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Supplementary Material

S1. Additional numerical results

S1.1 LGSSM

and [2| display the matrices A, B, RRT, and SST used for all experiments
in the LGSSM model context. In we display boxplots of bias esti-
mates, where each estimate is obtained by averaging 10* independent runs of
the corresponding algorithm and each box is based on 102 replications of this
bias estimator. The PARIS is compared to the PPG for different algorithmic
configurations (N, k, ko) and for different computational budgets C' = kN
of sizes 103 , 2.5 x 103 , and 5 x 10° . Each experiment is carried

through for each of the different designs ky = [27'k], ko = [(3/4)C/N|,
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and ko = k£ — 1 of the burn-in.

/ 1 2 3 4 5 / 1 2 3 4 5

1| -0.4193 | 0.00182 | 0.00183 | 0.00184 0.00185 1] -0.2078 | 0.27752 | 0.27753 | 0.27754 0.27755
2| 02145 | 0.63952 | 0.63953 | 0.63954 0.63955 2| 0.0984 | 0.45172 | 0.45173 | 0.45174 | 0.45175
3| 0.3449 | 0.60202 | 0.60203 | 0.60204 0.60205 3| 0.7050 | -0.04502 | -0.04503 | -0.04504 | -0.04505
4| 0.2572 | -0.26932 | -0.26933 | -0.26934 | -0.26935 4| 0.1684 | -0.15152 | -0.15153 | -0.15154 | -0.15155
51 0.7505 | -0.36332 | -0.36333 | -0.36334 | -0.36335 5| -0.0320 | 0.50612 | 0.50613 | 0.50614 | 0.50615

Table 1: The A (left) and B (right) matrices in the LGSSM.

/ 1 2 3 4 5 / 1 2 3 1 5

1| 0.0026 | -0.00062 | -0.00063 | -0.00064 | -0.00065 1| 0.0157 | -0.00072 | -0.00073 | -0.00074 | -0.00075
2 | -0.0004 | 0.00122 | 0.00123 | 0.00124 | 0.00125 2| 0.0014 | 0.00072 | 0.00073 | 0.00074 | 0.00075
3 | -0.0001 | -0.00062 | -0.00063 | -0.00064 | -0.00065 3| -0.0027 | 0.00592 | 0.00593 | 0.00594 | 0.00595
4| 0.0007 | 0.00012 | 0.00013 | 0.00014 0.00015 4| 0.0064 | -0.01052 | -0.01053 | -0.01054 | -0.01055
5| -0.0006 | 0.00282 | 0.00283 | 0.00284 | 0.00285 5 | -0.0007 | 0.02072 | 0.02073 | 0.02074 | 0.02075

Table 2: The covariance matrices RRT (left) and SST (right) for the state and measure-

ment noises, respectively, in the LGSSM.

S1.2 Stochastic volatility

In this section we repeat the same experiments in in the context of
the StoVol model described in 5} [AH6 display boxplots of bias estimates
for the PARIS and the PPG for different algorithmic configurations (IV, k, ko)
and different computational budgets C' = kN of sizes 10> ([{), 5 x 10% (5),
and 10 (6). The bias of each algorithm is estimated by averaging 103
independent runs of the same, and each box is based on 10? independent
replications of this bias estimator. Again, in each plot, the PARIS and PPG

share the same computational budget (regardless configuration of the PPG).
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N=1000 N=1000 N=1000

(a) ko = [27'C/N]| (b) ko = [(3/4)C/N| (c) ko =k — 1

Figure 1: PARIS and PPG outputs for the LGSSM with C' = 103 and different designs of

the burn-in kq.

Choice of (N,k, ko). Designing the configuration (N, k, k) is challenging,
since the upper bound sy, on the mixing rate is known to be conservative.
As clear from [H6| the best configuration also depends on C'; indeed, we see
that for a smaller budget it is better to let the particle sample size N be
large. Nevertheless, for more generous budgets it seems to be better to use
a large number k of iterations at the expense of N.

