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of the main theorems are also presented.

S1 Binary Covariates

In the main paper, the missing mechanism is assumed to depend only on the

response variables through an additive non-ignorable model. Oftentimes, this

dependency involves covariates. Therefore it is desirable to incorporate covari-

ates into our missing mechanism model. In this section, we extend our semi-

parametric model to incorporate one time-invariant binary covariate. This co-

variate can be related to the responses and the missing mechanism.
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Let Yi1 and Yi2 denote the ith responses at the first and second waves re-

spectively. Let Xi represent a time-invariant categorical covariate for the ith

observation. For simplicity, we assume that Xi only takes value in two levels,

0 and 1. Let Wi be an indicator variable, with Wi = 0 indicating that Yi2 is

missing. An additive missing model is assumed for Wi,

P (Wi = 1 | yi1, yi2, xi) = logistic(β0 + β1yi1 + β2yi2 + β3xi).

This logistic attrition model allows for a straightforward interpretation of the

covariate as the main effect on the odds ratio being observed. A more complex

attrition model can be specified according to Hirano et al. (2001) as

P (W = 1 | y1, y2, x) = g(κ0(x) + κ1(y1, x) + κ2(y2, x)),

where g is a monotone function taking on values in the interval (0, 1), and κ1(·),

κ2(·), κ3(·) are arbitrary functions of the responses and the covariate. It is im-

portant, however, to note that no interaction terms between y1 and y2 are allowed

in this additive model.

In addition, a refreshment sample is also included in the second wave. Table

1 shows the observed data in this scenario. Similar to the no-covariate case, the

observed panel data can be separated into two sets according to the values of
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W . The complete set consists of observations withW = 1, and we fully observe

every variable in this set. The rest of the panel data then form the incomplete set.

Again, the goal is to understand the attrition process by estimating the attrition

parameters from the data that we observe in Table 1.

S1.1 Method

Estimation of the attrition parameters can be obtained through Hirano et al.

(2001)’s two constraints on the covariate x. In particular, we have

∫
P (W = 1 | x)

logistic(β0 + β1y1 + β2y2 + β3x)
f(y1, y2 | W = 1, x)dy2 = f1(y1 | x),∫

P (W = 1 | x)

logistic(β0 + β1y1 + β2y2 + β3x)
f(y1, y2 | W = 1, x)dy1 = f2(y2 | x).

The idea for estimating the β = (β0, · · · , β3) in this scenario is similar to

what we have done in the no-covariate case. We can consider the previous no-

covariate situation as a special case where the covariate X has only one level.

With one binary covariate, we can separate the data into two subsets defined by

the levels of X . In each subset, we construct two constraints as follows. For

X = 0, we have

∫
P (W = 1 | X = 0)

logistic(β0 + β1y1 + β2y2)
f(y1, y2 | W = 1, X = 0)dy2 = f1(y1 | X = 0),∫

P (W = 1 | X = 0)

logistic(β0 + β1y1 + β2y2)
f(y1, y2 | W = 1, X = 0)dy1 = f2(y2 | X = 0).
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In addition for X = 1,

∫
P (W = 1 | X = 1)

logistic(β0 + β1y1 + β2y2 + β3)
f(y1, y2 | W = 1, X = 1)dy2 = f1(y1 | X = 1),∫

P (W = 1 | X = 1)

logistic(β0 + β1y1 + β2y2 + β3)
f(y1, y2 | W = 1, X = 1)dy1 = f2(y2 | X = 1).

The true attrition parameters β0 are the only set of parameters that satisfy the

above constraints. As a result, the estimates for these parameters can be obtained

by minimizing the distance between the conditional density functions on both

sides of these four constraints. The estimation procedure starts with estimating

the conditional density components in the above constraints. In each subset (i =

0 or 1), we estimate

f(y1, y2 | W = 1, X = i), P (W = 1 | X = i),

f1(y1 | X = i), f2(y2 | X = i).

We consider the estimation of these density components using the kernel density

method. We consider the estimation of these quantities for X = 1, and similar

estimators can be constructed for X = 0. First, we estimate the conditional joint

distribution f(y1, y2 | W = 1, X = 1) as

f̂H(y1, y2 | W = 1, X = 1) = f̂H(y | W = 1, X = 1) =
1

n11

n11∑
i=1

KH(y −Yi),
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where Yi = (Yi1, Yi2)T , i = 1, 2, ..., n11 indexes the data points with both W =

1 and X = 1, and H is a 2× 2 bandwidth matrix that is symmetric and positive

definite. Additionally, KH(y) = |H|−1/2K(H−1/2y), where K is the bivariate

normal kernel function defined asK(y) = (2π)−1exp(−yTy/2). Next, P (W =

1 | X = 1) can be consistently estimated by P̂ (W = 1 | X = 1) = n11/N1,

whereN1 is the number of observations withX = 1. For a given β, the estimator

of the conditional joint density f(y1, y2 | X = 1) is given as

f̃(y1, y2 | X = 1, β) =
P̂ (W = 1 | X = 1)

logistic(β0 + β1y1 + β2y2 + β3)
f̂H(y1, y2 | W = 1, X = 1).

