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S1. Additional numerical results

S1.1 LGSSM

1 and 2 display the matrices A, B, RR⊺, and SS⊺ used for all experiments

in the LGSSM model context. In 1a,2a,3a we display boxplots of bias esti-

mates, where each estimate is obtained by averaging 104 independent runs of

the corresponding algorithm and each box is based on 103 replications of this

bias estimator. The PARIS is compared to the PPG for different algorithmic

configurations (N, k, k0) and for different computational budgets C = kN

of sizes 103 (1), 2.5× 103 (2), and 5× 103 (3). Each experiment is carried

through for each of the different designs k0 = ⌊2−1k⌋, k0 = ⌊(3/4)C/N⌋,
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and k0 = k − 1 of the burn-in.

/ 1 2 3 4 5

1 -0.4193 0.00182 0.00183 0.00184 0.00185

2 0.2145 0.63952 0.63953 0.63954 0.63955

3 0.3449 0.60202 0.60203 0.60204 0.60205

4 0.2572 -0.26932 -0.26933 -0.26934 -0.26935

5 0.7505 -0.36332 -0.36333 -0.36334 -0.36335

/ 1 2 3 4 5

1 -0.2078 0.27752 0.27753 0.27754 0.27755

2 0.0984 0.45172 0.45173 0.45174 0.45175

3 0.7050 -0.04502 -0.04503 -0.04504 -0.04505

4 0.1684 -0.15152 -0.15153 -0.15154 -0.15155

5 -0.0320 0.50612 0.50613 0.50614 0.50615

Table 1: The A (left) and B (right) matrices in the LGSSM.

/ 1 2 3 4 5

1 0.0026 -0.00062 -0.00063 -0.00064 -0.00065

2 -0.0004 0.00122 0.00123 0.00124 0.00125

3 -0.0001 -0.00062 -0.00063 -0.00064 -0.00065

4 0.0007 0.00012 0.00013 0.00014 0.00015

5 -0.0006 0.00282 0.00283 0.00284 0.00285

/ 1 2 3 4 5

1 0.0157 -0.00072 -0.00073 -0.00074 -0.00075

2 0.0014 0.00072 0.00073 0.00074 0.00075

3 -0.0027 0.00592 0.00593 0.00594 0.00595

4 0.0064 -0.01052 -0.01053 -0.01054 -0.01055

5 -0.0007 0.02072 0.02073 0.02074 0.02075

Table 2: The covariance matrices RR⊺ (left) and SS⊺ (right) for the state and measure-

ment noises, respectively, in the LGSSM.

S1.2 Stochastic volatility

In this section we repeat the same experiments in S1.1 in the context of

the StoVol model described in 5. 4–6 display boxplots of bias estimates

for the PARIS and the PPG for different algorithmic configurations (N, k, k0)

and different computational budgets C = kN of sizes 102 (4), 5 × 102 (5),

and 103 (6). The bias of each algorithm is estimated by averaging 103

independent runs of the same, and each box is based on 103 independent

replications of this bias estimator. Again, in each plot, the PARIS and PPG

share the same computational budget (regardless configuration of the PPG).
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Figure 1: PARIS and PPG outputs for the LGSSM with C = 103 and different designs of

the burn-in k0.

Choice of (N, k, k0). Designing the configuration (N, k, k0) is challenging,

since the upper bound κN,n on the mixing rate is known to be conservative.

As clear from 4–6, the best configuration also depends on C; indeed, we see

that for a smaller budget it is better to let the particle sample size N be

large. Nevertheless, for more generous budgets it seems to be better to use

a large number k of iterations at the expense of N .

Concerning the burn-in parameter k0, the choice depends mainly on

the bias–variance trade-off. In applications where minimising the bias is

important one would choose k0 = k − 1, which gives the smallest possible

bias. Otherwise, a trade-off that provides an improvement in bias at the

cost of an increase in MSE over the PARIS by only a factor of 2 is to choose

k0 = ⌊k/2⌋; recall the discussion in 4.2.
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Figure 2: PARIS and PPG outputs for the LGSSM with C = 2.5×103 and different designs

of the burn-in k0.

Comparison with the Rhee–Glynn-type estimator of [3]

We now compare the proposed PPG estimator with the unbiased Rhee–

Glynn-type smoothing estimator Hk0:k,N defined in [3, Eq. 2], where the

parameter k0 is the burn-in phase length, k the minimum number of Gibbs

iterations, and N the number of particles used in the coupled conditional

particle filter. This estimator is based on the coupled conditional particle

filter with ancestor sampling proposed in [3]; see 4 for details. Since the

number of particles used in the algorithm is itself a random variable, we first

perform 3×103 independent runs of the same and report the average meet-

ing time (i.e., number of iterations of 4 until the conditional paths ζ0:n and

ζ ′0:n become identical) for three different choices of the hyperparameters in

3. We deduce from 3 that the average total number of particles generated
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Figure 3: PARIS and PPG outputs for the LGSSM with C = 5× 103 and different designs

of the burn-in k0.