Concerning the burn-in parameter kg, the choice depends mainly on
the bias—variance trade-off. In applications where minimising the bias is
important one would choose ky = k& — 1, which gives the smallest possible
bias. Otherwise, a trade-off that provides an improvement in bias at the
cost of an increase in MSE over the PARIS by only a factor of 2 is to choose

ko = | k/2]; recall the discussion in
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PaRIS N=50 N=100 N=250 N=500 PaRIS N=50 N=100 N=250 N=500 PaRIS N=50 N=100 N=250 N=500
N=2500 N=2500 N=2500

(a) ko = [27'C/N]| (b) ko = [(3/4)C/N| (c) ko =k — 1

Figure 2: PARIS and PPG outputs for the LGSSM with C' = 2.5x 102 and different designs

of the burn-in k.

Comparison with the Rhee—Glynn-type estimator of [3]

We now compare the proposed PPG estimator with the unbiased Rhee-
Glynn-type smoothing estimator Hy, ., n defined in |3 Eq. 2|, where the
parameter kg is the burn-in phase length, k£ the minimum number of Gibbs
iterations, and /N the number of particles used in the coupled conditional
particle filter. This estimator is based on the coupled conditional particle
filter with ancestor sampling proposed in [3]; see {4 for details. Since the
number of particles used in the algorithm is itself a random variable, we first
perform 3 x 10? independent runs of the same and report the average meet-
ing time (i.e., number of iterations of 4| until the conditional paths (., and
¢4, become identical) for three different choices of the hyperparameters in

Bl We deduce from [3 that the average total number of particles generated
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PaRIS N=50 N=100 N=250 N=500 PaRIS N=50 N=100 N=250 N=500 PaRIS N=50 N=100 N=250 N=500
N=5000 N=5000 N=5000

(a) ko = [27'C/N]| (b) ko = [(3/4)C/N| (c) ko =k — 1

Figure 3: PARIS and PPG outputs for the LGSSM with C' = 5 x 10 and different designs

of the burn-in k.

N ko k Meeting time
100 5 10 30.4

250 2 4 12.6

500 1 2 7.1

Table 3: Coupled conditional particle filter meeting times for three different configura-

tions with Nk = 103.

is about 3 x 10%. Therefore, we compare the Rhee-Glynn estimator in-
duced by the coupled conditional particle filter with the PPG estimator with
(N, ko, k) = (10, 150, 300). [7| shows histograms of estimates produced using
the Rhee-Glynn-type procedure, for the three different configurations, along
with histograms of the estimates produced by the PPG. Each histogram is
based on 3 x 10? independent replications. We find that the variance and
empirical bias of the Rhee—Glynn-type estimator is about 10 and 20 times

larger, respectively, than for the PPG for the same computational effort.
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N=100 N=100 N=100

(a) ko = [27'C/N]| (b) ko = [(3/4)C/N| (c) ko =k — 1

Figure 4: PARIS and PPG outputs for the stovol model with C' = 10? and different designs

on the burn-in k.

Another way of obtaining Rhee—Glynn-type smoothing estimator would
be to consider the coupling of the conditional backward sampling particle
filter, as proposed in [5]. In the case of the bootstrap particle filter, the con-
ditional particle filter with backward sampling is probabilistically equivalent
to the conditional particle filter with ancestor sampling. Furthermore, [3]
Section 7] also show that for n = 103, both the conditional particle filter
with backward sampling and the conditional particle filter with ancestor
sampling have similar performance. Thus, we expect the results in this

section to translate to the estimators proposed in [5].
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Figure 5: PARIS and PPG outputs for the stovol model with C' = 5 x 102 and different

designs of the burn-in k.
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Figure 6: PARIS and PPG outputs for the stovol model with C' = 10% and different designs

of the burn-in kg.
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Rhee-Glynn (AS): Rhee-Glynn (AS): 175 Rhee-Glynn (AS):
350 (61.4 + 7.6) 200 (24.0 + 4.6) (14.7 + 4.4)
PPG: PPG: 150 PPG:
300 (0.2 £0.5) (0.2 £0.5) (0.2 +£0.5)
250 150 125
200 100
100
150 75
100 50
50
50 25
—-400 -200 0 200 400 —400 -200 0 200 400 0 —-400 -200 200 400