The conditional density of Y1 given X = 1 can be computed by integrating the

conditional joint distribution f̃(y1, y2 | X = 1, β) with respect to y2. This can

be numerically approximated as

f̃1(y1 | X = 1, β) =

∫
f̃(y1, y2 | X = 1, β)dy2

≈
ngrid∑
i=1

f̃(y1, y2i | X = 1, β)×∆y2

=

ngrid∑
i=1

f̃(y1, y2i | β)× range(y2)

ngrid
,

where y2i is the ith grid point on Y2 and ngrid denotes the number of grid points

in the 2-dimensional kernel density estimator. Similarly, for a given y2, the

conditional density f̃2(y2 | X = 1, β) can be defined in the same manner. The
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conditional density estimates f̃1(y1 | X = 1, β) and f̃2(y2 | X = 1, β) are semi-

parametric estimators that rely on the attrition model. They consistently estimate

the true marginal densities only when the attrition model is correctly specified.

Let {yi1}N1

i=1 be the first wave responses with X = 1 and {yri2}
n1

i=1 be the

refreshment sample with X = 1. We define the following one-dimensional

kernel density estimators:

f̂1(y1 | X = 1) =
1

N1

N1∑
i=1

Kh1(y1−yi1), f̂2(y2 | X = 1) =
1

n1

n1∑
i=1

Kh2(y2−yri2),

where K is the univariate normal density function and Khi(y) = h−1
i K(y/hi),

with hi being the corresponding bandwidth for i = 1, 2.

In the subset with X = 0, a set of similar conditional density estimators can

be constructed, and they are denoted as

f̃1(y1 | X = 0, β), f̃2(y2 | X = 0, β),

f̂1(y1 | X = 0), f̂2(y2 | X = 0).

The objective function M(β) takes the form of the mean squared differences

between the corresponding conditional density functions from the left and right-
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hand sides of the four constraints,

M(β) = MN0(β) +Mn0(β) +MN1(β) +Mn1(β)

= 1
N0

∑N0

i=1

[
f̃1(yi1 | X = 0, β)− f̂1(yi1 | X = 0)

]2

+ 1
n0

∑n0

i=1

[
f̃2(yri2 | X = 0, β)− f̂2(yri2 | X = 0)

]2

+ 1
N1

∑N1

i=1

[
f̃1(yi1 | X = 1, β)− f̂1(yi1 | X = 1)

]2

+ 1
n1

∑n1

i=1

[
f̃2(yri2 | X = 1, β)− f̂2(yri2 | X = 1)

]2

.

Notice that there are four comparisons since there are four constraints. The

vector of semi-parametric estimators of the attrition parameters is the minimizer

of the objective function as β̂ = arg min
β

M(β).

S1.2 Simulation Results

We use simulation to demonstrate the finite sample performance of the semi-

parametric estimators in this one-covariate case. We generate data from the fol-
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lowing model

Yi1 = 2 +Xi + εi1,

Yi2 = 1 + 3Xi + εi2,

ε =

ε1
ε2

 ∼ N


0

0

 ,
 1 0.3

0.3 1


 . (S1.1)

The additive missing model is set up as

P (Wi = 1 | Yi1, Yi2, Xi) = logistic(−0.8 + 0.2Yi1 + 0.4Yi2 − 1.4Xi). (S1.2)

The attrition parameters are set up such that given any value of the covariate

X , there is a non-zero probability to observe the responses Y1 and Y2 almost

everywhere on their corresponding support. That is, given X = x, the support

of f(y1, y2 | W = 1, x) coincides with the support of f(y1, y2 | x). In this

particular additive missing model setting, we are able to control the probability

of Y2 being missing so that it is about 50% on average and ranges from 20% to

80% given either level of X .

The attrition parameters are estimated by the semi-parametric method for

each sample. The squared bias and variance are calculated for each estimator

based on those 1000 estimates, and the corresponding MSE is computed. Figure
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1 shows plots of the MSE versus panel and refreshment sample sizes. The X-

axis represents the combination of panel size and refreshment sample size. The

dashed, dot-dash, and solid lines represent the squared bias, variance, and MSE

respectively. The decreasing trends of the empirical MSE suggest that the semi-

parametric estimators are consistent.

S2 Additional simulation

In this section, we present additional simulation studies to investigate the effects

of different model parameters such as marginal variances and missing mecha-

nism parameters, on the performance of the semi-parametric estimation method.

S2.1 Effect of marginal variances

To investigate the effect of marginal variances on the variability of the semi-

parametric estimator, we generate data from a bivariate Normal distribution with

marginal means of 0 and correlation coefficient of 0.5, but with marginal vari-

ances at three different levels (σ2
1, σ

2
2 = 1, 5 or 10). Table 2 reports the variances

of β̂1 and β̂2 computed through both asymptotic formula and empirical variance

using simulated data. It shows that the variability of β̂1 and β̂2 decreases as the

marginal variance of first wave σ2
1 or the second wave σ2

2 increases.

In addition, the variances calculated using the asymptotic formula agree with
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the empirical variance, which validates the asymptotic variance given in Theo-

rem 3 of the paper. However, the asymptotic formula gives slightly larger stan-

dard errors than the empirical SEs obtained by simulation. This may be due to

the fact that all higher-order terms are ignored and a Taylor expansion is repeat-

edly used to simplify integrals involving kernel densities in the development of

the asymptotic theory.

Similar simulations were also conducted to investigate the effects of marginal

means and the correlation coefficient on the estimation performance. The sim-

ulation result is not reported here. But it shows that the value of marginal

means plays an ignorable effect on the variability for both estimators. However,

the variability increase as the correlation coefficient increases across different

marginal variance combinations. In conclusion, less correlation and more vari-

ability in the marginal distributions result in more stable estimates of attrition

parameters.