N k0 k Meeting time

100 5 10 30.4

250 2 4 12.6

500 1 2 7.1

Table 3: Coupled conditional particle filter meeting times for three different configura-

tions with Nk = 103.

is about 3 × 103. Therefore, we compare the Rhee–Glynn estimator in-

duced by the coupled conditional particle filter with the PPG estimator with

(N, k0, k) = (10, 150, 300). 7 shows histograms of estimates produced using

the Rhee–Glynn-type procedure, for the three different configurations, along

with histograms of the estimates produced by the PPG. Each histogram is

based on 3 × 103 independent replications. We find that the variance and

empirical bias of the Rhee–Glynn-type estimator is about 10 and 20 times

larger, respectively, than for the PPG for the same computational effort.
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Figure 4: PARIS and PPG outputs for the stovol model with C = 102 and different designs

on the burn-in k0.

Another way of obtaining Rhee–Glynn-type smoothing estimator would

be to consider the coupling of the conditional backward sampling particle

filter, as proposed in [5]. In the case of the bootstrap particle filter, the con-

ditional particle filter with backward sampling is probabilistically equivalent

to the conditional particle filter with ancestor sampling. Furthermore, [5,

Section 7] also show that for n = 103, both the conditional particle filter

with backward sampling and the conditional particle filter with ancestor

sampling have similar performance. Thus, we expect the results in this

section to translate to the estimators proposed in [5].
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Figure 5: PARIS and PPG outputs for the stovol model with C = 5 × 102 and different

designs of the burn-in k0.
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Figure 6: PARIS and PPG outputs for the stovol model with C = 103 and different designs

of the burn-in k0.
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Figure 7: Histograms of estimates produced using the Rhee–Glynn-type smoothing es-

timator of [3] for three different configurations and the PPG estimator with (N, k0, k) =

(10, 150, 300). Each box is based on 3000 independent replications. The plot also pro-

vides the corresponding 95% coverage asymptotic confidence intervals.
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S2. Algorithms

The following section provides pseudocode for the algorithms discussed in

3, namely: the original PARIS algorithm (1) proposed in [7], the conditional

PARIS update (2), and the PPG (3). In addition, we provide a pseudocode

for the coupled conditional conditional particle filter with ancestor sampling

(4), being the key ingredient of the unbiased Rhee–Glynn-type estimator

proposed in [3] against which the PPG is benchmarked in S1.2. Note that

the conditional PARIS update described in 2 differs somewhat from that

described in 3 in the way the underlying conditional dual process {ξm}m∈N

is propagated; more precisely, in 2, each conditional dual process update

ξm+1 ∼ Mm⟨ζm+1⟩(ξm, ·), where the value of ζm+1 is inserted into a ran-

domly chosen position in ξm+1 (whereas the remaining elements of ξm+1

are sampled independently from Φm(µ(ξm))) is replaced by deterministic

assignment of ζm+1 to ξNm+1. Of course, this change has no impact as long

as we are interested in integrating functions that are permutation invari-

ant with respect to the produced many-body systems, which is the case

throughout our work. Still, as this derandomization technique simplifies

somewhat the implementation of the PPG, we have chosen to include it in

our pseudocode.
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Data: {(ξin, βi
n)}Ni=1

Result: {(ξin+1, β
i
n+1)}Ni=1

for i← 1 to N do

draw Iin+1 ∼ cat({gn(ξℓn)}Nℓ=1);

draw ξin+1 ∼Mn(ξ
Ii
n+1

n , ·);

for j ← 1 to M do

draw J
(i,j)
n+1 ∼ cat({qn(ξℓn, ξin+1)}Nℓ=1)

end

set βi
n+1 ← 1

M

∑M
j=1

(
β
J

(i,j)
n+1

n + h̃n(ξ
J

(i,j)
n+1

n , ξin+1)

)
;

end

Algorithm 1: One update of the PARIS.

Coupling algorithms. 4 provides a more detailed description of (the predic-

tive variant of) the coupled conditional particle filter proposed in [3, Algo-

rithm 1], and we focus here on the version of this algorithm where the iter-

atively produced particle paths underlying the resulting estimator are gen-

erated by means of ancestor sampling [6]. If {ωℓ}Nℓ=1 and {ω′
ℓ}Nℓ=1 are possi-

bly unnormalized event probabilities, we denote by M({ωℓ}Nℓ=1, {ω′
ℓ}Nℓ=1) the

maximal coupling between the distributions cat({ωℓ}Nℓ=1) and cat({ω′
ℓ}Nℓ=1).

