemma 2. Let Vj = (T j−α2)I(T j < t) and V̂j = (T̂ j−α2)I(T̂ j < t). Then

E
(
V̂j − Vj

)2

= o(1).

To show (i), note that Q(t)
p→ Q∞(t) by the WLLN, so that we only
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need to establish that Q̂(t)
p→ Q(t). Let Sm =

∑m
j=1

(
V̂j − Vj

)
. By Lemma

2 and the Cauchy-Schwartz inequality, E
{(
V̂i − Vi

)(
V̂j − Vj

)}
= o(1). It

follows that

V ar
(
m−1Sm

)
=m−2V ar(Sm) ≤ m−2

m∑
j=1

E
{(

V̂j − Vj
)2
}

+O

(
1

m2

∑
i,j:i 6=j

E
{(
V̂i − Vi

)(
V̂j − Vj

)})

=o(1).

By Lemma 2, E(m−1Sm)→ 0, applying Chebyshev’s inequality, we obtain

m−1Sm = Q̂(t)−Q(t)
p→ 0. Hence (i) is proved.

Next, we show (ii). Since Q̂C(t) is continuous, for any ε > 0, we can find η >

0 such that
∣∣∣Q̂−1

C (Q∞(t∞))− Q̂−1
C

{
Q̂C (t∞)

}∣∣∣ < ε if
∣∣∣Q̂C (t∞)−Q∞(t∞)

∣∣∣ <
η. It follows that

P
{∣∣∣Q̂C (t∞)−Q∞(t∞)

∣∣∣ > η
}
≥ P

{∣∣∣Q̂−1
C (Q∞(t∞))− Q̂−1

C

{
Q̂C (t∞)

}∣∣∣ > ε
}
.

Lemma 1 and the WLLN imply that Q̂C(t)
p→ Q∞(t).Then,

P
(∣∣∣Q̂C (t∞)−Q∞(t∞)

∣∣∣ > η
)
→ 0.
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Hence, we have

Q̂−1
C (Q∞(t∞))

p→ Q̂−1
C

{
Q̂C (t∞)

}
= t∞, (S1.1)

completing the proof of (ii). Notice that Q∞(t) is continuous by construc-

tion, by (i) we also have Q̂(t)
p→ Q̂C(t).

We can similarly define the continuous version of Q(t) as QC(t) and the cor-

responding threshold as Q−1
C (0). Write δ̂δδ = δ̂δδ

1
+ δ̂δδ

2
, where δ̂δδ

1
is of the form

I
{

1− T̂ j ≤ β1

}
and δ̂δδ

2
is of the form 2I

{
T̂ j ≤ β2

}
for some β1, β2 > 0.

Similarly, write δδδ = δδδ1 + δδδ2, where δδδ1 is of the form I {1− T j ≤ t1OR} and

δδδ2
OR is of the form 2I {T j ≤ t2OR} for some β1, β2 > 0. Then by construction,

we have

δ̂δδ
2

=
[
2I
{
T̂ j ≤ Q̂−1

C (Q∞(t∞))
}

: 1 ≤ j ≤ m
]

and δδδ2
OR =

[
2I
{
T j ≤ Q−1

C (Q∞(t∞))
}

: 1 ≤ i ≤ m
]
.

Also, following the previous arguments, we can show that

Q−1
C (Q∞(t∞))

p→ t∞. (S1.2)

According to (S1.1) and (S1.2), we have

Q̂−1
C (Q∞(t∞)) = Q−1

C (Q∞(t∞)) + op(1). (S1.3)
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Note that the mFSR2 level of δδδOR and δ̂δδ are

mFSR2
δδδOR

=
Pθj=1

{
T j ≤ Q−1

C (Q∞(t∞))
}

P
{
T j ≤ Q−1

C (Q∞(t∞))
} and mFSR2

δ̂δδ
=
Pθj=1

{
T̂ j ≤ Q−1

C (Q∞(t∞))
}

P
{
T̂ j ≤ Q−1

C (Q∞(t∞))
} .

From Lemma 1, T̂ j
p→ T j, (S1.2), and by the continuous mapping

theorem, mFSR2
δ̂δδ

= mFSR2
δδδOR

+ o(1) ≤ α2 + o(1). By the asymptotic

equivalence between mFSR and FSR (Supplement S3), the desired result

follows.

Next we show that ECC2
δ̂δδ

/ECC2
δδδOR

= 1 + o(1). By definition,

ECC2
δ̂δδ

= E

{
m∑
j=1

I(T̂ j ≤ Q̂−1
C (Q∞(t∞)))(1− T i)

}

and ECC2
δδδOR

= E

{
m∑
j=1

I(T j ≤ Q−1
C (Q∞(t∞)))(1− T j)

}
.

Using the fact that T̂ j
p→ T j and Q̂−1

C (Q∞(t∞))
p→ Q−1

C (Q∞(t∞)), the result

follows.