S2.2 Effect of The Rotation in Missing Direction

For the logistic attrition model, the missingness probability is constant along

any line where β0 + β1y1 + β2y2 is a fixed constant. In particular, the line

β0 + β1y1 + β2y2 = 0 is called the reference line, which corresponds to 50%

missingness of Y2. The vector (β1, β2)T gives the direction that is perpendicular
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to the reference line, and θ denotes the rotation angle of vector (β1, β2)T as

shown in Figure 2. We refer to this vector as the perpendicular vector (PV).

The missing probability of Y2 decreases in the direction of PV with the rate of

decreasing depending on the length of PV calculated as
√
β2

1 + β2
2 .

Figure 3 considers two different lengths of PVs, 0.5 and 1. A length of

0.5 gives a gradual missingness pattern and the probability of being observed is

away from 0 and 1. A length of 1 shows a dramatic missing pattern where part

of the data is almost always observed and the other part is missing most of the

time. The X-axis represents different values for rotation angle θ. There are 8

equally spaced rotations with angles ranging from 3
2
π to 5

4
π counterclockwise.

in Figure 3, the angles are denoted as the rotation index 1, · · · , 8 respectively.

Figure 3 shows the semi-parametric estimator has a larger variance when

data are dramatically missing (length of PV = 1). Furthermore, it reveals that

minimum asymptotic standard errors are achieved when the PV parallels the

major axis of the population contour. In our bivariate Normal case, the joint dis-

tribution has a positive correlation coefficient and marginal variances are equal,

which results in a population contour with a 45-degree major axis. Two rotation

scenarios give the parallel relationship between the PV and the 45-degree major

axis, namely scenarios with rotation index of 4 and 8 (i.e. 1
4
π and 5

4
π respec-

tively). When the PV is perpendicular to the major axis, asymptotic standard
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errors reach the maximum (i.e. 7
4
π and 3

4
π for rotation index 2 and 6).

S3 Technical Lemmas and Proofs

Let f̃1(y1 | β) and f̂1(y1) be the semi-parametric and non-parametric estima-

tors of the marginal density of the first wave f1(y1) as in the objective function

MN,n(β). In addition, let

f1(y1 | β) =

∫
f (y1, y2 | W = 1)P (W = 1)

1/ (1 + exp (−β0 − β1y1 − β2y2))
dy2, (S3.3)

which is defined similarly as f̃1(y1 | β) but with true quantities for f (y1, y2 | W = 1)

and P (W = 1) instead of the estimated ones. Let

A1β(y1) = f1(y1 | β)− f1(y1), B1β(y1) = f̃1(y1 | β)− f1(y1 | β),

C1(y1) = f1(y1)− f̂1(y1).

In the same manner, for the second wave, we define

A2β(y2) = f2(y2 | β)− f2(y2), B2β(y2) = f̃2(y2 | β)− f2(y2 | β),

C2(y2) = f2(y2)− f̂2(y2),

where f2(y2 | β) is defined similarly as f1(y1 | β) in (S3.3), but integrating y1
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out instead.

Lemma 1. For any θ in a compact set Θ, let x 7→ fθ(x) be a given measurable

function. Suppose θ 7→ fθ(x) is continuous for every x and suppose that there

exists a function F such that |fθ| ≤ F for every θ ∈ Θ, and PF < +∞, then

supθ∈Θ |Pnfθ − Pfθ|
P−→ 0.

This result is shown in section 19.2 of Van der Vaart (2000).

Lemma 2. Under assumptions (A1)-(A3), one has

sup
β∈Θ

∣∣PNA2
1β − PA2

1β

∣∣ P−→ 0.

Proof of Lemma 2. Under assumptions (A1)-(A3), for every β, one has

A2
1β(y1) =

[∫
f(y1, y2 | W = 1)P (W = 1)(1 + exp(−βy))dy2 − f1(y1)

]2

≤ F (y1),

for some F (y1) that only depends on y1 andE[F (Y1)] < +∞. The result follows

from Lemma 1.

Lemma 3. Under conditions (A1)-(A6), one has

sup
β∈Θ

{
1

N

N∑
i=1

[
B1β(Yi1) +B2

1β(Yi1) +
∂

∂β
B1β(Yi1) + C1(Yi1) + C2

1(Yi1)

]}
= op(1).
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Proof of Lemma 3. One notes that, for any β ∈ Θ,

B1β(y1) = f̃(y1 | β)− f(y1 | β) =

∫
P̂ f̂H − Pf
logistic(βy)

dy2

=

∫
(P̂ − P )f̂H + P (f̂H − f)

logistic(βy)
dy2,

where P̂ − P = 1
N

∑N
i=1 I(Wi = 1) − P (W = 1) = op(1) by the weak law

of large numbers. In addition, the uniform convergence of the bivariate kernel

density estimator in Devroye and Wagner (1980) gives that

sup
y1,y2

∣∣∣f̂H(y1, y2 | W = 1)− f(y1, y2 | W = 1)
∣∣∣ P−→ 0 as nc →∞. (S3.4)

Therefore, supy1 |B1β(y1)| = op(1). Similarly, supy1 |
∂
∂β
B1β(y1)| = op(1). Thus

assumptions (A1)-(A3) give that

sup
β∈Θ

1

N

N∑
i=1

{
B1β(Yi1) +B2

1β(Yi1) +
∂

∂β
B1β(Yi1)

}
= op(1).