In our implementations, we used the maximum coupling given in [4, Al-

gorithm 2]. In order to couple two conditional particle filters, we assume,

following [3, Algorithm 1], that for every m ∈ N we are able to simu-

late a random variable εm, defined on some measurable space (Sm,Sm)
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Data: υn, ζn+1

Result: υn+1

for i← 1 to N − 1 do

draw Iim+1 ∼ cat({gm(ξℓm|m)}Nℓ=1);

draw ξim+1|m+1 ∼Mm(ξ
Ii
m+1

m|m , ·);

end

set ξNm+1|m+1 ← ζm+1;

for i← 1 to N do

for j ← 1 to M do

draw J
(i,j)
m+1 ∼ cat({qm(ξℓm|m, ξim+1|m+1)}

N
ℓ=1)

end

set βi
m+1 ← 1

M

∑M
j=1

(
β
J

(i,j)
m+1

m + h̃m(ξ
J

(i,j)
m+1

m|m , ξim+1|m+1)

)
;

set ξi0:m+1|m+1 ← (ξ
J

(i,1)
m+1

0:m|m, ξim+1|m+1);

end

set υn+1 ← ((ξ10:n+1|n+1, β
1
n+1), . . . , (ξ

N
0:n+1|n+1, β

N
n+1));

Algorithm 2: One conditional PARIS update, expressed in a short form as “υn+1 ←

CondPaRIS(υn, ζn+1)”.

and distributed according µm ∈ M1(Sm), such that there exists some mea-

surable function ϕ on (Xm × Sm,Xm � Sm) such that for every xm ∈ Xm,

µm◦ϕ−1
m (xm, ·) (the pushforward of µm through ϕm(xm, ·)) equalsMm(xm, ·).
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Data: ζ0:n

Result: υn, ζ
′
0:n

draw (ξ10|0, . . . , ξ
N−1
0|0 ) ∼ η

�(N−1)
0 ;

set ξN0|0 ← ζ0;

set β0 ← (0, . . . , 0);

for m← 0 to n− 1 do

run ((ξ1m+1|m+1, β
1
m+1), . . . , (ξ

N
m+1|m+1, β

N
m+1))←

CondPaRIS((ξ1m|m, β1
m), . . . , (ξNm|m, βN

m), ζm+1);

end

set υn ← ((ξ1n|n, β
1
n), . . . , (ξ

N
n|n, β

N
n ));

draw J ∼ cat({1}Nℓ=1);

set ζ ′0:n ← ξJ0:n|n;

Algorithm 3: One iteration of the Parisian particle Gibbs (PPG)
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Data: ζ0:n, ζ̃0:n

Result: ζ ′0:n, ζ̃
′
0:n

set (ξ10 , . . . , ξ
N−1
0 ) ∼ η

�(N−1)
0 ;

set (ξ̃10 , . . . , ξ̃
N−1
0 )← (ξ10 , . . . , ξ

N−1
0 );

set (ξN0 , ξ̃N0 )← (ζ0, ζ̃0);

for m← 0 to n− 1 do

for i← 1 to N − 1 do

draw (Iim+1, Ĩ
i
m+1) ∼ M({gm(ξℓm)}Nℓ=1, {gm(ξ̃ℓm)}Nℓ=1);

end

draw (INm+1, Ĩ
N
m+1) ∼ M({qm(ξℓm, ζm+1)}Nℓ=1, {qm(ξ̃ℓm, ζ̃m+1)}Nℓ=1);

for i← 1 to N do

draw εm ∼ µm;

set (ξim+1, ξ̃
i
m+1)← (ϕm(ξ

Ii
m+1

m , εm), ϕm(ξ̃
Ĩi
m+1

m , εm));

end

end

draw Jn ∼ cat({1}Nℓ=1);

set J̃n ← Jn;

set (ζn, ζ̃n)← (ξJn
n , ξ̃J̃n

n );

for m← n− 1 to 0 do

set (Jm, J̃m)← (I
Jm+1

m+1 , Ĩ
J̃m+1

m+1 );

set (ζm, ζ̃m)← (ξJm
m , ξ̃J̃m

m );

end

Algorithm 4: Coupled conditional particle filters [3].
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S3. Additional proofs

S3.1 Proof of 2

First, note that, by definitions (3.1) and (3.2),

Hn(x0:n) :=

∫
Sn(x0:n, dyn)µ(x0:n|n)h

=

∫
· · ·
∫ (

1

N

N∑
jn=1

h(xjn
0:n−1|n, x

jn
n )

)

×
n−1∏
m=0

N∏
im+1=1

∫ N∑
jm=1

qm(x
jm
m , x

im+1

m+1)∑N
j′m=1 qm(x

j′m
m , x

im+1

m+1)
δxjm

0:m|m
(dx

im+1

0:m|m+1),

where xi
0:−1|0 = ∅ for all i ∈ J1, NK by convention. We will show that for

every k ∈ J0, nK, Hk,n ≡ Hn, where

Hk,n(x0:n) :=
1

N

N∑
jn=1

· · ·
N∑

jk=1

n−1∏
ℓ=k

qℓ(x
jℓ
ℓ , x

jℓ+1

ℓ+1 )∑N
j′ℓ=1 qℓ(x

j′ℓ
ℓ , x

jℓ+1

ℓ+1 )
ak,n(x0, . . . ,xk−1, x

jk
k , . . . , xjn

n )

with

ak,n(x0, . . . ,xk−1, x
jk
k , . . . , xjn

n )

=

∫ k−1∏
m=0

N∏
im+1=1

N∑
jm=1

qm(x
jm
m , x

im+1

m+1)∑N
j′m=1 qm(x

j′m
m , x

im+1

m+1)
δxjm

0:m|m
(dx

im+1

0:m|m+1)h(x
jk
0:k−1|k, x

jk
k , . . . , xjn

n ).

