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S1 Bridge density for linear Gaussian diffusion

Consider the following stochastic differential equation (SDE),
dXt = b(t,Xt)dt+U(t,Xt)th (Sll)

where X; is an n-dimensional diffusion process, W, is an m-dimensional
standard Brownian motion for m < n. For b(t, X;) := by + b1(t)X; and
o(t,Xy) := o(t) € R the solution to (S1.1) at discrete time points

to <ty < ...1is given by Jazwinskil (2007); [Evans (2012)
tit1
XtiJrl = CI)(tZ, ti—i—l)Xti + a(ti, ti+1) + / (I)(tl, t)O‘(t)th (812)
t;

where the fundamental matrix function ® € R™*" satisfies the following for
all s,t,u >ty

dd(s,t)
dt

=bi()D(s,t), DP(t,t) =Liwn, P(s,t)P(t,u) = D(s,u),

the vector a(t;, t;11) € R"™ is given by a(t;, t;11) = o ®(;, t)dt. There-
t

i

fore the transition density fi ¢, ,(2'|7) can be expressed as a Gaussian as

follows,

exp <_% (2" — p(x, tistinn)) T RNt ti) (2 — p(=, ti+1))>
V2R (b, ti )|

exp (‘% (z — @ tiytin)) T Rt tig) (2 — ful@ ti+1))>

VI2mR (bt

fti,tiﬂ ([L'I|ZE) =

Y

= ftz‘7ti+1 (37|.C13/),
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where

(@, iy tigr) = Pt tiyr)w + ally, tiva),
(b tig) = Oty ti)d — 7 (i, tiga)a,
tit1
R(ti, tiy1) == / (s, t)o(t)o ()P (t,t)dt,
t;

R ti+1
R(ti, tiy) = / O (t, tip)o(t)o ()P (L, iy )dL.
t

i

Assume s < 7 < t, then in addition to sampling p(z,|z,) exactly, one can

also sample X, ~ p(z,|zs, z;) exactly where

p(lexsu xt) X fS,T(xT|xS)fT,t(xt’xT) o8 fs,T(xT‘xs)fAr,t(xT’xt)

~

x N (a:T; <R_1(s, )+ R7Y(r, t))l (R_l(s, u(zs, 8,7) + RN t) (g, 7, t)) :

(R”(s,r) + R\(r, t))_1> .

S2 Proof of Lemma 1

The following propositions will be used in the final proof.

Proposition 1. Let X be the Brownian motion which starts at Xy = xg,
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then the following equality holds for any a > 0:

Pr < sup X5 — Xg > a|lXa = [EA>

0<s<A
exp{ — %"[a — (za — xo)]}, a > TA — Xg

1, a<xTaA—Xo

Proof. Define 7, as the hitting time of a as follows,
7, = inf {s € [0, A] | X — Xo = a}

A hitting time is also a stopping time. Then by applying the reflection
principle (please refer to Theorem 2.19 of Morters and Peres (2010)), the
process {X* : t > 0}, called Brownian motion {Xj : ¢ > 0} reflected at 7,

defined by

X; = Xt]ItSTa + (QXTG - Xt)]It>Ta

= Xt]ItSTa + (2a + 21’0 — Xt)]lt>7'a
is also a Brownian motion. Thus,

Pr<Ta <A XA € [za,za + dm])
—Pr (Xg € [2a + 220 — x4 — dz, 2a + 220 — xA])

:Pr<XZ — Xo €20+ 29— xa —dx,20 + 20 — xA]>
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Note that,

Pr(XA € [za, A + dw])

:Pr<XA — Xo € [xaA — xg, A — 20 + dm])

_dw o {_(xA—mO)Q}
V2rA P 2A '

Division between two equations above concludes the proof. O

Proposition 2. Let X be the Brownian motion which starts at Xy = xg,

then the following equality holds for any a > 0:
Pr ( inf X;— Xo < —alXa = xA>
0<s<A

exp{—2[a+ (za — )]}, a>—(za — 20)

1 a < —(xa — xp).

?

Proof. A similar approach as in Proof[S2|but define 7_, = inf{s € [0, A]|X,—
Xo = —a} and apply the reflection principle by defining the Brownian mo-
tion {X* : ¢t > 0}, the Brownian motion {X; : ¢ > 0} reflected at 7_,

formally defined by
X: = XtI[tS—Ta + (—2CL + 2:100 - Xt)I[tZ—Ta-

]

Proposition 3. Let X be defined as in Proposition 1|, then the following



inequality holds:

<

Proof.