By the uniform convergence of the univariate density estimator given in The-

orem A of Silverman et al. (1978), we have supy1 |C1(y1)| = supy1

∣∣∣f̂1(y1)− f1(y1)
∣∣∣ a.s.−→

0 as N → ∞. As a result, 1
N

∑N
i=1 C1(yi1) ≤ supy1 |C1(y1)| = op(1) and

1
N

∑N
i=1C

2
1(yi1) ≤ supy1 |C1(y1)|2 = op(1).
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Lemma 4. Under (A1) – (A6), one has

sup
β∈Θ

∣∣MN(β)− E [f1(Y1 | β)− f1(Y1)]2
∣∣ P−→ 0.

Proof of Lemma 4. Note that,

MN(β) =
1

N

N∑
i=1

[A1β(Yi1) +B1β(Yi1) + C1(Yi1)]2 =
1

N

N∑
i=1

A2
1β(Yi1)

+
1

N

N∑
i=1

[
2A1β(Yi1)B1β(Yi1) + Aβ(Yi1)C1(Yi1) +B1β(Yi1)C1(Yi1) +B2

1β(Yi1) + C2
1(Yi1)

]
.

Then the proof follows from Lemmas 2 and 3.

Lemma 5. Under (A1) – (A6), one has

sup
β∈Θ

∣∣MN,n(β)− E [f1(Y1 | β)− f1(Y1)]2 − E [f2(Y2 | β)− f2(Y2)]2
∣∣ P−→ 0.

Proof of Lemma 5. The proof follows similarly to the proof of Lemma 4.

S3.1 Proof of Theorem 2

By Lemma 1 of the paper, for almost all (y1, y2) ∈ S, β = β0 is the unique

set of parameters that satisfy f1(y1 | β0) − f1(y1) = 0 and f2(y2 | β0) −

f2(y2) = 0. Thus β0 is the unique minimizer of E [f1(Y1 | β)− f1(Y1)]2 +

E [f2(Y2 | β)− f2(Y2)]2 . Combining with Lemma 5, the consistency of β̂ fol-
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lows from Theorem 5.7 of Van der Vaart (2000).

S3.2 Proof of Theorem 3

The asymptotic properties of β̂ can be evaluated through the form of a Z-estimator

by taking the derivative of MN,n (β). There are two parts in MN,n (β), namely

MN (β) and Mn (β). In the following, we will tackle each part separately and

put them back together at the end to obtain the asymptotic Normality of β̂.

The First Part. Using the notation in Equation (S3.4), the first part of

MN,n (β) can be decomposed as,

MN (β) =
1

N

N∑
i=1

{e1 (Yi1) [A1β(Yi1) +B1β(Yi1) + C1(Yi1)]}2 .

Then the first order derivative of MN (β) is

ϕN (β) =
∂MN (β)

∂β

=
2

N

N∑
i=1

e2
1 (Yi1) [A1β(Yi1) +B1β(Yi1) + C1(Yi1)]

∂

∂β
[A1β(Yi1) +B1β(Yi1)] .
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WhenϕN (β) is evaluated at the truth β0, f1(Yi1 | β0) = f1(Yi1), andA1β0(Yi1) =

0. Then Lemma 3 entails that

ϕN
(
β0
)

= 2
N

∑N
i=1

[
e2

1 (Yi1)
{

∂
∂β
A1β0(Yi1) + ∂

∂β
B1β0(Yi1)

}
{B1β0(Yi1) + C1(Yi1)}

]
= 1

N

∑N
i=1

[
2e2

1 (Yi1) ∂
∂β
A1β0(Yi1) (B1β0(Yi1) + C1(Yi1))

]
(1 + op(1)).

Here ∂
∂β
A1β0(Yi1) = g (Yi1) = [g1 (Yi1) , g2 (Yi1) , g3 (Yi1)]T with

g1 (Yi1) = −
∫
f (Yi1, y2 | W = 1)P (W = 1) exp

(
−β0

0 − β0
1Yi1 − β0

2y2

)
dy2,

g2 (Yi1) = −
∫
Yi1f (Yi1, y2)

{
1 + exp

(
β0

0 + β0
1Yi1 + β0

2y2

)}−1
dy2,

g3 (Yi1) = −
∫
y2f (Yi1, y2)

{
1 + exp

(
β0

0 + β0
1Yi1 + β0

2y2

)}−1
dy2.

Define a function

T1 (x, y, z, w) =

∫
wKh1 (z − x)Kh2 (y2 − y)

1/ (1 + exp (−β0
0 − β0

1z − β0
2y2))

dy2 −Kh1 (z − x) .

Then we haveϕN (β0) = 1
N2

∑N
i=1

∑N
j=1 [2e2

1 (Yi1) g (Yi1)T1 (yj1, yj2, Yi1, wj)]+

op(1).

Let Xi = [Yi1, Yi2,Wi]
T and Xj = [Yj1, Yj2,Wj]

T be independent samples

from the panel. Let h (Xi,Xj) = h̃(Xi,Xj) + h̃(Xj,Xi), where h̃(Xi,Xj) =
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e2
1 (Yi1) g (Yi1)T1 (Yj1, Yj2, Yi1, wj) . Then h is a symmetric function and

ϕN
(
β0
)
≈

1

N2

N∑
i=1

N∑
j=1

h (Xi,Xj)

is a V-statistic.

Lemma 6. Let h1 (Xi) = E [h (Xi,Xj) | Xi] and Σ1 = V ar [h1 (X)]. Then

under assumptions (A1)-(A6), one has
√
NϕN (β0) ∼ N (0, 4Σ1) .