(a) (N, k) = (100, 10)

Figure 7: Histograms of estimates produced using the Rhee-Glynn-type smoothing es-
timator of [3] for three different configurations and the PPG estimator with (N, ko, k) =

(10,150, 300). Each box is based on 3000 independent replications. The plot also pro-

(b) (N, k) = (250,4)

() (N, k) = (500,2)

vides the corresponding 95% coverage asymptotic confidence intervals.
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S2. Algorithms

The following section provides pseudocode for the algorithms discussed in
3] namely: the original PARIS algorithm (L)) proposed in [7], the conditional
PARIS update ([2)), and the PPG . In addition, we provide a pseudocode
for the coupled conditional conditional particle filter with ancestor sampling
, being the key ingredient of the unbiased Rhee-Glynn-type estimator
proposed in [3] against which the PPG is benchmarked in Note that
the conditional PARIS update described in [2] differs somewhat from that
described in [3|in the way the underlying conditional dual process {£,, } men
is propagated; more precisely, in [2 each conditional dual process update
&1 ~ M (Crg1) (&, ), where the value of (41 is inserted into a ran-
domly chosen position in &,,,, (whereas the remaining elements of £,
are sampled independently from ®,,(u(€,,))) is replaced by deterministic
assignment of (1 to &Y 41+ Of course, this change has no impact as long
as we are interested in integrating functions that are permutation invari-
ant with respect to the produced many-body systems, which is the case
throughout our work. Still, as this derandomization technique simplifies
somewhat the implementation of the PPG, we have chosen to include it in

our pseudocode.
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Data: {(,, 85)}i,

Result: {(¢ 1,8, 1)},

for i <1 to N do

draw I}, 1 ~ cat({gn (&) }210);
draw & | ~ Mn(fﬁ“; );

for j < 1 to M do

‘ draw J,(fﬁl) ~ cat({gn(&hs Eb) ly)

end

(9 709

; M n 7 n i
set Bhi1 < 37 > i1 (5n T ha (6 ,§fl+1)>§

end
Algorithm 1: One update of the PARIS.

Coupling algorithms. provides a more detailed description of (the predic-
tive variant of ) the coupled conditional particle filter proposed in [3, Algo-
rithm 1], and we focus here on the version of this algorithm where the iter-
atively produced particle paths underlying the resulting estimator are gen-
erated by means of ancestor sampling [6]. If {w,} , and {w,}), are possi-
bly unnormalized event probabilities, we denote by M({we}2,, {w,}2 ) the
mazimal coupling between the distributions cat({w}7’ ;) and cat({w,}X,).
In our implementations, we used the maximum coupling given in [4, Al-
gorithm 2]. In order to couple two conditional particle filters, we assume,
following [3, Algorithm 1], that for every m € N we are able to simu-

late a random variable ¢,,, defined on some measurable space (S;,,Sn)
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Data: v, (41
Result: v,,41

fori<~1to N—-1do

draw Ifn-s-l ~ Cat({gm(fﬁl\m)}é\fd)?

Mm( I:ﬁ+1 ),

mlm >’

draw &

7
m-+1|m+1 ~

end

set §ﬁ+1|m+1 — Cmtt;
for i+ 1to N do
for j < 1to M do
draw I ~ cat({gm (€L s €6 apmas) o)
end

| Lo [T g
i m m % .
set 6m+1 < M Zj:l m + hm(gm\m ’ 7n+1\m+1) ’

(i,1)

. J .

- (3 m+1 7 .
set 50:m+1|7ﬂ+1 (go:'m\m’ m+l|m+1)7

end

set Un+1 — ((gé:n+1|n+l7 ﬂ717,+1)7 AR} (5(])\{“+1‘n+17 57]7Y+1))7
Algorithm 2: One conditional PARIS update, expressed in a short form as “v,,41 <

CondPaRIS(v,, (1)

and distributed according g, € M;(S,,), such that there exists some mea-
surable function ¢ on (X,, X S;, X ® S;,) such that for every x,, € X,,,

pm©®, (T, ) (the pushforward of p,, through @, (2., -)) equals M, (xp,, -).
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Data: (o:n