Since, by convention,
∏n−1

ℓ=n . . . = 1,Hn,n(x0:n) = N−1
∑N

jn=1 an,n(x0, . . . ,xn−1, x
jn
n ),

and we note that Hn ≡ Hn,n. We now show that Hk,n ≡ Hk−1,n for every
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k ∈ J1, nK; for this purpose, note that

ak,n(x0, . . . ,xk−1, x
jk
k , . . . , xjn

n )

=

∫ k−2∏
m=0

N∏
im+1=1

N∑
jm=1

qm(x
jm
m , x

im+1

m+1)∑N
j′m=1 qm(x

j′m
m , x

im+1

m+1)
δxjm

0:m|m
(dx

im+1

0:m|m+1)

×
∫ N∏

ik=1

N∑
jk−1=1

qk−1(x
jk−1

k−1 , x
ik
k )∑N

j′k−1=1 qk−1(x
j′k−1

k−1 , x
ik
k )

δ
x
jk−1
0:k−1|k−1

(dxik
0:k−1|k)h(x

jk
0:k−1|k, x

jk
k , . . . , xjn

n ),

and since x
jk−1

0:k−1|k−1 = (x
jk−1

0:k−2|k−1, x
jk−1

k−1 ), it holds that∫ N∏
ik=1

N∑
jk−1=1

qk−1(x
jk−1

k−1 , x
ik
k )∑N

j′k−1=1 qk−1(x
j′k−1

k−1 , x
ik
k )

δ
x
jk−1
0:k−1|k−1

(dxik
0:k−1|k)h(x

jk
0:k−1|k, x

jk
k , . . . , xjn

n )

=
N∑

jk−1=1

qk−1(x
jk−1

k−1 , x
jk
k )∑N

j′k−1=1 qk−1(x
j′k−1

k−1 , x
jk
k )

h(x
jk−1

0:k−2|k−1, x
jk−1

k−1 , x
jk
k , . . . , xjn

n ).

Therefore, we obtain

ak,n(x0, . . . ,xk−1, x
jk
k , . . . , xjn

n )

=

∫ k−2∏
m=0

N∏
im+1=1

N∑
jm=1

qm(x
jm
m , x

im+1

m+1)∑N
j′m=1 qm(x

j′m
m , x

im+1

m+1)
δxjm

0:m|m
(dx

im+1

0:m|m+1)

×
N∑

jk−1=1

qk−1(x
jk−1

k−1 , x
jk
k )∑N

j′k−1=1 qk−1(x
j′k−1

k−1 , x
jk
k )

h(x
jk−1

0:k−2|k−1, x
jk−1

k−1 , x
jk
k , . . . , xjn

n ).

Now, changing the order of summation with respect to jk−1 and integration

on the right hand side of the previous display yields

ak,n(x0, . . . ,xk−1, x
jk
k , . . . , xjn

n )

=
N∑

jk−1=1

qk−1(x
jk−1

k−1 , x
jk
k )∑N

j′k−1=1 qk−1(x
j′k−1

k−1 , x
jk
k )

ak−1,n(x0, . . . ,xk−2, x
jk−1

k−1 , . . . , x
jn
n ).
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Thus,

Hk,n(x0:n)

=
1

N

N∑
jn=1

· · ·
N∑

jk=1

n−1∏
ℓ=k

qℓ(x
jℓ
ℓ , x

jℓ+1

ℓ+1 )∑N
j′ℓ=1 qℓ(x

j′ℓ
ℓ , x

jℓ+1

ℓ+1 )

×
N∑

jk−1=1

qk−1(x
jk−1

k−1 , x
jk
k )∑N

j′k−1=1 qk−1(x
j′k−1

k−1 , x
jk
k )

ak−1,n(x0, . . . ,xk−2, x
jk−1

k−1 , . . . , x
jn
n )

=
1

N

N∑
jn=1

· · ·
N∑

jk−1=1

n−1∏
ℓ=k−1

qℓ(x
jℓ
ℓ , x

jℓ+1

ℓ+1 )∑N
j′ℓ=1 qℓ(x

j′ℓ
ℓ , x

jℓ+1

ℓ+1 )
ak−1,n(x0, . . . ,xk−2, x

jk−1

k−1 , . . . , x
jn
n )

= Hk−1,n(x0:n),

which establishes the recursion. Therefore, Hn ≡ H0,n and we may now

conclude the proof by noting that Bnh ≡ H0,n.

S3.2 Proof of 5

In order to establish 5 we will prove the following more general result, of

which 5 is a direct consequence.