Proof of Lemma 6. Note that

E [h (Xi,Xj)] = E
[
E
(
h̃ (Xi,Xj) |Xi

)]
+E

[
E
(
h̃ (Xj,Xi) |Xi

)]
= I+II.

For I , conditional on Xi,

I = E
{
E
[
e2

1 (Yi1) g (Yi1)T1 (Yj1, Yj2, Yi1,Wj) | Xi

]}
= E

{
e2

1 (Yi1) g (Yi1)

∫
T1 (yj1, yj2, Yi1, wj) f (Xj | Xi) dXj

}
.

Let u1 =
yj1−Yi1

h1
and u2 =

yj2−y2
h2

. With the change of variable and the Taylor

expansion, one has

I ≈E
{
e2

1 (Yi1) g (Yi1)

(∫ ∫ ∫
K (u1)K (u2) du1du2f (Yi1, y2) dy2 − f1 (Yi1)

)}
=E

{
e2

1 (Yi1) g (Yi1)

(∫
f (Yi1, y2) dy2 − f1 (Yi1)

)}
= 0.
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Similarly, II = o(1). Thus E [h (Xi,Xj)] = o(1). For the variance, similar

calculations give that

h1 (Xi) = E
[
e2

1 (Yj1) g (Yj1)T1 (Yi1, Yi2, Yj1,Wi) | Xi

]
=

∫ ∫ ∫
e2

1 (Yi1) g (Yi1)
WiK (u1)K (u2)

1/ (1 + exp (−β0
0 − β0

1Yi1 − β0
2Yi2))

f (Yi1, yj2)

×du2du1dyj2 −
∫
e2

1 (Yi1) g (Yi1)K (u1) f1 (Yi1) du1

= e2
1 (Yi1) g (Yi1)Wif1 (Yi1)

(
1 + exp

(
−β0

0 − β0
1Yi1 − β0

2Yi2
))
− e2

1 (Yi1) g (Yi1) f1 (Yi1) .

Then Σ1 = V ar [h1 (X)] = {σ1,ij}3
i,j=1, where

σ1,ij =E
[
e4

1 (Y1) gi (Y1) gj (Y1) f 2
1 (Y1)

(
1 + exp

(
−β0

0 − β0
1Y1 − β0

2Y2

))]
− E

[
e4

1 (Y1) gi (Y1) gj (Y1) f 2
1 (Y1)

]
=E

[
e4

1 (Y1) gi (Y1) gj (Y1) f 2
1 (Y1) exp

(
−β0

0 − β0
1Y1 − β0

2Y2

)]
.

By the relationship between V- and U-statistics introduced in Section 5.7.3 and

Theorem A in Section 5.5.1 Serfling (2009), one has asymptotic normality of

ϕN (β0) as
√
NϕN

(
β0
)
∼ N (0, 4Σ1) .

Lemma 7. The probability limit of the second derivative of MN (β) is

E

[
∂2

∂β2
MN

(
β0
)]

= 2E
[
e2

1 (Y1) g (Y1) g (Y1)T
]

+ o(1).
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Proof of Lemma 7. Notice that for any β ∈ Θ, one has

∂2

∂β2
MN (β) =

2

N

N∑
i=1

{
e2

1 (Yi1)

[
∂

∂β
A1β(Yi1) +

∂

∂β
B1β(Yi1)

] [
∂

∂β
A1β(Yi1) +

∂

∂β
B1β(Yi1)

]T
+e2

1 (Yi1) [A1β(Yi1) +B1β(Yi1) + C1(Yi1)]

[
∂2

∂β2
A1β(Yi1) +

∂2

∂β2
B1β(Yi1)

]}
=

2

N

N∑
i=1

e2
1 (Yi1)

∂

∂β
A1β0(Yi1)

∂

∂β
A1β0(Yi1)T + op(1),

due to the fact that B1β(Yi1), C1(Yi1) and ∂
∂β
B1β(Yi1) are op (1). Lemma follows

directly by taking expectations on both sides and noting that A1β0(Yi1) = 0.

Second Part, Mn (β)

Using the notation in (S3.4), the second part of MN,n (β) is

Mn (β) =
1

n

n∑
i=1

{e2 (Y r
i2) [A2β(Y r

i2) +B2β(Y r
i2) + C2(Y r

i2)]}2 .

The first order derivative of Mn (β) is

ϕn (β) =
∂

∂β
Mn (β)

=
2

n

n∑
i=1

e2
2 (Y r

i2) [A2β(Y r
i2) +B2β(Y r

i2) + C2(Y r
i2)]

[
∂

∂β
A2β(Y r

i2) +
∂

∂β
B2β(Y r

i2)

]
.

When ϕn (β) is evaluated at β0, f2(y2 | β0) = f2(y2), and A2β0(y2) = 0. Then

ϕn
(
β0
)

=
1

n

n∑
i=1

[
2e2

2 (Y r
i2)

∂

∂β
A2β0(Y r

i2) (B2β0(Y r
i2) + C2(Y r

i2))

]
(1 + op(1)).
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Here ∂
∂β
A2β0(y2) = k (y2) = [k1 (y2) , k2 (y2) , k3 (y2)]T with

k1 (y2) = −
∫
f (y1, y2) /

{
1 + exp

(
β0

0 + β0
1y1 + β0

2y2

)}
dy1,

k2 (y2) = −
∫
y1f (y1, y2) /

{
1 + exp

(
β0

0 + β0
1y1 + β0

2y2

)}
dy1,

k3 (y2) = −
∫
y2f (y1, y2) /

{
1 + exp

(
β0

0 + β0
1y1 + β0

2y2

)}
dy1.