Proof of case 2

From the proof of Lemma 1, we have:

E
(
Sπj − Ŝj

)2

= O(s1
n1 + n2

n1n2

)+o(

s1∑
k=1

d2
k)+O(

s1∑
k=1

dk
n1 + n2

n1n2

)+o(1). (S1.4)
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Since
∑s1

k=1 d
2
k ≥ cs1

n1+n2

n1n2
log p for some c > 0 and E(Sπj ) ∝

∑s1
k=1 d

2
k, by

(S1.4)

E
(
Sπj − Ŝj

)2
/ s1∑

k=1

d2
k = O

(
1

log p

)
.

It follows that E
∑s1

k=1{qk(X̄k − Ȳk)}2 ∝ E(|Sπj |) ∝
∑s1

k=1 d
2
k. If

∑sk
k=1 d

2
i →

∞, then T̂ j → 0 or T̂ j → ∞. In either case, we have perfect separation

between the two classes asymptotically. The theorem follows.

S1.5 Proof of Theorem 3

Again, without loss of generality, assume the first s1 signals are strong,

the next s2 signals are moderate and the rest are weak. Consider the

same model as described in section 2, but replace µµµ1 and µµµ2 by µ̃µµ1 =

(µ11, ..., µ1s1 , 0, ..., 0)t and µ̃µµ2 = (µ21, , ..., µ2s1 , 0, ..., 0)t respectively. Let

W̃WW j = WWW j − µµµ1 + µ̃µµ1 when θj = 1 and W̃WW j = WWW j − µµµ2 + µ̃µµ2 when θj = 2. It

is then clear that

W̃WW j ∼ I(θj = 1)N (µ̃µµ1,Σ) + I(θj = 2)N (µ̃µµ2,Σ).

Denote d̃dd = µ̃µµ1 − µ̃µµ2, define

Zj := Z(W̃WW j) :=

(
W̃WW j −

µ̃µµ1 + µ̃µµ2

2

)>
Σ−1d̃dd,
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Zj
OR := ZOR(W̃WW j) = exp(Zj)/(exp(Zj) + 1). Consider the decision rule:

δjZ = 2I{Zj
OR ≤ min(Z

(k4)
OR , 0.5)}+ I{1− Zj

OR ≤ min(1− Z(m−k3)
OR , 0.5)},

where

k3 = inf

{
j :

1

j + 1

j∑
i=0

(1− Z(m−i)
OR ) ≤ α1

}
and k4 = sup

{
j :

1

j

j∑
i=1

Z
(i)
OR ≤ α2

}
.

By the proof of theorem 1 and theorem 3, δδδZ = (δ1
Z , . . . , δ

m
Z ) controls mFSR1

and mFSR2 at level α1 and α2 respectively. Now notice that

E
(
Zj − Ŝj

)2

=E

{(
W̃WW j −

µ̃µµ1 + µ̃µµ2

2

)>
Σ−1d̃dd−

(
WWW j −

X̄XX + ȲYY

2

)>
Σ̂−1d̂dd

}2

=O

E{(WWW i −
µµµ1 + µµµ2

2

)>
Σ−1(d̃dd− d̂dd)

}2

+ E

{(
W̃WW j −WWW j +

X̄XX + ȲYY

2
− µµµ1 + µµµ2

2

)>
Σ−1d̂dd

}2

+ E

{(
WWW i −

X̄XX + ȲYY

2

)>
(Σ− Σ̂−1)d̂dd

}2


=I + II + III
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For II, note that

E

{(
W̃WW j −WWW j +

µ̃µµ1 + µ̃µµ2

2
− X̄XX + ȲYY

2

)>
Σ−1d̂dd

}2

=O

[
E
{
d̂dd
>

(Σ−1)t
1

4

n1 + n2

n1n2

ΣΣ−1d̂dd

}
+
{
λmax(Σ

−1)p−γ log p
}2
]

=O

[
E
{
d̂dd
>

(Σ−1)>
1

4

n1 + n2

n1n2

d̂dd

}
+
{
λmax(Σ

−1)p−γ log p
}2
]

=O

[
E
(
n1 + n2

n1n2

λmax(Σ
−1)||ddd− d̂dd||2

)
+ E

(
n1 + n2

n1n2

λmax(Σ
−1)||ddd||2

)
+
{
λmax(Σ

−1)p−γ log p
}2
]

=O

[
E
n1 + n2

n1n2

λmax(Σ
−1)(||ddd− d̂dd||2 + ||ddd||2) +

{
λmax(Σ

−1)p−γ log p
}2
]
.

By (A1) {λmax(Σ−1)p−γ log p}2 → 0, use the same computation in the proof

of lemma 1, we have

E
(
Zj − Ŝj

)2

= O

(
E

p∑
k=1

{qk(X̄k − Ȳk)− d̃k}2

)
+ o(1),

E
s1∑
k=1

{qk(X̄k−Ȳk)−d̃k}2 = O(s1
n1 + n2

n1n2

)+o(

s1∑
k=1

d2
k)+O(

s1∑
k=1

dk
n1 + n2

n1n2

)+o(1).