Result: v, ().,

draw (&5,0; - - ,gé\‘f(;l) ~ D),
set 5(])\(0 « Cos

set By < (0,...,0);

for m«< 0ton—1do

runt (63,4 1jmr1s Brst)s s (€N ajmyrs Bmr1))
CondPaRIS((E}, s Bh): - -+ (€ s BN Cmt1);
end
set v, < ((fémaﬁ}z)w'w( ﬁna fy)),
draw J ~ cat({1}}L,);

set ¢f., < 'ff)]:n|n?
Algorithm 3: One iteration of the Parisian particle Gibbs (PPG)
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Data: (o.n, Com
Result: ¢, ..
set (&5,...,6 1) ~ 77(?(]\[_1)5
set (&1, .. &N (&b, &)
set (56\7,56\7) — (CO’CNO)E
for m < 0ton—1do
fori<1to N—1do
draw (I, 1, Liy) ~ M{gm (650151 {gm (€501, )

end

draw (Iﬁ+1:IrJr\Z+1) ~ M({Qm(ﬁfnaCmH)}éV:p {qm(éfn,imﬂ)}éil);

for i+ 1 to N do
draw &, ~ fm;

i i L1 i .

set (§i1>&mat) < (@m(Em™ em), dm(&m ™ em));

end

end

draw J,, ~ cat({1}Y));

set Jy ¢ J;

set (Cn»gn) — ( 7{",5}{")?

for m<n—1to 0do
set (o, Jpm) (I,{Lﬁlji;ll)’
set (Cm,(fm) — ( 7{{",57%"%

end

Algorithm 4: Coupled conditional particle filters [3].
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S3. Additional proofs

S3.1 Proof of 2

First, note that, by definitions (3.1]) and (3.2)),

H,(xo.0,) = /Sn(mO:nadyn) ,U(mO:n\n)h

/ /( ]—1 xé?n—ln"xin))

im+1

LI 3 et i

Jm
m=01iy,4+1=1 Jm=1 I —1 qm(«rm 7xm+1

where 936:71‘0 = () for all i € [1, N] by convention. We will show that for

every k € [0,n], Hi, = H,,, where

Je Jz+1>

1 al al qe (xé =xé+1
Hk,n(wO:n) = N Z e Z

N
Jn=1  ji=1¢=k Z] =1 qﬂ(% »xﬁf)

Jk j
apn(To, ... Tp—1, 2, ..., T0)

with

(o, ..o T, T, .., )

im+1>

k—1 N .
merl Pt . . )

H Z 6 jm dﬂj + h ‘/L--]’.C x]k o $]n ]

/m 0 Z] =1 Qm(xm ) ZmH) mé"”'"‘( Om‘m+1> ( 0:k—1[k> "k 7" n )

im+1=1 jm=1 m+1

Since, by convention, Hg;i co.=1,Hyp(xoy) = N7? Z;.\izl Ann(Toy - -y Ty, T,

and we note that H,, = H,,,. We now show that Hj, = Hj_,, for every
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k € [[1,n]; for this purpose, note that

Jk j
apn(xos - .., Tp—1, 277, ..., ")

N im+1)

k—2 N ;
J .
— H H Qm($nTa Lrn+1 5 (dxzm_,_l )
= E 7 im+1) x(f)%lm 0:m|m+1

N Jm
M0 i1 gt 2ty =1 G (T s Ty

Jk—1

. Qo1 (2 $Zk) , , .
(et . ,
X/ H Z —0 i1 (dngkfuk) h(xg)]?k—l\k?z?ck7 T,

N Tkt ik To:k—1|k—1
ip=1jk-1=1 Zjl’671:1 Y

: Jk—1 (k1 Jk—1\ :
and since Tk 1jb1 = ("EO:k72|k717 x;' ), it holds that

N N Jk—1 ik
Qr—1(zy ), ) ik j j j
/ II > N g O (dag ) P e 35 )
- ) - k) Tok—1lk—1
=1 jg—1=1 Zj]’c_lzl qk‘—l(‘rk—l » g ) l
N Jk=1 ,.Jk
Qr—1(2y ) 2y) k-1 Je=1 , Jk n
— _ h(z:" A A A
~ i o MWFogpk—1o Tp—1 Tk oo+ T
Jr—1=1 Zj,’ﬁl:l q’f—l(‘rk—l » U )