Pr( sup | X,

0<s<A

<Pr ( sup X,
0<s<A
.

exp {—2 [a

L,
\
(

Zexp{

IN
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Pr ( sup | X5 — Xo| > alXa = IA>

0<s<A
2eXp{ — —[a —|za — l’oH}, a>|ra — o]

1, a < |ra — x|

- X0| Z a|XA = SL’A>

— Xy > alXa = ;cA> +Pr< inf X, — Xo < —a|Xa = :m)
0<s<A

— (za — 70) }+exp{—2—“ la+ (z A-:L'O)]} a>|ra — o]
a <|zxa — xo
&la—|za —xol]} a>|za — z0f

a < |xa — 0|
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Proof of Lemma 1

Proof.

Pr<E1>O‘m:k>0>

:]E{]I (ﬁ <1+%(A(Xo))—)\(XTj))> >0] ’/f:k,ﬁ,---,m}

j=1

A

z]E{]I[ max —\A(XO)—A(XTJ,)\<1] ‘/i:k,Tl,...,Tk}
je{l,...k}

=Pr ( max | (Xo) — A (X;,) | <
je

‘ﬁ:k,ﬁ,...,m .
{1k}

>[=

We can obtain an upperbound for Pr(E; < 0|x = k) by

where we assume A(-) is an [—Lipschitz function.

U N
p X—XT.>—) — k... ) <P Xo— X > L),
' (je?}?)fk}' ° 2 e =k Tk) = (oilij' ’ E Al)
Applying Proposition [3], we have
(0 _|gA—x
pop B g2y
Pr(E; <0l >0) < (52.3)
17 & S |17A _$O|
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S3 Expectation of the probability bound

This section establishes the unqualified bound ((4.8) in the manuscript).
The goal is to determine the following expectation for ¥ = | X — X

where Xa — Xo ~ N(0,A), (thus Y is a half-normal random variable):

E{I[E < 0]|x > 0}

:E{H[E<0]xﬂ[y<i}+]1[E<0]><]1[Y21] |/{>0}

SE{2eXp (—W)W“ %]}”M =




S4. PROOF OF LEMMA 2

S4 Proof of Lemma 2

Proof.

E; =exp (_A)‘(X(i—l)a)) ﬁ <1 " AX(i—1a) — )\(XT].))

j=1

<TI0+ [Xons =X,

7j=1
< 1 XS - X i—
- H( * | ( ml)
- (e p) —F. (5.4
0<s<A

We truncate the Poisson estimate as E:’ = Eillse and bound I 4 H:il E; as

follows.

gE{ﬁEﬁ}QE{HA}i. (S4.5)

ol

The term E {I A}% can be bounded using the union bound

E{Ls} <) E{ls} =mE{ls} =m x 2exp (—i) (S4.6)

i=1
The other term can be proved to be finite, i.e. E{[]/", £?} < co. Since the

increment of Brownian motion X is independent of each other, and using

the inequality (S4.4), one can show

E{ﬁEZ} gE{ﬁﬁ} =E{F}", V i
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It remains therefore to bound E {F?}.

E{F’}

]E {
k=0

(Al)

2K
:E{(l—l— max_ | B |> }
0<s<A
koAl 2k
= <1 + max |B, |)
k! 0<s<A

exp(—Al)E {exp (Al(l + max \35])2) }

exp(—AlE {exp (Al(2 +2 X max B2)> }

0<s<

exp(AE {exp (20 x g 52 )}

0<s<A

exp(Al) x / Pr (exp <2Al X max B ) ) dw
0 0<s<A

exp(Al) x

exp(Al) x

exp(Al) x

exp(Al) x

i > log(w)
_1+/1 2 exp <— A2 )dw}
1 +/ Qw_@dw]
1

1 —|—/ Pr (exp (ZAZ X max B2 > dw}
1 0<s<A
> log(w)

1+/1 Pr (Omsax | Bs| > N ) dw]

1+4A21)

= eXp(Al) X (m

where in the fourth last line we apply the inequality for running maximum

of Brownian motion which starts at zero, i.e. Pr(maxo<s<a |Bs| > a) <

2 exp ( ) for any positive number a.
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Therefore,
1+ 4A%20\™
2 2
Plugging (54.6) and (S4.7)) into (S4.5)) concludes the proof. O

S5 Experiments for Wald’s identity

In this section, we wish to numerically show that the Wald estimate is
biased, i.e. E?(L(A))/L(0) changes as  changes where K = inf{k > 0 :
EO 4+ .+ E® >0}, L) = i, ED and L(9) = EY (G*(X,)).