We know that

E
s1+s2∑
i=s1+1

{
qk(X̄k − Ȳk)

}2
= O(s2)O(p−γ)O

(
n1 + n2

n1n2

log p

)
= O(p−γ log p)→ 0,

E
p∑

k=s2+1

{qk(X̄k − Ȳk)}2 = O(p)O(p−1−γ)o

(
n1 + n2

n1n2

log p

)
→ 0.
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Thus,

E
(
Zj − Ŝj

)2

= O(s1
n1 + n2

n1n2

)+o(

s1∑
k=1

d2
k)+O(

s1∑
k=1

dk
n1 + n2

n1n2

)+o(1). (S1.5)

Since
∑s1

k=1 d
2
k ≥ cs1 log pn1+n2

n1n2
for some c > 0 and E(Zj) ∝

∑s1
k=1 d

2
k, by

(S1.5)

E
(
Zj − Ŝj

)2
/ s1∑

k=1

d2
k = O

(
1

log p

)

It follows that E
∑s1

k=1{qk(X̄k − Ȳk)}2 ∝ E(|Zj|) ∝
∑s1

k=1 d
2
k. If

∑s1
k=1 d

2
k →

∞, then T̂ j → 0 or T̂ j → 1. In either case, we have perfect separation

between the two classes asymptotically. The theorem follows trivially. If∑s1
k=1 d

2
k <∞, then

(
E
∣∣∣T̂ j − Zj

OR

∣∣∣)2

= eO(
∑s1
k=1 d

2
k)

{
O

(
s1
n1 + n2

n1n2

)
+O(

s1∑
k=1

d2
kp
−2γ) +O(p−γ log p)

}
.

Since
∑s1

k=1 d
2
k ≥ cs1 log pn1+n2

n1n2
and

∑s1
k=1 d

2
k <∞, it follows that eO(

∑s1
k=1 d

2
k) <

∞

andO
(
s1

n1+n2

n1n2

)
+O(

∑s1
k=1 d

2
kp
−2γ)+O(p−γ log p)→ 0. Thus, E

(
T̂ j − Zj

OR

)2

→

0. The theorem follows by using the same argument presented in the proof

of theorem 4.
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S1.6 Proof of Corollary 1

Note that min{T j, 1 − T j} ≤ 0.5. Hence, if we choose α1 = α2 = 0.5,

δδδOR makes no indecision. Since δδδOR has the highest ECC among all rules

that controls mFSR1 and mFSR2 at level 0.5, and δδδF also controls mFSR1

and mFSR2 at level 0.5, it follows that ECCδδδOR ≥ ECCδδδF . On the other

hand, δδδF has the lowest risk among all rules that do not make indecision

and risk equals to 1 − ECC/m. It follows that ECCδδδOR ≤ ECCδδδF . Hence,

ECCδδδOR = ECCδδδF . By Theorem 4, we have ECCδδδOR/ECCδ̂δδ → 1, it follows

that R(δ̂δδ)→ R(δδδF ).

S2 Proof of Technical Lemmas

Supplement S2 contains proofs of techincal lemmas. We will assume without

loss of generality, the first s1 signals are strong, the next s2 signals are

moderate and the rest are weak.
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S2.1 Proof of Lemma 1

Let d̂dd = (q1(X̄1 − Ȳ1), ..., qp(X̄p − Ȳp)). We have

E‖d̂dd− ddd‖2 =

p∑
k=1

{
E(q2

k(X̄k − Ȳk)2)− 2dkE{qk(X̄k − Ȳk)}+ d2
k

}
=

p∑
k=1

{
Cov{q2

k, (X̄k − Ȳk)2}+ E(q2
k)E(X̄k − Ȳk)2

}
−

p∑
k=1

{
2dk

[
Cov

{
qk, (X̄k − Ȳk)

}
+ dkEqk

]
+ d2

k

}
.

Since qk is bounded between 0 and 1, Var(q2
k) and Var(qi) are both bounded.

For 1 ≤ k ≤ s1, note that (X̄k − Ȳk) ∼ N(dk, σkk
n1+n2

n1n2
), and d2

k < ∞ we

have Var{(X̄k − Ȳk)
2} = O(n1+n2

n1n2
). Use Cauchy-Schwarz inequality, for

1 ≤ k ≤ s1, each summand has absolute value bounded by

O(
n1 + n2

n1n2

) + E
{
q2
k

(
n1 + n2

n1n2

σkk + d2
k

)}
− 2d2

kE(qk) + d2
k − 2dkCov(qk, X̄k − Ȳk)

=O(
n1 + n2

n1n2

) + d2
kE(q2

k) + d2
k − 2d2

kE(qk) +O(dk
n1 + n2

n1n2

) +O(
n1 + n2

n1n2

)

=O(
n1 + n2

n1n2

) +O(dk
n1 + n2

n1n2

) +O
{
d2
k(1− E(qk))

2
}

+O
{
d2
k(E(q2

k)− (Eqk)
2)
}

=O(
n1 + n2

n1n2

) +O(dk
n1 + n2

n1n2

) + o(d2
k).