Define a function T2 (x, y, z, w) =
∫
wKh1 (y1 − x)Kh2 (z − y)(1 + exp (−β0

0 − β0
1y1 − β0

2z))dy1−

f2(z). Then we have

ϕn
(
β0
)

=
1

nN

n∑
i=1

N∑
j=1

[
2e2

2 (Y r
i2)k (Y r

i2)T2 (Yj1, Yj2, Y
r
i2,Wj)

]
+

1

n2

n∑
i=1

n∑
l=1

[
2e2

2 (Y r
i2)k (Y r

i2) (f2(Y r
i2)−Kh2 (Y r

i2 − Y r
l2))
]

+ op(1)

=ϕn1

(
β0
)

+ ϕn2

(
β0
)

+ op(1).

Lemma 8. Define h11 (Xj) = E [2e2
2 (Y r

i2)k (Y r
i2)T2 (Yj1, Yj2, Y

r
i2,Wj) | Xj] and

Σ21 = V ar [h11 (X)]. Then
√
Nϕn1 (β0) ∼ N (0,Σ21) .

Proof of Lemma 8. One notes that

h11 (Xj) = E
[
2e2

2 (Y r
i2)k (Y r

i2)T2 (Yj1, Yj2, Y
r
i2,Wj) | Xj

]
=

∫
2e2

2 (yi2)k (yi2)

∫
WjKh1 (y1 − Yj1)Kh2 (yi2 − Yj2)

1/ (1 + exp (−β0
0 − β0

1y1 − β0
2yi2))

dy1f2 (yi2) dyi2

−E
[
2e2

2 (Y r
i2)k (Y r

i2) f2(Y r
i2)
]
.
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Let u1 =
y1−Yj1
h1

and u2 =
yi2−Yj2
h2

. With a change of variable and Taylor expan-

sion, one has

h11 (Xj) ≈
∫

2e2
2 (Yj2)k (Yj2)

∫
WjK (u1)K (u2)

1/ (1 + exp (−β0
0 − β0

1Yj1 − β0
2Yj2))

du1f2 (Yj2) du2

− E
[
2e2

2 (Y r
i2)k (Y r

i2) f2(Y r
i2)
]

=2e2
2 (Yj2)k (Yj2)Wj

(
1 + exp

(
−β0

0 − β0
1Yj1 − β0

2Yj2
))
f2 (Yj2)

− 2E
[
e2

2 (Y r
i2)k (Y r

i2) f2(Y r
i2)
]
.

Then Σ21 = V ar [h11 (X)] = {σ21,ij}3
i,j=1, where the ij-th element,

σ21,ij =4E
[
e4

2 (Y2) ki (Y2) kj (Y2)
(
1 + exp

(
−β0

0 − β0
1Y1 − β0

2Y2

))
f 2

2 (Y2)
]

− 4E
[
e2

2 (Y2) ki (Y2) f2 (Y2)
]
E
[
e2

2 (Y2) kj (Y2) f2(Y2)
]

− 4E
[
e2

2 (Y2) kj (Y2) f2 (Y2)
]
E
[
e2

2 (Y2) ki (Y2) f2(Y2)
]

+ 4E
[
e2

2 (Y2) ki (Y2) f2(Y2)
]
E
[
e2

2 (Y2) kj (Y2) f2(Y2)
]

=4E
[
e4

2 (Y2) ki (Y2) kj (Y2)
(
1 + exp

(
−β0

0 − β0
1Y1 − β0

2Y2

))
f 2

2 (Y2)
]

− 4E
[
e2

2 (Y2) ki (Y2) f2 (Y2)
]
E
[
e2

2 (Y2) kj (Y2) f2(Y2)
]
.

Define U∗N = 1
N

∑N
j=1 h11 (Xj) . By Central Limit Theorem,

√
NU∗N

d−→ N (0,Σ21) .
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To prove Lemma 8, it is sufficient to show that
√
N [ϕn1 (β0)− U∗N ] = op(1).

Note that

V ar
[√

Nϕn1

(
β0
)]

=
1

n2N

n∑
i=1

N∑
j=1

V ar
[
2e2

2(Y r
i2)k(Y r

i2)T2(Yj1, Yj2, Y
r
i2,Wj)

]
+

1

n2N

n∑
i=1

N∑
j=1

∑
j 6=j′

Cov
[
2e2

2(Y r
i2)k(Y r

i2)T2(Yj1, Yj2, Y
r
i2,Wj), 2e

2
2(Y r

i2)k(Y r
i2)T2(Yj′1, Yj′2, Y

r
i2,Wj′)

]
+

1

n2N

n∑
i=1

N∑
j=1

∑
i 6=i′

Cov
[
2e2

2(Y r
i2)k(Y r

i2)T2(Yj1, Yj2, Y
r
i2,Wj), 2e

2
2(Y r

i′2)k(Y r
i′2)T2(Yj1, Yj2, Y

r
i′2,Wj)

]
≈ 1

n
V ar

[
2e2

2(Y r
i2)k(Y r

i2)T2(Yj1, Yj2, Y
r
i2,Wj)

]
+

(n− 1)

n
Σ21 ≈ Σ21. (S3.5)