Here is an example of which we know the true solution to. The dynamics

that describes how one dimensional process X evolves is given by

where b is some constant and W is a one dimensional Brownian motion.
Hence
Xi| Xy =x~N(@+bx (t—1t),t—1).

Thus, # = b in this case. We can exactly calculate L(b) for A(z) = = + 10,

L) =E <exp (— /OT A(Xt)dt) ’XO - o) — exp (—10T - gT2 + éT3)

where the expectation is taken with respect to Brownian motion X |X, = 0.
Note that [ (10 + X + bt + W, — Wo)dt ~ N (10T + 272, 17%) for X, =

W():O.
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=0
L/L
(54.18)/L

E[K|Xo

Y o 1 2 B 2 Y o 1 2 5 2 a1
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(a) (b) (c)

Figure 1: (a) Plot of E?(K|X, = 0), (b) L'/L and (c) estimate (S5.8)/L versus 6 = b.

We obtain N = 10° independent samples L(b) for every value of b:
i
L) = + SN BV = E(L(b)
j=1 i=1

where K; = inf{k > 0: Ej(l) +...+ Ej(k) > 0}. Each E](.i) is an independent
(i) : -

sample where E;” « PE(T,0,T,0). Figure shows that as b increases,

the number of draws to make Wald estimate positive increases. For this

example F is

K

E = exp (=T(Xo + 10) [T [1 + [X0 — X.]]

=1

where k ~ Po(T) and 7,...,7, ~U(0,T) are i.i.d. samples. Larger b (i.e.
larger drift dragging the particle towards positive direction) increases the
chances of meeting negative Poisson estimate. In Figure [Ib] we notice a
clear trend that the empirical ratio, L'(b)/L(b), increases with b. Finally

we plot

K;

1S 1 -
DI (85.8)

7=1 J i=1



S56. EXACT COMPUTATION OF LIKELIHOOD FUNCTION

S6 Exact computation of likelihood function

This section is to determine the following likelihood function.

T
E {exp {—/ (a Xy + 5) dt} ’XT =19, X7 = :cl}
The procedure can be splitted into 4 steps.

1. As X;|Xr is a Gaussian process, the Lebesgue integral is Gaussian
random variable, see Folland (1999): approximate the given integral
as Riemann sums and each Riemann sum is Gaussian and hence the

limit will also be Gaussian.

T
(/ aX; +Bdt)XT =20, X7 = x1> ~N (oz,u + B (T — T),a202)

2. Calculate mean p:

XT = Io,XT =T dt

T_T(.I'l—xo)dt

T T
EU Xtdt’XT:xo,XT:xl} :/ E[Xt
/T t—T
1

:§(T—7')(1'0+.CE1)
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3. Calculate variance o2:

T T
E K/ Xtdt) (/ Xtdt) ’XT — 2o, Xy = xl} 2

=E { Xudeudv‘XT =x9, X7 = £81:| —u?
[r.T]?

- E [XUXU
[TvT]2

:/ cov (X, X,)+ E [Xu
[r,T]?

X, =x9, Xr = 331} dudv — 1i*

XT = SL’Q,XT = $1i| X

E [XU X, =z, Xr :xl} dudv — 1i*
B (uNv—=7)(T—uVwv) u—T
_/[;7T]2 T—71 * x0+T—T<x1 %) | X

:/TT / <“;)(TT %) dudv + /TT /UT (v _;)ETT_ %) dudy
(T — 1)

12

v—T
(xo + T(xl — x0)> dudv — p?

4. Calculate the likelihood:

T
E {exp [—/ (X + B)dt} ‘XT = 20, X7 = :cl}

—exp [~ 5T = e+ 1) - T - )+ T



S6. EXACT COMPUTATION OF LIKELIHOOD FUNCTION
Therefore, the exact likelihood for ¢;.,, and Ytritn, where n,, is the number

of observations, is

L:E{

ti—ti ti —ti1)?
X exp (—Tl (XtFl + Xti) — 10(ti — ti_l) + %)]

Tip

H (Xti + 10) ge<yti

i=1

Xti)

T —t, T—t,)3
X exp (— 5 P (thp + XT) —10(T — tnp) + %) } .