For s1 + 1 ≤ i ≤ p,

E{qk(X̄k − Ȳk)− dk}2 ≤ d2
k.
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Hence, by (A4)

E‖d̂dd− ddd‖2 = O(s1
n1 + n2

n1n2

) + o(

s1∑
k=1

d2
k) +O(

s1∑
k=1

dk
n1 + n2

n1n2

) + o(1). (S2.6)

Since s1
n1+n2

n1n2
= O(

∑s1
k=1 d

2
k) and by assumption of case 1,

∑s1
k=1 d

2
k = O(1)

and
∑s1

k=1 dk
n1+n2

n1n2
= o(1) we have E‖d̂dd−ddd‖2 = o(1). Now, since X̄XX+ ȲYY and

X̄XX − ȲYY are independent, and using Basu’s Theorem we know that X̄XX + ȲYY

and σ̂kk are independent, thus X̄XX + ȲYY and d̂ are independent and we have

E(Sπj − Ŝj)2

=E

{(
WWW j −

µµµ1 + µµµ2

2

)>
Σ−1ddd−

(
WWW j −

X̄XX + ȲYY

2

)>
Σ̂−1d̂dd

}2

=E

{(
WWW j −

µµµ1 + µµµ2

2

)>
Σ−1(ddd− d̂dd) +

(
X̄XX + ȲYY

2
− µµµ1 + µµµ2

2

)>
Σ−1d̂dd

+

(
WWW j −

X̄XX + ȲYY

2

)>
(Σ−1 − Σ̂−1)d̂dd

}2

=O

E{(WWW j −
µµµ1 + µµµ2

2

)>
Σ−1(ddd− d̂dd)

}2

+ E

{(
X̄XX + ȲYY

2
− µµµ1 + µµµ2

2

)>
Σ−1d̂dd

}2

+ E

{(
WWW j −

X̄XX + ȲYY

2

)>
(Σ− Σ̂−1)d̂dd

}2


=I + II + III.
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For term I, as in case 1 we have ||ddd||2 bounded:

E

{(
WWW j −

µµµ1 + µµµ2

2

)>
Σ−1(ddd− d̂dd)

}2

= O
{
E
(
λmax(Σ

−1)2||ddd− d̂dd||2
)}

,

where λmax(Σ
−1) is the largest eigenvalue of Σ−1, which in our case is

bounded by some constant.

For term II, we have

E

{(
X̄XX + ȲYY

2
− µµµ1 + µµµ2

2

)>
Σ−1d̂dd

}2

=O

{
E
(
n1 + n2

n1n2

λmax(Σ
−1)||ddd− d̂dd||2

)
+ E

(
n1 + n2

n1n2

λmax(Σ
−1)||ddd||2

)}
=O

{
n1 + n2

n1n2

E
(
λmax(Σ

−1)(||ddd− d̂dd||2 + ||ddd||2)
)}

.
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For term III, we have

E

{(
WWW j −

X̄XX + ȲYY

2

)>
(Σ−1 − Σ̂−1)d̂dd

}2

=E
[
d̂dd
>

(Σ− Σ̂−1)>
{(

1 +
1

4

n1 + n2

n1n2

)
Σ−1 +

1

4
dddddd>

}
(Σ−1 − Σ̂−1)d̂dd

]
≤E
[{(

1 +
1

4

n1 + n2

n1n2

)
1

ε0
+

1

4
max{didj, 1 ≤ i, j ≤ p}

}
d̂dd
>

(Σ−1 − Σ̂−1)>(Σ−1 − Σ̂−1)d̂dd

]
=O

[
E
{
||(Σ−1 − Σ̂−1)||22||d̂dd||2

}]
=O

[
E
{
||(Σ−1 − Σ̂−1)||22||ddd||2

}]
=o(1).

The last equality follows from assumption (A2) and the fact that ||ddd||2 <∞

in case 1. Hence,

E
(
Sπj − Ŝj

)2

= O
{
E
(
‖d̂dd− ddd‖2

)}
+O(

n1 + n2

n1n2

) + o(1) = o(1).

Next we ask under what conditions do we have E
∣∣∣T̂ j − T j∣∣∣2 → 0. Let δ > 0

be some constant, applying Chebyshev’s inequality, we have P
(
|Ŝj − Sπj | > δ

)
=

O

{
E
(
|Sπj − Ŝj|

)2
}
→ 0. When |Ŝj −Sπj | ≤ δ, apply Cauchy-Schwartz in-
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equality, we have:

E|Sπj −Ŝj|<δ
∣∣∣exp(Ŝj)− exp(Sπj )

∣∣∣2
≤Ee2Sπj +2δE

(
Sπj − Ŝj

)2

=eO(
∑s1
k=1 d

2
k) · o(1).