Proposition 1. For every n ∈ N and M ∈ N∗ there exist cn > 0 and

dn > 0 such that for every N ∈ N∗, z0:n ∈ X0:n, (fn, f̃n) ∈ F(Xn)
2, and
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ε > 0,

∫
CnSn(z0:n, dbn)

×1

{∣∣∣∣∣ 1N
N∑
i=1

{binfn(xi
n|n) + f̃n(x

i
n|n)} − ηn⟨z0:n⟩(fnBn⟨z0:n−1⟩hn + f̃n)

∣∣∣∣∣ ≥ ε

}

≤ cn exp

(
−dnNε2

2κ2
n

)
,

where

κn := ∥fn∥∞
n−1∑
m=0

∥h̃m∥∞ + ∥f̃n∥∞. (S3.1)

To prove 1 we need the following technical lemma.

Lemma 1. For every n ∈ N, (fn+1, f̃n+1) ∈ F(Xn+1)
2, z0:n+1 ∈ X0:n+1, and

N ∈ N∗,

γn+1⟨z0:n+1⟩(fn+1Bn+1⟨z0:n⟩hn+1 + f̃n+1)

=

(
1− 1

N

)
γn⟨z0:n⟩{Qnfn+1Bn⟨z0:n−1⟩hn +Qn(h̃nfn+1 + f̃n+1)}

+
1

N
γn⟨z0:n⟩gn

(
fn+1(zn+1)Bn+1⟨z0:n⟩hn+1(zn+1) + f̃n+1(zn+1)

)
.

Proof. Since 2 holds also for the Feynman–Kac model with a frozen path,

we obtain

γn+1⟨z0:n+1⟩(fn+1Bn+1⟨z0:n⟩hn+1 + f̃n+1)

= γn⟨z0:n⟩{Qn⟨zn+1⟩fn+1Bn⟨z0:n⟩hn +Qn⟨zn+1⟩(h̃nfn+1 + f̃n+1)}.
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Thus, the proof is concluded by noting that for every xn ∈ Xn and h ∈

F(Xn:n+1),

Qn⟨zn+1⟩h(xn) =

(
1− 1

N

)
Qnh(xn) +

1

N
g(xn)h(xn, zn+1).

Finally, before proceeding to the proof of 1, we introduce the law of the

PARIS evolving conditionally on a frozen path z = {zm}m∈N. Define, for

m ∈ N and zm+1 ∈ Xm+1,

Pm⟨zm+1⟩ : Ym×Ym+1 ∋ (ym, A) 7→
∫
Mm⟨zm+1⟩(xm|m, dxm+1)Sm(ym,xm+1, A).

For any given initial distribution ψ0 ∈ M1(Y0), let PP ,z
ψ0

be the distribution

of the canonical Markov chain induced by the Markov kernels {Pm⟨zm+1⟩}m∈N

and the initial distribution ψ0. By abuse of notation we write PP ,z
η0

instead

of PP ,z
ψ0[η0⟨z0⟩]

, where the extension ψ0[η0] is defined in 6.3.

Proof of 1. We proceed by forward induction over n. Let the σ-fields F̃n

and Fn be defined as in the proof of 3, but for the conditional PARIS dual

process. Then, under the law PP ,z
η0

, reusing (6.11),

EP ,z
η0

[
β1
nfn(ξ

1
n) + f̃n(ξ

1
n) | F̃n−1

]
= EP ,z

η0

[
EP ,z
η0

[
β1
n | Fn

]
fn(ξ

1
n) + f̃n(ξ

1
n) | F̃n−1

]
= EP ,z

η0

[
fn(ξ

1
n)

N∑
ℓ=1

qn−1(ξ
ℓ
n−1, ξ

1
n)∑N

ℓ′=1 qn−1(ξℓ
′

n−1, ξ
1
n)

(
βℓ
n−1 + h̃n−1(ξ

ℓ
n−1, ξ

1
n)
)
+ f̃n(ξ

1
n) | F̃n−1

]
.
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Using (2.6), we get

EP ,z
η0

[
β1
nfn(ξ

1
n) + f̃n(ξ

1
n) | F̃n−1

]
=

(
1− 1

N

)∑N
ℓ=1{βℓ

n−1Qn−1fn(ξ
ℓ
n−1) +Qn−1(h̃n−1fn + f̃n)(ξ

ℓ
n−1)}∑N

ℓ′=1 gn−1(ξℓ
′

n−1)

+
1

N

(
fn(zn)

N∑
ℓ=1

qn−1(ξ
ℓ
n−1, zn)∑N

ℓ′=1 qn−1(ξℓ
′

n−1, zn)

(
βℓ
n−1 + h̃n(ξ

ℓ
n−1, zn)

)
+ f̃n(zn)

)
.

(S3.2)

In order to apply the induction hypothesis to each term on the right-hand

side of the previous identity, note that

Bn⟨z0:n−1⟩hn(zn) =
ηn−1⟨z0:n−1⟩[qn−1(·, zn){Bn−1⟨z0:n−2⟩hn−1(·) + h̃n−1(·, zn)}]

ηn−1⟨z0:n−1⟩[qn−1(·, zn)]
.