Therefore, we obtain

agn(xo, - ., Tp—1, xi’“, T
im+1)

k—2 N N q (,I‘Jm T A
o m\+m »““m+1 ) im
_/H H Z im+1>6a:f)’;ln|m<dx0:£\1m+1>

N Jrn
m=0imi1=1 jm=1 Zj;nﬂ G (T3, » L1

N Jk— j
« Z Qk71($kk—11>x?ck) h(xjk—l Jr—1

Jk Jn
N [ 0:k—2lk—1" Tk—1>Tk >+ Ty ).
Jrk—1=1 Z]’,’671:1 Qkfl(xk—l » T, )
Now, changing the order of summation with respect to j;_; and integration

on the right hand side of the previous display yields

Jk J
apn(xo, - ., Tp—1, 277, ..., xl")
N Jk—1  _Jk
Qkfl(xk_1 » T ) Jr—1 Jn
= v ak,lyn(wo,...,wk,g,xk_l,...,xn )

N Jhe— j
Je—1=1 Zjl'671:1 qr—1 (v k)
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Thus,

QZ(*TK ) 1'%:11)

N
Jn=1 =1 0=k Z]/—l QZ(% 7%{:11)

N Jk—1
Qi1 (T ) ) . .
X k-1 Lk ak—l,n(mo""vwk—Q,xfill,,,_,:)jﬁl")
Je—1=1 Z =1 k=1 (JBk L)

N N n—l Je o Je+1

1 (), x5 )) ' .

- N Z Z = ji_'_l]@rl a’kfl,n(wo,...7wk72’x‘]]:_711,._.7x.21n)

n=1 t=k-1 Z] -1 Qe(2y’, )

= Hk—l,n(m():n)7

which establishes the recursion. Therefore, H, = H,, and we may now

conclude the proof by noting that B,h = H,,,.

S3.2 Proof of B

In order to establish |5[ we will prove the following more general result, of

which [5] is a direct consequence.

Proposition 1. For every n € N and M € N* there exist c, > 0 and

d, > 0 such that for every N € N*, z5., € Xoun, (fnafn) € F(Xn)Q; and
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e >0,

/ CnSn(ZO:n7 dbn)

-]

an€2)

2
2k2

x 1 { |% Z{bjzfn(x:ﬂn) + fn(le'n)} — Mn{20:n) (fn Bn(20:m—1)Pn + f“>

< ¢, exp (—
where
n—1 _ ~
kn = [ falloo Y Whmlloo + | fulloo- (53.1)
m=0
To prove [1) we need the following technical lemma.

Lemma 1. For every n € N, (fn+17fn+1) € F(Xn+1)27 20m+1 € Xowmn+1, and

N € N*,

Vr+1{20m+1) (frotr1Bnt1 (Zom) ns1 + fn+1)

- <]- - %) '7n<ZO:n>{ann+1Bn<Z0:n—l>hn + Qn(ﬁnfn—i-l + fn+1)}

1
+

N7n<20n>gn (fn+1(zn+1)Bn+1 <ZO:n>hn+1 (Zn+1) + fn—l—l(zn—i—l)) .

Proof. Since [2| holds also for the Feynman-Kac model with a frozen path,

we obtain

Yot 1{20:m+1) (frt1Bnt1{Zom) Pnt1 + fn+1)

= 7n<ZO:n>{Qn<zn+1>fn+an<ZO:n>hn + Qn<zn+1>(}~lnfn+l + fn+1)}~
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Thus, the proof is concluded by noting that for every x, € X, and h €

F(Xn:n+1)7
Quensi)hlen) = (1= ) Quhla) + Spa(e)h(en ),
[

Finally, before proceeding to the proof of [T} we introduce the law of the
PARIS evolving conditionally on a frozen path z = {z,,}men. Define, for

m € N and 2,11 € X11,

Pm<zm+1> :meym—l-l > (ym7A) — / Mm<zm+1>(wm\m7dwm+l> Sm(ym7wm+17A)'