Under the assumption of case 1 the above goes to 0. Therefore, as T̂ j, T j

are bounded above by 1, we have:

E(T̂ j − T j)2 ≤ E
∣∣∣T̂ j − T j∣∣∣

≤ 2P
(∣∣∣Ŝj − Sπj ∣∣∣ > δ

)
+ E|Ŝj−Sπj |<δ

∣∣∣exp(Ŝj)− exp(Sπj )
∣∣∣ .

The lemma follows.

S2.2 Proof of Lemma 2

Using the definitions of V̂j and Vj, we can show that

1

2

(
V̂j − Vj

)2

≤
(
T̂ j − T j

)2

I
(
T̂ j ≤ t, T j ≤ t

)
+
(
T̂ j − α2

)2

I
(
T̂ j ≤ t, T j > t

)
+
(
T j − α2

)2 I
(
T̂ j > t, T j ≤ t

)
.
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Let us refer to the three summands on the right hand as (1), (2) and (3)

respectively. By Lemma 1, (1) = o(1). Then let ε > 0, and consider that

P
(
T̂ j ≤ t, T j > t

)
≤P

(
T̂ j ≤ t, T j ∈ (t, t+ ε)

)
+ P

(
T̂ j ≤ t, T j ≥ t+ ε

)
≤P

{
T j ∈ (t, t+ ε)

}
+ P

(∣∣∣T j − T̂ j∣∣∣ > ε
)
.

The first term on the right hand is vanishingly small as ε→ 0 because T j is

a continuous random variable. The second term converges to 0 by Lemma

1. Noting that 0 ≤ T j ≤ 1, we conclude (2) = o(1). In a similar fashion,

we can show that (3) = o(1), thus proving the lemma.

S3 Asymptotic Equivalence of FSR and mFSR

We show FSRc
δδδ and mFSRc

δδδ are asymptotically equivalent. Let X c
δδδ =

1
m

∑m
j=1 I(δj = c, θj 6= c) and Ycδδδ = 1

m

∑m
j=1 I(δj = c). The goal is to

show |FSRc
δδδ −mFSRc

δδδ| = o(1).

|FSRc
δδδ −mFSRc

δδδ| ≤ E
{∣∣∣∣X c

δδδ

Ycδδδ
− X

c
δδδ

EYcδδδ

∣∣∣∣ I(Ycδδδ > 0)

}
= E

{
X c
δδδ

Ycδδδ
I(Ycδδδ > 0)

|Ycδδδ − EYcδδδ |
EYcδδδ

}
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Since X c
δδδ ≤ Ycδδδ , we have

E
{
X c
δδδ

Ycδδδ
I(Ycδδδ > 0)

|Ycδδδ − EYcδδδ |
EYcδδδ

}
≤ E

{
|Ycδδδ − EYcδδδ |

EYcδδδ

}
≤ (E|Ycδδδ − EYcδδδ |2)1/2

EYcδδδ
=

(VarYcδδδ )1/2

EYcδδδ

By assumption (A3), we have mYcδδδOR ∼ Binom(m, η) with η > 0. There-

fore, EYcδδδOR = η and Var(YcδδδOR)1/2 =
√
η(1− η)/m, |FSRc

δδδOR
−mFSRc

δδδOR
| =

O(m−1/2). In the setting of Theorem 4, the data driven procedure is mimick-

ing δδδOR. It can be seen from the proof of Theorem 4 that mFSR and FSR of

the data driven procedure are also asymptotically equivalent. Similarly, for

the setting of Theorem 3, consider the rule δδδZ defined in the proof of The-

orem 3, by assumption (A3) we also have |FSRc
δδδZ
−mFSRc

δδδZ
| = O(m−1/2).

In the setting of Theorem 3, the data driven procedure is mimicking δδδZ . It

can be seen from the proof of Theorem 3 that mFSR and FSR of the data

driven procedure are also asymptotically equivalent.

S4 Adaptation to unknown sparsity: illustrations

We present numerical examples to provide insights on why the shrinkage

rule (3.1) works well across the sparse and dense regimes.

We start with the sparse case. Suppose n1 = n2 = n. Let n = 5,

p = 625, ddd = (d1, . . . , dp), where dk = 2.5 for k ∈ {1, . . . , 50} and dk = 0 for
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k ∈ {51, . . . , 625}. The observations are generated as XXX i ∼ N (000, 1
2
Ip) and

YYY i ∼ N (ddd, 1
2
Ip), i = 1, . . . , n, where 000 is a p-dimensional vector of zeros and

Ip a p-dimensional identity matrix. It follows that X̄k − Ȳk ∼ N (dk, 1/n).