Therefore, using 1 and noting that γn⟨z0:n⟩1Xn/γn−1⟨z0:n⟩1Xn−1 = ηn−1⟨z0:n−1⟩gn−1

yields

ηn⟨z0:n⟩(fnBn⟨z0:n−1⟩hn + f̃n) =
1

N

(
fn(zn)Bn⟨z0:n−1⟩hn(zn) + f̃n(zn)

)
+

(
1− 1

N

)
ηn−1⟨z0:n−1⟩{Qn−1fnBn−1⟨z0:n−2⟩hn +Qn−1(h̃n−1fn + f̃n)}

ηn−1⟨z0:n−1⟩gn−1

.

(S3.3)
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By combining (S3.2) with (S3.3), we decompose the error according to

1

N

N∑
i=1

{βi
nfn(ξ

i
n|n) + f̃n(ξ

i
n|n)} − ηn⟨z0:n⟩(fnBn⟨z0:n−1⟩hn + f̃n)

=
1

N

N∑
i=1

{βi
nfn(ξ

i
n|n) + f̃n(ξ

i
n|n)} − EP ,z

η0

[
β1
nfn(ξ

1
n) + f̃n(ξ

1
n) | F̃n−1

]
+ EP ,z

η0

[
β1
nfn(ξ

1
n) + f̃n(ξ

1
n) | F̃n−1

]
− ηn⟨z0:n⟩(fnBn⟨z0:n−1⟩hn + f̃n)

= I
(1)
N +

(
1− 1

N

)
I
(2)
N +

1

N
I
(3)
N , (S3.4)

where

I
(1)
N :=

1

N

N∑
i=1

{βi
nfn(ξ

i
n) + f̃n(ξ

i
n)} − EP ,z

η0

[
β1
nfn(ξ

1
n) + f̃n(ξ

1
n) | F̃n−1

]
,

I
(2)
N :=

∑N
ℓ=1{βℓ

n−1Qn−1fn(ξ
ℓ
n−1) +Qn−1(h̃n−1fn + f̃n)(ξ

ℓ
n−1)}∑N

ℓ′=1 gn−1(ξℓ
′

n−1)

− ηn−1⟨z0:n−1⟩{Qn−1fnBn⟨z0:n−1⟩hn +Qn−1(h̃n−1fn + f̃n)}
ηn−1⟨z0:n−1⟩gn−1

,

(S3.5)

and

I
(3)
N := fn(zn)

N∑
ℓ=1

qn−1(ξ
ℓ
n−1, zn)∑N

ℓ′=1 qn−1(ξℓ
′

n−1, zn)

(
βℓ
n−1 + h̃n−1(ξ

ℓ
n−1, zn)

)
− fn(zn)

ηn−1⟨z0:n−1⟩[qn−1(·, zn){Bn−1⟨z0:n−2⟩hn−1(·) + h̃n−1(·, zn)}]
ηn−1⟨z0:n−1⟩[qn−1(·, zn)]

.

(S3.6)

The proof is now completed by treating the terms I
(1)
N , I

(2)
N , and I

(3)
N sep-

arately, using Hoeffding’s inequality and its generalisation in [2, Lemma 4].
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Choose ε > 0; then, by Hoeffding’s inequality,

PP ,z
η0

(
| I(1)N | ≥ ε

)
≤ 2 exp

(
−1

2

ε2

κ2
n

N

)
. (S3.7)

To treat I
(2)
N , we apply the induction hypothesis to the numerator and de-

nominator, each normalized by 1/N , yielding, since ∥Qn−1h∥∞ ≤ τ̄n−1∥h∥∞

for all h ∈ F(Xn−1 � Xn),

PP ,z
η0

(∣∣∣∣∣ 1N
N∑
ℓ=1

{βℓ
n−1Qn−1fn(ξ

ℓ
n−1) +Qn−1(h̃n−1fn + f̃n)(ξ

ℓ
n−1)}

−ηn−1⟨z0:n−1⟩{Qn−1fnBn⟨z0:n−1⟩hn +Qn−1(h̃n−1fn + f̃n)}

∣∣∣∣∣ ≥ ε

)

≤ cn−1 exp

(
−dn−1

ε2

τ̄ 2n−1κ
2
n

N

)
and

PP ,z
η0

(∣∣∣∣∣ 1N
N∑
ℓ=1

gn−1(ξ
ℓ
n−1)− ηn−1⟨z0:n−1⟩gn−1

∣∣∣∣∣ ≥ ε

)
≤ cn−1 exp

(
−dn−1

ε2

τ̄ 2n−1

N

)
.