For any given initial distribution 1, € M{(Yy), let ]P’i(’)z be the distribution
of the canonical Markov chain induced by the Markov kernels { P, (zp+1) }men

and the initial distribution 1,. By abuse of notation we write Pﬁo’z instead

of P’

f;oz[no (2 Where the extension t,[n] is defined in .
Proof of [1 We proceed by forward induction over n. Let the o-fields F
and F,, be defined as in the proof of B, but for the conditional PARIS dual

process. Then, under the law P}, reusing (6.11)),

ERs [ 86D + Fale) | P

=B (R [ 821 B Fuld) + (6 | P
N

l 1 5 B B
M e ] CRESISICRE) R At f] .
/=1 ¢=14Yn—1\Sn—1>Sn

_ P,z
- E"?o
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Using (2.6]), we get

Ep® | BL1a(60) + Ja(€h) | Fuci
= (1 _ i) Zé\f:l{/@ﬁ—lQn—lfn( fL—l) + Qn—l(hn—lfn + fn)( 781—1)}
N SN g (€ )

+%<fn(2n)z ot ) )(£1+Bn<§£1,zn>)+fn<zn>>.

N
= =1 In-1(6 15 7

(93.2)

In order to apply the induction hypothesis to each term on the right-hand

side of the previous identity, note that

~ =120m—1) @105 20){ Bn-1{20m—2)tn-1(-) + hun—1(:, 20) }]
BnZoni)halzn) = ot o 1) (- 22 '

Therefore, using [l and noting that v, (20:n) Ix, /Yn—1(Z0m) Ix, 1 = Tn—1{Z0m—1)gn—-1

yields

M (20:n) (fn Br(20m—1) on + fn) = % <fn(zn)Bn<ZO:n—1>hn(Zn) + fn(zn)

+ <1 i i) nn—l<Z0:n—1>{Qn—1ann—1<z0:n—2>hn + Qn—l(ﬁn—lfn + an)
N Nn—1{20m-1)Gn—1

—_ —

(93.3)
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By combining with , we decompose the error according to

1< . _

N Z{ﬂ;fn(giﬂn) + fn<€1z1|n)} - 7]7L<ZO:n>(ann<ZO:n—1>hn + fn)

i=1
N
= %Z{B;fn(fzﬂn) + fn( Z’L‘TL)} - E%Z |: ﬁrlzfn(é.i) + fn(é.}z) | ]:—n—l

i=1
+ E%Z [Bifn(fi) + fn(f’}t) | ﬁn71:| - nn<ZO:n><ann<ZO:nfl>hn + fn)

1 1
=1V + (1 - N) 1 5 1 (S3.4)

where

N
0 = 5 S BAE) + R}~ BR (DL + Fu(€)) | Fimt].
=1

1@ Zem s Quor fulns) + Quoaucafu + 1) (60))
Zé\[zl gn—1(&5-1)
D1 (G ) {@n 1 fuBuzon-1)hn + Qi (i fu + fa)}
Tn—1(20:n-1) Yn—1

)

(83.5)

and

3 al Qn—l(fe 1 Zn) =
ISV) = fn(2n) Z — ) <6£—1 + hn—l(gﬁ—la Zn))

N
> v G (&1 7

Nn—1{20:n—1) (@10, 20 { Bn—1{20:m—2) Pn1() + hon1(+, 20) }]
nn—1<Z0:n—1>[QR—1('v Zn)] ‘

- fn(Zn>
(S3.6)
(1)

The proof is now completed by treating the terms I}, IE\Q,) , and IS\‘?) sep-

arately, using Hoeffding’s inequality and its generalisation in [2, Lemma 4].
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Choose € > 0; then, by Hoeffding’s inequality,
IP’PZ(|I | >8> < 2exp —18—2]\7 (S3.7)
- 2 K2 ' ‘