We contrast the proposed shrinkage rule with hard/soft thresholding rules

in Figure 1. Panels (a) and (b) plot dk and observed X̄k − Ȳk, respec-

tively, with coordinates corresponding to zero/nonzero dk being marked in

blue/red. Panel (c) plots the shrinkage estimates (X̄k − Ȳk)qk, where qk is

defined in (3.2) with b = 0. Panels (d)–(f) show the hard/soft thresholding

estimates with different thresholds λ, where ρh(t, λ, σ) := tI(|t| > λ
√
σ) and

ρs(t, λ, σ) := sgn (t) ·max(|t| − λ
√
σ, 0) are the hard and soft thresholding

functions, respectively.

We can see from Panel (c) that almost all blue points are pulled towards

and centered around the line of zero by our proposed shrinkage rule. The

multiplicative factor qk is as effective as existing thresholding methods for

noise reduction in the sense that the patterns in Panel (c) is qualitatively

similar to those in Panels (d) to (f), except that in (d) and (e) too many

blue points have survived whereas in (f) too many nonzero signals have been

killed. Panel (c) shrinks most noisy entries to zero while being capable

of preserving a significant portion of nonzero signals. The bottom row

compares the shrinkage functions ρh and ρs with qk by setting σ̂kk = 0.5



S4. ADAPTATION TO UNKNOWN SPARSITY: ILLUSTRATIONS

Figure 1: A comparison of our shrinkage rule (3.2) with hard/soft thresholding rules in the
sparse case. Panels (a), (b) and (c) respectively plot the true dk, observed X̄k − Ȳk and (X̄k −
Ȳk)qk. Panels (d)-(f) [((g)-(i)] present results of hard-thresholding (soft-thresholding) rules.
The effects of different shrinkage functions are provided at the bottom row.
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and λ = 2.5. We can see that our shrinkage function is continuous, nearly

unbiased for large signals and yields similar effects as that of the hard-

thresholding function. The proposed shrinkage rule is desirably tuning-free

in the sense that one can simply set b = 0 in practice; this merit is justified

in our theoretical analysis and corroborated by our numerical results. By

contrast, the performance of existing thresholding rules depends critically

on the value of λ, which is nontrivial to choose.

Next we turn to the dense case. The data are generated in a similar

way as before except that we let dk = 2.5(k − 1)/624, k = 1, . . . , 625, i.e.

dk increases linearly from 0 to 2.5. We mark the coordinates of ddd in three

colors: red if dk > (
√

0.5 +
√

0.5 + 1)
√

log p/n ≈ 2.19, black if 1.5 < dk <

(
√

0.5 +
√

0.5 + 1)
√

log p/n and blue otherwise1. We plot our shrinkage

estimate and thresholding estimates in Figure 2. In this high-dimensional

“dense” regime, the boundaries between weak, moderate and strong signals

are blurred. Therefore the working assumptions (sparsity and dichotomy

of ddd) underpinning the use of thresholding rules can be problematic. In

contrast with the (roughly) linear patterns of the surviving points in Panels

(d) to (i), the curved pattern in Panel (c) provides differential amount of

shrinkage for weak and strong signals, achieving a more desirable balance

1There are no clearcut boundaries; the colors in this example are only chosen for illustration purpose.
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Figure 2: Comparison of the proposed shrinkage rule with thresholding rules. The
proposed shrinkage rule exhibits a curved pattern [Panel (c)], which is more effective in
eliminating weak signals and keeping strong signals. Green lines are cubic polynomial
fits of the points above the horizontal line of 0.2.

between reducing the uncertainties and maintaining useful signals.
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S5 Additional Simulations

Let µµµ1 = (0, ..., 0)> ∈ Rp, and µµµ2 be a vector with the first p1/2 entries being

0.5 and the rest being 0. Consider the following three correlation structures

(same as in the main text).

Model 1: Band graph. Let Σ−1 = Ω = (ωij)p×p, where ωii = 1, ωi,i+1 =

ωi+1,i = 0.35, ωi,i+2 = ωi+2,i = 0.175, and ωij = 0 if |i− j| > 2.

Model 2: AR(1) structure. Let Σ−1 = Ω = (ωij)p×p, where ωij = 0.3|i−j|.

Model 3: Block structure. Let Σ−1 = Ω = (B + δIp)/(1 + δ), where

bij = bji = 0.05 · Bernoulli(0.1) for 1 ≤ i ≤ p/2, i < j ≤ p, bij =

bji = 0.05 for p/2 + 1 ≤ i < j ≤ p, bii = 1 for 1 ≤ i ≤ p, and

δ = max{−λmin(B), 0}+ 0.1.

The size of the training set is n = 400, with p varying from 500 to 1000.