Combining the previous two bounds with the generalised Hoeffding inequal-

ity in [2, Lemma 4] yields, using also the bounds∑N
ℓ=1{βℓ

n−1Qn−1fn(ξ
ℓ
n−1) +Qn−1(h̃n−1fn + f̃n)(ξ

ℓ
n−1)}∑N

ℓ′=1 gn−1(ξℓ
′

n−1)
≤ κn

and ηn−1⟨z0:n−1⟩gn−1 ≥
¯
τn−1, the inequality

PP ,z
η0

(
| I(2)N | ≥ ε

)
≤ cn−1 exp

(
−dn−1¯

τ 2n−1ε
2

τ̄ 2n−1κ
2
n

N

)
. (S3.8)

The last term I
(3)
N is treated along similar lines; indeed, by the induction
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hypothesis, since ∥qn−1∥∞ ≤ τ̄n−1σ̄n−1,

PP ,z
η0

(∣∣∣∣∣ 1N
N∑
ℓ=1

qn−1(ξ
ℓ
n−1, zn)

(
βℓ
n−1 + h̃n−1(ξ

ℓ
n−1, zn)

)
− ηn−1⟨z0:n−1⟩[qn−1(·, zn){Bn−1⟨z0:n−1⟩hn−1(·) + h̃n−1(·, zn)}]

∣∣∣∣∣ ≥ ε

)

≤ cn−1 exp

−dn−1

(
ε

τ̄n−1σ̄n−1

∑n−1
m=0 ∥h̃m∥∞

)2

N


and

PP ,z
η0

(∣∣∣∣∣ 1N
N∑
ℓ=1

qn−1(ξ
ℓ
n−1, zn)− ηn−1⟨z0:n−1⟩[qn−1(·, zn)]

∣∣∣∣∣ ≥ ε

)

≤ cn−1 exp

(
−dn−1

(
ε

τ̄n−1σ̄n−1

)2

N

)
.

Thus, since

N∑
ℓ=1

qn−1(ξ
ℓ
n−1, zn)∑N

ℓ′=1 qn−1(ξℓ
′

n−1, zn)

(
βℓ
n−1 + h̃n−1(ξ

ℓ
n−1, zn)

)
≤

n−1∑
m=0

∥h̃m∥∞

and ηn−1⟨z0:n−1⟩[qn−1(·, zn)] ≥
¯
τn−1, the generalised Hoeffding inequality

provides

PP ,z
η0

(
| I(3)N | ≥ ε

)
≤ cn−1 exp

−dn−1

(
¯
τn−1ε

2τ̄n−1σ̄n−1∥fn∥∞
∑n−1

m=0 ∥h̃m∥∞

)2

N

 .

(S3.9)

Finally, combining the bounds (S3.7–S3.9) completes the proof.
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S3.3 Proof of 3

The statement of 3 is implied by the following more general result, which

we will prove below.

Proposition 2. For every n ∈ N, M ∈ N∗, N ∈ N∗, z0:n ∈ X0:n, (fn, f̃n) ∈

F(Xn)
2, and p ≥ 2, it holds that

∫
CnSn(z0:n, dbn)

∣∣∣∣∣ 1N
N∑
i=1

{binfn(xi
n|n) + f̃n(x

i
n|n)} − ηn⟨z0:n⟩(fnBn⟨z0:n−1⟩hn + f̃n)

∣∣∣∣∣
p

≤ cn(p/dn)
p/2N−p/2κp

n,

where cn > 0, dn > 0 and κn are defined in 1 and (S3.1), respectively.

Before proving 2, we establish the following result.

Lemma 2. Let X be an Rd-valued random variable, defined on some prob-

ability space (Ω,F ,P), satisfying P(|X| ≥ t) ≤ c exp(−t2/(2σ2)) for every

t ≥ 0 and some c > 0 and σ > 0. Then for every p ≥ 2 it holds that

E[|X|p] ≤ cpp/2σp.

Proof. Using Fubini’s theorem and the change of variable formula,

E [|X|p] =
∫ ∞

0

ptp−1P(|X| ≥ t) dt = cp2p/2−1σpΓ(p/2),

where Γ is the Gamma function. It remains to apply the bound Γ(p/2) ≤

(p/2)p/2−1 (see [1]), which holds for p ≥ 2 by [2, Theorem 1.5].
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Proof of 2. By combining 1 and 2 we obtain

N

∫
CnSn(z0:n, dbn)

∣∣∣∣ 1N ∑N

i=1
{binfn(xi

n|n) + f̃n(x
i
n|n)} − ηn⟨z0:n⟩(fnBn⟨z0:n−1⟩hn + f̃n)

∣∣∣∣2
≤ cn(p/dn)

p/2N−p/2

(
∥fn∥∞

n−1∑
m=0

∥h̃m∥∞ + ∥f̃n∥∞

)p

,

which was to be established.

S3.4 Proof of 4

Like previously, we establish 4 via a more general result, namely the follow-

ing.

Proposition 3. For every n ∈ N, the exists c̄biasn < ∞ such that for every

M ∈ N∗, N ∈ N∗, z0:n ∈ X0:n, and (fn, f̃n) ∈ F(Xn)
2,∣∣∣∣∣

∫
CnSn(z0:n, dbn)

1

N

N∑
i=1

{binfn(xi
n|n) + f̃n(x

i
n|n)} − ηn⟨z0:n⟩(fnBn⟨z0:n−1⟩hn + f̃n)

∣∣∣∣∣
≤ c̄biasn κnN

−1,

where κn is defined in (S3.1).

We preface the proof of 3 by a technical lemma providing a bound on

the bias of ratios of random variables.