To treat 15\2[)7 we apply the induction hypothesis to the numerator and de-
nominator, each normalized by 1/N, yielding, since ||Q,—1h|coc < Tn—1||A]|co

for all h € F(X,_1 ® &),

% (s

_nnfl<ZO:n71>{anlann<ZO:nfl>hn + Qn71<ﬁn71fn + fn)} Z

Z{/B 1Qn 1fn n— 1)+Qn 1( n—lfn+fn)( rl;—l)}

8)
g2

< Cpt exp( d,— 172—K2N>
1

and

N

X 2

,I;OZ (‘N E gnfl(gﬁ—l) — Mn-1{20n—1)gn—1| = 6) < Cp—1€xp < dy 17_2 N)
— n—1

Combining the previous two bounds with the generalised Hoeffding inequal-

ity in [2, Lemma 4] yields, using also the bounds

S B 1 @ur fal6h ) + Quoa(uca o+ F) (€D} _
N ’ =
> o1 9n1(61)

and 7,-1(20.n—1)Jn-1 > Tn_1, the inequality

n

2 2
Tn_1€

P"I;(;Z <| 153) ’ > 5) < Cp_1€xXp (_dn—l _2 N) . (838)
T,

2
an

The last term 153) is treated along similar lines; indeed, by the induction
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hypothesis, since ||gy—1|loo < Tn_10n_1,

N
z 1 K
Prlljt; <|N Z Gn-1(&h 1, 2n) (ﬁﬁ—l + h-1 (6o Zn)>
-1

— D1{20m-1) [@n-1(, 20){ Bae1 (Zom—1) Fin—1(-) + D1 (-, 20)}]

)

S Cn—1€XP _dn—l _
(Tn 10n— IZ Hh ||<><>>

and

N
P'II;(;Z <|% Z QTL—l(gf;—la Zn) - nn—1<ZO:n—1>[Qn—1('7 Zn)] Z 5)
(=1

2
< Cp_1€Xp <_dn1 (%) N) :
n—19n—1

Thus, since

al Qn—l(ge 1,Zn)
P (Bis + haa (i) < Znh o
¢

=1 ZE’:I Gn—1( leflazn)

and 7,-1(20:n-1)[@n—-1(-, 2n)] > Tn_1, the generalised Hoeffding inequality

provides

2
PP <| 19 > 5> <cpaexp | —dpg < ol 1 3 ) N
K 27_—n—15'n—1‘|fn||00 zmzlo HhmHoo
(33.9)

Finally, combining the bounds (S3.7HS3.9) completes the proof. O
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S3.3 Proof of 3

The statement of [3] is implied by the following more general result, which

we will prove below.

Proposition 2. For everyn € N, M € N*, N € N*, 20, € Xowm, (fn, fu) €
F(X,)?%, and p > 2, it holds that

N p

o S ) + )} — o) (FuB Vo + o)

=1

/ CnSn(ZO:ny dbn)

< Co(p/dn V2N P2
where ¢, > 0, d,, > 0 and «,, are defined in[l] and (S3.1), respectively.
Before proving [2, we establish the following result.

Lemma 2. Let X be an R%-valued random variable, defined on some prob-
ability space (Q, F,P), satisfying P(|X| > t) < cexp(—t%/(20?)) for every
t > 0 and some ¢ > 0 and o > 0. Then for every p > 2 it holds that

E[|X[7] < ep?/?a®.
Proof. Using Fubini’s theorem and the change of variable formula,
BIXP = [ o B(X] 2 ) de = 2o (p)2),
0

where I' is the Gamma function. It remains to apply the bound I'(p/2) <

(p/2)P/2~1 (see [1]), which holds for p > 2 by [2, Theorem 1.5]. O
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Proof of[4 By combining [I] and [2] we obtain

2

N /CnSn(ZO:na dbn) % Zil{b;fn<x;|n) + fn(x;,m)} - 77n<20:n>(ann<ZO:nfl>hn + fn)

n—1 p
< Cu(p/dn)PP NP2 (IIntIoo D Mmoo + IIfnlloo) ,

m=0

which was to be established. O

S3.4 Proof of 4]

Like previously, we establish 4] via a more general result, namely the follow-

ing.