The mis-classification rate is computed based on m = 2000 test points

generated from N (µµµ1,Σ) or N (µµµ2,Σ) with equal probability. We repeat

the experiment for 100 times, and report the misclassification rates (in

percentage) in Table 1. As p varies from 500 to 1000, the proportion of

non-zero entries of ddd varies from 0.045 to 0.031, so this can still be viewed

as a sparse setting. It can bee seen that LASS remains competitive.
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p Oracle Naive LASS LPD AdaLDA Lasso Ebay

Model 1
500 4.97 17.97 5.32 8.01 5.73 6.91 5.70
600 4.17 22.11 4.58 7.48 5.02 6.21 4.86
700 3.58 28.44 3.91 6.78 4.29 5.43 4.16
800 3.01 45.61 3.41 8.14 4.83 4.96 3.63
900 2.67 32.09 3.08 8.84 3.45 4.49 3.24
1000 2.48 30.05 2.85 13.12 3.27 4.23 2.97

Model 2
500 5.82 19.32 6.21 8.62 6.58 7.84 6.27
600 4.98 23.44 5.41 8.11 5.85 7.03 5.50
700 4.29 29.81 4.65 7.37 5.00 6.17 4.70
800 3.72 46.62 4.11 8.30 4.56 5.76 4.18
900 3.20 32.67 3.68 8.24 4.02 5.26 3.73
1000 3.12 30.47 3.44 10.93 3.87 4.93 3.47

Model 3
500 11.07 26.61 13.13 15.27 14.32 14.76 13.21
600 9.79 29.58 12.29 14.94 13.63 14.05 12.33
700 9.01 35.20 11.76 14.59 13.21 13.48 11.78
800 8.03 47.23 11.19 14.42 12.62 13.08 11.25
900 7.27 36.62 10.80 15.67 12.40 12.56 10.85
1000 6.90 33.69 10.88 14.72 12.63 12.82 11.04

Table 1: Comparison of average misclassification rate in percentage. The smallest error
rate (next to that by the oracle) in each setting has been boldfaced.
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S6 Lung cancer data

We analyze the lung cancer data (Gordon et al., 2002, available at https:

//leo.ugr.es/elvira/DBCRepository/LungCancer/LungCancer-Harvard2.html), a bench-

mark data set in high-dimensional classification problems. The data set col-

lects expression levels for p = 12, 533 genes on 181 tissue samples. Among

the 181 samples, 31 are from malignant pleural mesothelioma (MPM) group

and 150 are from adenocarcinoma (ADCA) group. The training set con-

tains 16 samples from MPM and 16 samples from ADCA. The testing set

contains 134 samples from MPM and 15 samples from ADCA.

We follow the same data pre-processing steps in Cai and Liu (2011).

First, the sample variances of individual genes are obtained based on the

training data. Next, we drop 195 genes whose sample variances are greater

than 102 or less than 10−2 after rescaling by a factor of 104. Finally, to

reduce the computational cost (which mainly comes from estimating the

precision matrix), only top 200 genes (with the largest absolute values of

the two sample t-statistics) are used for constructing different classification

rules. Figure 3 illustrates the scores T̂ j =
exp(Ŝj)

1+exp(Ŝj)
estimated by LASS,

Naive, Ebay and Lasso. For better illustration, the first 134 testing points

are from ADCA group and the next 15 are from MPM group.

To achieve better separation, the values of the first 134 points (the

https://leo.ugr.es/elvira/DBCRepository/LungCancer/LungCancer-Harvard2.html
https://leo.ugr.es/elvira/DBCRepository/LungCancer/LungCancer-Harvard2.html
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Figure 3: Comparison of estimated T : LASS separates the two classes almost perfectly.
Ebay does better than Naive and Lasso but worse than LASS.

Table 2: Number of misclassifications by each method.
LASS Naive LPD AdaLDA Lasso Ebay

Misclassification 0 (0%) 5 (3.36%) 1 (0.67%) 1 (0.67%) 5 (3.36%) 3 (2.01%)

next 15 points) should be high (low). We can see that LASS shows perfect

separation of the two classes. While Ebay provides a clearer separation

than Naive and Lasso, it is less effective than LASS. For this particular

data set, if we choose to control the FSR at level α = 0.1, then LASS

makes no indecision. Thus, it makes sense to compare the misclassification

rates under the classical setup. The results are presented in Table 2, from

which we can see that LASS has the best performance.
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S7 An example comparing LASS and LPD

In this section we give an example to contrast our theory with existing the-

ories in high-dimensional LDA, where the assumption on the sparsity of ddd is

commonly believed to be “indispensable”. For example, Cai and Liu (2011)

requires |Σ−1ddd|0 = o(
√

(n1 + n2)/ log p) to achieve risk consistency. This

sparsity condition seems to be necessary if the scope of analysis is limited

to the class of thresholding rules. It is not an artifact of the theoretical

analysis, as we can see from the numerical results in Section 5.1.2 where

the disadanvantages of existing works are reflected. However, LASS still

achieves risk consistency even when the condition in Cai and Liu (2011) is

violated. We illustrate this through the next example.