In addition,

Cov
[√

Nϕn1

(
β0
)
,
√
NU∗N

]
=

1

nN
Cov

 n∑
i=1

N∑
j=1

[
2e2

2(Y r
i2)k(Y r

i2)T2(Yj1, Yj2, Y
r
i2,Wj)

]
,
N∑
j′=1

h11

(
Xj′
)

=
1

nN

n∑
i=1

N∑
j=1

∑
j=j′

Cov
[
2e2

2(Y r
i2)k(Y r

i2)T2(Yj1, Yj2, Y
r
i2,Wj), h11 (Xj′)

]
= Σ21. (S3.6)

Since V ar
(√

NU∗N

)
≈ Σ21, together with (S3.5) and (S3.6),

V ar
[√

Nϕn1

(
β0
)
−
√
NU∗N

]
= V ar

[√
Nϕn1

(
β0
)]

+ V ar
[√

NU∗N

]
−2Cov

[√
Nϕn1

(
β0
)
,
√
NU∗N

]
= o(1).
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Therefore,
√
Nϕn1 (β0)−

√
NU∗N = op(1), and

√
Nϕn1 (β0) ∼ N (0,Σ21) .

Note that ϕn2 (β0) is a V-statistic. Let

H (yi2, yl2) = e2
2 (yi2)k (yi2) (f2(yi2)−Kh2 (yi2 − yl2))+e2

2 (yl2)k (yl2) (f2(yl2)−Kh2 (yl2 − yi2)) ,

where yi2 and yj2 represent independent refreshment samples. Then

ϕn2

(
β0
)

=
1

n2

n∑
i=1

n∑
l=1

H (Y r
i2, Y

r
l2) . (S3.7)

Lemma 9. Define h12 (Y r
i2) = E [H (Y r

i2, Y
r
l2) | Y r

i2] and Σ22 = V ar [h12 (Y r
i2)].

Then E [H (Y r
i2, Y

r
l2)] = o(1) and

√
nϕn2 (β0) ∼ N (0, 4Σ22) .

Proof of Lemma 9. We have

E [H (Y r
i2, Y

r
l2)]

= E

[
e2

2 (Y r
i2)k (Y r

i2)

[
f2(Y r

i2)−
∫
Kh2 (Y r

i2 − Y r
l2) f2(yl2)dyl2

]]
+E

[
e2

2 (Yl2)k (Y r
l2)

[
f2(Y r

l2)−
∫
Kh2 (Y r

l2 − yi2) f2(yi2)dyi2

]]
= E

[
e2

2 (Y r
i2)k (Y r

i2) [f2(Y r
i2)− f2(Y r

i2)]
]

+ E
[
e2

2 (Y r
l2)k (Y r

l2) [f2(Y r
l2)− f2(Y r

l2)]
]

+ o(1)

= o(1).

Then h12 (Y r
i2) = {E [e2

2 (Y r
l2)k (Y r

l2) f2(Y r
l2)]− e2

2 (Y r
i2)k (Y r

i2) f2 (Y r
i2)} (1+o(1)),



S3. TECHNICAL LEMMAS AND PROOFS 25

and define Σ22 = V ar [h12 (Y2)] = {σ22,ij}3
i,j=1 with its ij-th element being

σ22,ij = E
[
e4

2 (Y2) ki (Y2) kj (Y2) f 2
2 (Y2)

]
−E

[
e2

2 (Y2) ki (Y2) f2(Y2)
]
E
[
e2

2 (Y2) kj (Y2) f2(Y2)
]
.

By the property of V-statistics, one has
√
nϕn2 (β0) ∼ N (0, 4Σ22) .

Lemma 10. The probability limit of the second derivative of Mn (β) is

E

[
∂2

∂β2
Mn

(
β0
)]

= 2E
[
e2

2 (Y2)k (Y2)k (Y2)T
]

+ o(1).

Proof of Lemma 10. One notes that

∂2

∂β2
Mn (β)

=
2

n

n∑
i=1

{
e2

2 (Y r
i2)

[
∂

∂β
A2β(Y r

i2) +
∂

∂β
B2β(Y r

i2)

] [
∂

∂β
A2β(Y r

i2) +
∂

∂β
B2β(Y r

i2)

]T
+e2

2 (Y r
i2) [A2β(Y r

i2) +B2β(Y r
i2) + C2(Y r

i2)]

[
∂2

∂β2
A2β(Y r

i2) +
∂2

∂β2
B2β(Y r

i2)

]}
.

Therefore, ∂2

∂β2Mn (β0) = 2
n

∑N
i=1 e

2
2 (Y r

i2) ∂
∂β
A2β0(Y r

i2) ∂
∂β
A2β0(Y r

i2)T + op(1). It

is due to the fact that B2β(Y r
i2), C2(Y r

i2) and ∂
∂β
B2β(Y r

i2) are op (1). Then the

result follows directly by taking expectations.

Proof of Theorem 3. Now we have three multivariate normal distributed vectors,

namely ϕN (β0), ϕn1 (β0) and ϕn2 (β0). The sum of these vectors is again a
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multivariate normal distributed vector. By the relationship between V-statistics

and U-statistics and the proof of asymptotic properties of U-statistics, we can

rewrite these three random vectors as

ϕN
(
β0
)
≈ ϕ̃N

(
β0
)

=
2

N

N∑
i=1

h1 (Xi) ∼ N

(
0,

4

N
Σ1

)
,

ϕn1

(
β0
)
≈ ϕ̃n1

(
β0
)

=
1

N

N∑
j=1

h11 (Xj) ∼ N

(
0,

1

N
Σ21

)
,

ϕn2

(
β0
)
≈ ϕ̃n2

(
β0
)

=
2

n

n∑
l=1

h12 (Y r
l2) ∼ N

(
0,

4

n
Σ22

)
, (S3.8)

where Xi and Xj represent the sample from the panel and Y r
l2 the sample from

refreshment, therefore they are independent. As a result

Cov [h1 (Xi) , h12 (Y r
l2)] = 0 and Cov [h11 (Xj) , h12 (Y r

l2)] = 0.