Proposition 3. For every n € N, the exists ¢t < oo such that for every

M € N*, N € N*, 20, € Xom, and (fn, fn) € F(X,)?,

N
1 . . ~ . -
‘/ CnSn(ZO:m dbn)ﬁ Z{b;fn(x:qn) + fn(xzqn)} - nn<ZO:n>(ann<ZO:n—1>hn + fn)
=1
S EZZIGSKHNil,
where x,, is defined in (S3.1)).

We preface the proof of 3| by a technical lemma providing a bound on

the bias of ratios of random variables.

Lemma 3. Let & and 3 be (possibly dependent) random variables defined on

some probability space (Q, F,P) and such that E[o?] < oo and E[B?] < cc.
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Moreover, assume that there exist ¢ > 0 and d > 0 such that |o/B| < ¢,

P-a.s., |a/b| < ¢, E[(a — a)?] < d?, and E[(B — b)?] < d*. Then
[Eot/B] — a/b] < 2c(d/b)* + c[E[B — 0]|/Ib] + [E[ec — a]|/[b].  (83.10)

Proof. Using the identity

Eloe/B]—a/b = E[(et/)(b—B)*]/b*+E[(e—a) (b—B)]/b*+aE[b—B] /b*+E[o—a] /b,

the claim is established by applying the Cauchy—Schwarz inequality and the

assumptions of the lemma according to

[Efoc/B] — a/0]
< cE[(B — 0)°]/0* + {E[(ac — a)’JE[(B — b)*]}'/2/6* + |al[E[B — 8] /b + |E[ox — a]| /07

< 2¢(d/0)” + c[EIB — 8]/ [b] + [E[ex — a] /|8

Proof of[{] We proceed by induction and assume that the claim holds true
for n—1. Reusing the error decomposition , it is enough to bound the
expectations of the terms 153) and 153) given in and , respectively
(since E%Z[Ig\l,)] = 0). This will be done using the induction hypothesis, ,

and . More precisely, to bound the expectation of I%), we use |3| with
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X & Oy, B < Pp, a < ay, and b < b,, where

= —Z{ﬁﬁ 1Qn1 Fa(€h 1) + Quoa(hnafu+ L)€ D}, Bai= Zgn 1(&h),

Qp = 777171<Z0:nfl>{anflann<'ZO:1171>h/n + anl<ﬁn71fn + fn)}7 bn = 777171<20:n71>gnfl'

For this purpose, note that |«,/B,| < «, and |a,/b,| < k,, where k,, is
defined in (S3.1). On the other hand, using [2| (applied with p = 2), we

obtain
]ESO’Z[(O% - an>2] < diKi and Es(;z[(ﬁn - bn)2] < d?w
where d2 == ¢, 72_,/(d,,N). Using the induction assumption, we get
|E50’z[ o) — a,| <V N7'7,_ 1k, and |Efoz[ Bn] — bn| <V NTF, .

Hence, the conditions of |3 are satisfied and we deduce that

2 —

Pzy(2)7 _ Pz Cn Tn1 ias Tn—1
LI = B oo/ Bl — an ] < 2y B2 + 2605, Tt
The bound on |E}* [15\2,)]| is obtained along the same lines. O

0
S3.5 Proof of [6]
We first consider the bias, which can be bounded according to
‘EE[H(kO,k),N(f)] — No:nhn |< (k— ko)~ Z |Eei(B,14])(id) — moumfin|

l=ko+1

k
< (k= k)Nl (z i nm) S

€=k0+1
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from which the bound (4.7) follows immediately.

We turn to the MSE. Using the decomposition

k

Ee [(M ko .5 (f) = Noenhn)?] < (k= ko)~ { > Eel(u(B,10)(id) = nocnhin)’]

€:k’0+1

+ 2 Z Z EE 1d) WO:nhn)(U(BnUD(id) - nO:nhn>]} )

l=ko+1 j=(+1
the MSE bound in [2] implies that
k

{=ko+1

Moreover, using the covariance bound in [2, we deduce that

l=ko+1 j=0+1
n—1 2
< (Z ||Bm||oo) N‘3/2< > YA “)-
m=0

t=ko+1 j=0+1

Thus, the proof is concluded by noting that Ze ko1 Z] o1 5@”‘) < (k-

ko)/(l — HN,n)-
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