Example 1. Consider an asymptotic setup where n1 = n2 = n, p = n2,

Σ = Ip and µµµ1 = (0, . . . , 0)>. Let µµµ2 = (1, . . . , 1, 0, . . . , 0)> be a vector with

the first k entries being 1 and the rest 0. Let k = n and ∆p = ddd>ΣΣΣ−1ddd,

then in this setting ∆p = n. It is clear that |ΣΣΣ−1ddd|0 = n and |ΣΣΣ−1ddd|1 =

n. Denote δ̂δδLPD the LPD rule in Cai and Liu (2011). To guarantee that

R(δ̂δδLPD) − R(δδδF ) → 0, the theory in Cai and Liu (2011) requires that

|ΣΣΣ−1ddd|0 = o(
√
n/ log p) or |ΣΣΣ

−1ddd|1
∆

1/2
p

+
|ΣΣΣ−1ddd|21

∆2
p

= o(
√
n/ log p), both of which

are violated. By contrast, note that all nonzero elements in ddd are in G1

(strong signals), the conditions of Corollary 1 are satisfied for any k ≥ 1,



S8. CLASS-SPECIFIC FSR CONTROL IMPLIES ASYMPTOTIC GLOBAL FSR
CONTROL

which guarantees that LASS achieves risk consistency across sparse and

dense settings.

As opposed to existing works that produce approximately the same

amount of shrinkage for elements in both G1 (strong) and G3 (moderate),

LASS adopts an adaptive strategy that makes it possible to provide differ-

ential amounts of shrinkage for the elements in G1 and G3 (Proposition 1

in Section 3.1 and Figure 2c in Section S4). The resulting shrinkage rule is

more effective in keeping strong signals and eliminating noisy elements; this

explains the superiority of LASS in both theory and numerical performance.

S8 Class-specific FSR control implies asymptotic global

FSR control

We will show if mFSRc is controlled for c = 1, 2 then mFSR is also con-

trolled. The result then follows from Section S3. Recall

mFSRc =
E
{∑m

j=1 I(δj = c, θj 6= c)
}

E
{∑m

j=1 I(δj = c)
} , mFSR =

E
{∑m

j=1 I(δj 6= θj, δj 6= 0)
}

E
{∑m

j=1 I(δj 6= 0)
} .

Denote

ac = E

{
m∑
j=1

I(δj = c, θj 6= c)

}
, bc = E

{
m∑
j=1

I(δj = c)

}
.
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Then mFSRc = ac/bc, and

mFSR =
a1 + a2

b1 + b2
=
a1

b1

b1

b1 + b2
+
a2

b2

b2

b2 + b1
≤ α

b1

b1 + b2
+ α

b2

b1 + b2
≤ α.

S9 Discussion on condition (A2)

For all numerical experiments, we used the ACLIME estimator to estimate

precision matrix Σ−1. Suppose we have samples X1, . . . , Xn ∼ N(µ,Σ). In

Cai et al. (2016) the authors proved that if the precision matrix Σ−1 ∈ Rp×p

belongs to Gq(cn,p,Mn,p):

Gq(cn,p,Mn,p) =


Ω = (ωij)1≤i,j≤p : max

j

p∑
i=1

|ωij|q ≤ cn,p,

||Ω||1 ≤Mn,p, λmax(Ω)/λmin(Ω) ≤M1,Ω � 0

 .

Under some regularity conditions on p, n, cn,p the ACLIME estimator

satisfies

sup
Gq(cn,p,Mn,p)

E‖Σ̂−1 − Σ−1‖2
w = M2−2q

n,p cn,p(log p/n)1−q

for all 1 ≤ w ≤ ∞ and 0 ≤ q < 1. Hence if Mn,p and cn,p are chosen such

that

M2−2q
n,p cn,p(log p/n)1−q = o(1),
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then the ACLIME estimator satisfies condition (A2).

We emphasize that our Condition (A2) is strictly weaker than the con-

dition Σ−1 ∈ Gq(cn,p,Mn,p) considered in Cai et al. (2016). Moreover, LASS

does not depend on any particular class of precision matrix estimators nor

do we regard the parameter space Gq(cn,p,Mn,p) to be of any specific type.

Instead, a range of estimators, as proposed in Yuan (2010), Liu and Luo

(2015),Cai et al. (2016) and Avella-Medina et al. (2018), all have good em-

pirical performances and are consistent under various conditions. These

estimators can be employed to construct LASS classifiers too.

In practice we often have some prior knowledge on the covariance struc-

ture, and we can choose which estimator to use according to this prior

knowledge. For example, if we know that the covariance matrix has an

AR(1) structure (i.e. Σ = (σij), with σij = ρ|i−j|) then the inverse of the

MLE of the covariance matrix Σ̂−1
mle satisfies (A2). Hence, we do not need

to assume Σ−1 belongs to any particular parameter space.

Estimating precision matrix is still an active area of research. It is

conceivable (and hopeful) that future works on this topic can further relax

the sufficient conditions under which an existing estimator is consistent. It

would also be of interest to propose new estimators that are consistent in

a wider range of parameter spaces.
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