To find the ground truth for values of n, > 2, we use Algorithm 3 described
in the manuscript with line 8 using the exact evaluation (given by (S6.1))).
This allows the computation of Monte Carlo estimate described in Section

5.1 of manuscript.

(6 —th)”

24
(S6.1)

; 1
E,g) = exp 3 (tkA - tkAq) (XkA—l + XkA) — 10 (t/’fA - tkAfl) t
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S7 No Observation Case and Two Observations Case

The exact likelihood for no observation received within [0, 7] is

fow - )

e {efon (- [ 0] -0

afon (s 5}

e (s B e (5

T3
=exp <—1OT + F)

and the exact likelihood for two observations received within [0, T is

L :E{ H)\ X))y ytl|th)eXp( [ )\(Xs)ds)] exp (- /:)\(XS) ds)}
/ / / (v1 4 10) (v1 + v2 + 10)

exp ( (Yt — V1) + (Yo — 01 — 02)? )

2
20y

X

2
27my

t to — 1 —1
X exp (—1—1}1 -z (21 + vy) — 2(22)1 + 2vy +v3) — 1OT)

2 2
134 (ty —t T —t9)3
xexp< +(2 1;4+( 2))
1 1 1

X X X
V21t \/2m(ty — 1)) 21 (T — t3)

2 2
Oh vy U3
X - — — dvsduvod
eXP < 2t 2ta—t1) 2T — tg)) Va0t




S7. NO OBSERVATION CASE AND TWO OBSERVATIONS CASE

The first integral with respect to vs is

o T—1 v3 1
/ exXp (— 9 2'113 — 2(T i t2)) d'l)g = 27T<T — tg) exp (g (T — t2)3) .

—0o0

The second integral with respect to vy is

2
e — — to — t T—t¢
/ (v1 + vo + 10) exp (—(y” 21};2 va) ) X exp (— 2 5 Loy — 5 2 % 2v2>
- Yy

X v d
ex e e—— U
P\ 2t — ) ) ™

> 1 1 —Y + v tl + t2 - 2T
= 10 — 2 _ 2 _
/oo(vl Toat10)exp ( (205 - 2(ty — 751)) . ( o, 2 "

2 _ 20y, + U2
X exp (_ytg 1yt2 1) dUQ

203
0o 2 2 2 2
Y, — 2014t + 0T 3 (v2 — p2)
- 10 i b 22 ) o (CX2 TR
/Oo(vl + vg + 10) exp ( 205 207 Xp 202 Uy

2 2 2
Ui, — 201y, T 07 3
—+/2702 10 Y Hr
moy (2 + v+ 10) exp ( 207 207

where

0'5 tg —tl O'Z 2

1 1 \! —vy b4ty —2T
J§:< + ) , /ngag(y752 SR B )zag(avl—l—b)

and for

ty +ty =27

27 2
o o, 2
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The third integral with respect to vy is as follows,

2 2 2
> —v1)" + Y, — 201y, t U
/ (v1 + 10) (12 + v1 + 10) exp (— o — 1) 3”2 ti 1)
0,
- Y

2
X exp <% (a*v} + 2abv; + 62))

Uy

t 2
X exp <—1TU1 — (tg —ty) vy — (T — t2>’U1) exp (— 57 ) dvy
1

= oya+ 1)v7 + (10(o3a + 1) + o3b + 20) vy + 10035 + 100
2 1 2 2

1 d’o; 1 9 2yy, + 2y, o  t1—2T
Xexp(—(;— 5 +2—tl)v1—|— T‘_Z—f—abO’Q—i— 2 [

Y

2 2 2 2
+ b
X exp <_ yh%zym ;2) dv,
Yy

=y\/2m0? [(o5a + 1) (1 + 01) + (10(c5a + 1) + o3b + 20) p11 + 1005b + 100]

2 2 2 2 2
Yy, T Yz, b o; 1251

X J—
P ( 202 2 g7

-1
+ _
where 07 = (% —a*ol + ﬁ) and p, = o? <% + abo? + %)

Therefore,

1 01029

—= 2 X
27my t (t2 — t1)

[(o5a+1) (1 +07) + (10 (03a + 1) + o3b + 20) 11y

2 2 2 2 2
+ b
+1002b + 100] x exp (—y“ Yo 702, 14 )

207 2 202

St (ta—t)P+(T—1)% 1
1 T —t,)° ).
24 8( tQ))

t
X exp <—10T + + =

The exact likelihood are used to compute the relative MSE for Section 5.1

of manuscript and Section [S8| of Supplementary Material.