Lemma 3. Let α and β be (possibly dependent) random variables defined on

some probability space (Ω,F ,P) and such that E[α2] <∞ and E[β2] <∞.
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Moreover, assume that there exist c > 0 and d > 0 such that |α/β| ≤ c,

P-a.s., |a/b| ≤ c, E[(α− a)2] ≤ c2d2, and E[(β− b)2] ≤ d2. Then

|E[α/β]− a/b| ≤ 2c(d/b)2 + c|E[β− b]|/|b|+ |E[α− a]|/|b|. (S3.10)

Proof. Using the identity

E[α/β]−a/b = E[(α/β)(b−β)2]/b2+E[(α−a)(b−β)]/b2+aE[b−β]/b2+E[α−a]/b,

the claim is established by applying the Cauchy–Schwarz inequality and the

assumptions of the lemma according to

|E[α/β]− a/b|

≤ cE[(β− b)2]/b2 + {E[(α− a)2]E[(β− b)2]}1/2/b2 + |a||E[β− b]|/b2 + |E[α− a]|/b2

≤ 2c(d/b)2 + c|E[β− b]|/|b|+ |E[α− a]|/|b|.

Proof of 4. We proceed by induction and assume that the claim holds true

for n−1. Reusing the error decomposition (S3.4), it is enough to bound the

expectations of the terms I
(2)
N and I

(3)
N given in (S3.5) and (S3.6), respectively

(since EP ,z
η0

[I
(1)
N ] = 0). This will be done using the induction hypothesis, 3,

and 2. More precisely, to bound the expectation of I
(2)
N , we use 3 with
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α← αn, β← βn, a← an, and b← bn, where

αn :=
1

N

N∑
ℓ=1

{βℓ
n−1Qn−1fn(ξ

ℓ
n−1) +Qn−1(h̃n−1fn + f̃n)(ξ

ℓ
n−1)}, βn :=

1

N

N∑
ℓ=1

gn−1(ξ
ℓ
n−1),

an := ηn−1⟨z0:n−1⟩{Qn−1fnBn⟨z0:n−1⟩hn +Qn−1(h̃n−1fn + f̃n)}, bn := ηn−1⟨z0:n−1⟩gn−1.

For this purpose, note that |αn/βn| ≤ κn and |an/bn| ≤ κn, where κn is

defined in (S3.1). On the other hand, using 2 (applied with p = 2), we

obtain

EP ,z
η0

[(αn − an)
2] ≤ d2nκ

2
n and EP ,z

η0
[(βn − bn)

2] ≤ d2n,

where d2n := cnτ̄
2
n−1/(dnN). Using the induction assumption, we get

|EP ,z
η0

[αn]− an| ≤ c̄biasn−1N
−1τ̄n−1κn and |EP ,z

η0
[βn]− bn| ≤ c̄biasn−1N

−1τ̄n−1.

Hence, the conditions of 3 are satisfied and we deduce that

|EP ,z
η0

[I
(2)
N ]| = |EP ,z

η0
[αn/βn]− an/bn| ≤ 2κn

cn
dnN

τ̄ 2n−1

¯
τ 2n−1

+ 2c̄biasn−1κn
τ̄n−1

¯
τn−1N

.

The bound on |EP ,z
η0

[I
(2)
N ]| is obtained along the same lines.

S3.5 Proof of 6

We first consider the bias, which can be bounded according to

∣∣Eξ[Π(k0,k),N(f)]− η0:nhn

∣∣ ≤ (k − k0)
−1

k∑
ℓ=k0+1

|Eξµ(βn[ℓ])(id)− η0:nhn|

≤ (k − k0)
−1N−1cbiasn

(
n−1∑
m=0

∥h̃m∥∞

)
k∑

ℓ=k0+1

κℓ
N,n,
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from which the bound (4.7) follows immediately.

We turn to the MSE. Using the decomposition

Eξ[(Π(k0,k),N(f)− η0:nhn)
2] ≤ (k − k0)

−2

{
k∑

ℓ=k0+1

Eξ[(µ(βn[ℓ])(id)− η0:nhn)
2]

+ 2
k∑

ℓ=k0+1

k∑
j=ℓ+1

Eξ[(µ(βn[ℓ])(id)− η0:nhn)(µ(βn[j])(id)− η0:nhn)]

}
,

the MSE bound in 2 implies that

k∑
ℓ=k0+1

Eξ[(µ(βn[ℓ])(id)− η0:nhn)
2] ≤ cmse

n

(
n−1∑
m=0

∥h̃m∥∞

)2

N−1(k − k0).

Moreover, using the covariance bound in 2, we deduce that

k∑
ℓ=k0+1

k∑
j=ℓ+1

Eξ[(µ(βn[ℓ])(id)− η0:nhn)(µ(βn[j])(id)− η0:nhn)]

≤ ccovn

(
n−1∑
m=0

∥h̃m∥∞

)2

N−3/2

(
k∑

ℓ=k0+1

k∑
j=ℓ+1

κ
(j−ℓ)
N,n

)
.

Thus, the proof is concluded by noting that
∑k

ℓ=k0+1

∑k
j=ℓ+1 κ

(j−ℓ)
N,n ≤ (k −

k0)/(1− κN,n).
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