The covariance contribution is between ϕN (β0) and ϕn1 (β0). For i 6= j, we

have Cov [h1 (Xi) , h11 (Xj)] = 0. And for i = j, we have

Σcov = Cov [h1 (X) , h11 (X)] = E
[
h1 (X)h11 (X)T

]
=

{
E
[
hcovij

]}3

i,j=1
, (S3.9)
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where hcovij is the ijth element of matrix h1 (x)hT11 (x) and

hcovij =
[
e2

1 (y1) gi (y1)wf1 (y1)
(
1 + exp

(
−β0

0 − β0
1y1 − β0

2y2

))
− e2

1 (y1) gi (y1) f1 (y1)
]

×
[
2e2

2 (y2) kj (y2)w
(
1 + exp

(
−β0

0 − β0
1y1 − β0

2y2

))
f2 (y2)

−2E
[
e2

2 (Y2) kj (Y2) f2(Y2)
]]

=2e2
1 (y1) e2

2 (y2) gi (y1) kj (y2)w2
(
1 + exp

(
−β0

0 − β0
1y1 − β0

2y2

))2
f1 (y1) f2 (y2)

− 2e2
1 (y1) gi (y1)wf1 (y1)

(
1 + exp

(
−β0

0 − β0
1y1 − β0

2y2

))
E
[
e2

2 (Y2) kj (Y2) f2(Y2)
]

− 2e2
1 (y1) e2

2 (y2) gi (y1) kj (y2)w
(
1 + exp

(
−β0

0 − β0
1y1 − β0

2y2

))
f1 (y1) f2 (y2)

+ 2e2
1 (y1) gi (y1) f1 (y1)E

[
e2

2 (Y2) kj (Y2) f2(Y2)
]
.

Then

E
[
hcovij

]
=2E

[
e2

1 (Y1) e2
2 (Y2) gi (Y1) kj (Y2)

(
1 + exp

(
−β0

0 − β0
1Y1 − β0

2Y2

))
f1 (Y1) f2 (Y2)

]
− 2E

[
e2

1 (Y1) e2
2 (Y2) gi (Y1) kj (Y2) f1 (Y1) f2 (Y2)

]
=2E

[
e2

1 (Y1) e2
2 (Y2) gi (Y1) kj (Y2) f1 (Y1) f2 (Y2) exp

(
−β0

0 − β0
1Y1 − β0

2Y2

)]
.

Let N = rn, r is the ratio between N and n. Then we have

√
N
[
ϕN
(
β0
)

+ ϕn1

(
β0
)

+ ϕn2

(
β0
)]
∼ N (0, 4Σ1 + Σ21 + 4rΣ22 + 4Σcov) .

Define Σ = 4Σ1+Σ21+4rΣ22+4Σcov and V = E
[
∂2

∂β2MN (β0)
]
+E

[
∂2

∂β2Mn (β0)
]
.

By Theorem 5.21 Van der Vaart (2000) we have the asymptotic property for β̂
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as follow
√
N
(
β̂ − β̂0

)
∼ N

(
0,
(
V −1

)
Σ
(
V −1

)T)
.
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Obs Y1 Y2 X W

Complete
set

1 Y11 Y12 X1 W1=1
...

...
...

...
...

nc Ync1 Ync2 Xnc Wc=1

Incomplete
set

nc + 1 Y(nc+1)1 Xnc+1 Wnc+1=0
...

...
...

...
N YN1 XN WN=0

Refreshment
sample

1 Y r12 Xr
1

...
...

...
n Y rn2 Xr

n

Table 1: Observed full data set with one categorical explanatory variable.

Asymptotic Formula Simulation

σ2
1 σ2

2 SEβ̂1
SEβ̂2

SEβ̂1
SEβ̂2

1 1 0.105 0.161 0.081 0.131

5 5 0.043 0.066 0.036 0.055

10 10 0.035 0.048 0.028 0.041

Table 2: The effect of marginal variances σ2
1 and σ2

2 on standard errors of β̂1 and β̂2 computed
from both the asymptotic formula and simulation. The panel size is 5000 and the refreshment
sample size is 2500. True values of attrition parameters β1 and β2 are 0.3 and 0.4 respectively.
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(a) β̂0 (b) β̂1

(c) β̂2 (d) β̂3

Figure 1: Large sample performance of semi-parametric estimators in the one-covariate case.
The dashed, dot-dash, and solid lines represent the squared bias, variance, and MSE respectively.
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Figure 2: The definitions of the reference line, perpendicular vector, and rotation angle. Here
the contour of population joint density of (Y1, Y2) is also plotted.

Figure 3: The effect of the perpendicular vector (PV) rotation on standard errors of β̂1 and β̂2
computed from the asymptotic formula. The solid and dashed lines are for PV lengths of 0.5 and
1 respectively. Five levels of correlation coefficient are considered with values 0.1, 0.3, 0.5, 0.7
and 0.9. The panel size is 5000 and the refreshment sample size is 2500.
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