S8. EMPIRICAL RELATIONSHIP BETWEEN RELATIVE VARIANCE AND A

—— np=0
—— np=2
—& np,=6
—— np,=9
—— np,=13

10714

relative variance

10-24

Figure 2: Plot of relative variance versus A for different values of n, and fixed N = 100

in log scale.

S8 Empirical relationship between relative variance

and A

Figure [2| reports the relationship between relative variance and A for dif-
ferent n, values and fixed N = 100. For n, = 0 and n, = 2 cases, the
exact likelihood is computed using solutions calculated in Section [S7, for
other larger values of n,, the Monte Carlo estimate Ly is used in relative
variance computation. Results show that the relationship between relative
variance and A can be highly n,-dependent. As n, of problem increases,
the rate of change in relative variance becomes less positive when A ap-
proaches zero. A more general trend that applies to all values of n, is that

the relative variance eventually becomes constant as A goes to zero.
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S9 Born and Wolf observation model

In this section, we plot the point spread function of Born and Wolf obser-

vation model at different de-focus levels. For (z,z5) € R?,

2

b 2mn, T3 x
| et i) esp(Te )y (9.2
0 e ToAe

where ng is the refractive index of the objective lens immersion medium

2
4mn?,

AQ

e

QZ’g (*Ih sz) —

and n, is the numerical aperture of the objective lens. A, is the emission
wavelength of the molecule. Jy(+) and J;(+) represents the zero-th order and

the first order Bessel function of the first kind, respectively.

S10 Thinning algorithm for creating data

This section describes the thinning algorithm we use to generate observation

data. Please refer Algorithm [I] for details.

S11 Additional experiments

In Figure we plot the true trajectory of a molecule, and simulate using
parameters {§ = (1.0,1.0,1.0)",u = (0.5,0.5,6.0)",py = 0.01} for time
interval [0, 5.0]. Other parameters remain the same as in the manuscript.
Figure [4c| shows the filtered (x,z5) mean locations of molecules, which

deviate from their right positions. Figure [4d| shows the filtered mean of w3
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Qo(x1, x5)

(¢c) 3 = bum (d) 3 = 8um

Figure 3: Born and Wolf point spread function at different defocus levels. Mesh rep-
resentations are shown for (S59.2) at different defocuses x3, computed with wavelength
Ae = 0.52um, numerical aperture n, = 1.4, refractive index of the objective lens immer-

sion medium ny = 1.515. The x3 values shown correspond to point source positions (a)

xg = Opm (in focus), (b) 2um, (c) 5um and (d) 8um.

and regions of +1 standard deviation together with the true state of X3
at the observation times. In comparison to the Figure 6¢c and 6d of the

manuscript, Figure [dd and [Ad] of Supplementary Material shows that higher
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Algorithm 1: Thinning Algorithm for simulating the observation times with

intensity function A(X;) on [0, T
Input: Apax = Ao, T

=

Generate N ~ Po(AnaxT);
2 Generate t1,ta,...,txy ~U(0,T);
3 Sort t1,ts,...,ty and relabel them so that t1 <ts < ... < tp;

4 Generate Xg ~ v(z) and set 7 = 0;

(%]

forie {1: N} do

6 Propagate X;, from previous 7, i.e. Xy, ~ ff _ (x4,

X7);

7 Generate U ~ U(0,1);

8 if U < A(X4,)/Amax then

9 Keep t; as a real observation time and set 7 = t;;
10 Generate y;, which is a realisation of V;, ~ ¢?(y|X;,) with Born and

Wolf point spread function.

Output: all pairs of (¢;,y:,)

values of x5 degrade the estimation quality of particle filtering algorithm on
the state of molecule and this is due to the exponential function structure
of Born and Wolf image function which generates photons that are detected

very far from the true molecule position.
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Figure 4: (a) True trajectory of a molecule; (b) observed photon locations; (c) estimated

(z1,x2) molecule locations and (d) true zs molecule locations and estimated location.
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