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S1 Preliminaries

Given the vector a we use a(i) for the (i)-th element of a (vectors are

always assumed to be column vectors), given the matrix A we use A(i,j)

for the (i, j)-th element of A and we use A(i,•) (or A(•,j)) to represent the

column vector given by the (i)-th column (or the (j)-th row) of matrix

A. We use AT for the transpose of matrix A (similarly for vectors). The

dot product between two matrices A,B is denoted by AB (similarly for

vectors). Sums or differences between vectors or matrices have to be thought

of as elementwise, similarly when using vectors or matrices and a scalar.

We employ the convention R+ for the positive real numbers. We use the
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notation Ia(b) for the indicator function, with a, b being scalars, vectors, or

matrices.

Given the probability mass (or density) function of a random variable

D(x|θ) evaluated in x with parameters θ as in table 1, we use X ∼ D(•|θ)

to say the random variable X is drawn from the corresponding probability

random variable and we denote with ED(X|θ)[X] the corresponding expec-

tation.

Distribution Categorical Bernoulli Binomial Gaussian Uniform Multinomial

Notation CatM (i|p) Be(i|q) Bin(i|N, q) N (a|µ, σ2) Unif(q|a, b) Mult(c|N,p)

Domain [1 : M ] {0, 1} [0 : N ] R [a, b] {c :
∑

i∈[1:M ] c
(i) = N}

Table 1: Notation table for probability mass and density functions along with domains.

S2 Introduction to compartmental models

In epidemiology, compartmental models are used to describe the dynamics

of an epidemic in a population, where the compartments represent different

stages of the disease (Brauer, 2008). A closed population stochastic com-

partmental model is fully defined by: the number of compartments M , the

population size N , the initial probability of being assigned to a compart-

ment p0, and the probability of transition from one compartment to the

other K•, which is a stochastic transition matrix c→ Kc defined as a func-
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tion of the compartments’ state c. The dynamics of a compartmental model

is generally described by a discrete-time Markov chain (ct)t≥0 counting the

number of individuals in each compartment, i.e. ct is an M -dimensional

vector with c
(i)
t being the number of individuals in compartment i (Keeling

and Rohani, 2011). The evolution of ct can be specified from an individual

perspective by defining the discrete-time Markov chain (xt)t≥0, where xt is

an N -dimensional vector representing the state of the population at time t

(Whiteley and Rimella, 2021), i.e. x
(n)
t is the compartment of individual n

at time t. The evolution of (xt)t≥0 and (ct)t≥0 can be then represented as

the following flow:

Time 0: x
(n)
0 ∼ CatM(•|p0) for n ∈ [1 : N ] and

c
(i)
0 =

∑N
n=1 Ix(n)

0
(i) for i ∈ [1 : M ];

Time t: x
(n)
t |xt−1 ∼ CatM

(
•
∣∣∣K(x

(n)
t−1,•)

ct−1

)
for n ∈ [1 : N ] and

c
(i)
t =

∑N
n=1 Ix(n)

t
(i) for i ∈ [1 : M ];

where we first make all the individuals move (simulate xt) and then count

the individuals in each compartment (compute ct).

SIS example The susceptible-infected-susceptible model (SIS) is a well-

known compartmental model used to model the spread of a disease in a

population where herd immunity is not possible, i.e. the individuals can be
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re-infected. A stochastic SIS with closed populationN can be represented in

the previous framework by: M = 2, p0 in the 2-dimensional simplex (with

p
(1)
0 probability of being susceptible at time 0) and K• a 2by2-dimensional

stochastic transition matrix. A popular choice of K• is:

Kc =

 e−β c(2)

N 1− e−β c(2)

N

1− e−γ e−γ


with β, γ ∈ R+ transmission and recovery parameters.

Focusing on the compartments’ state automatically assumes homoge-

neous individuals, which is a significant simplification of the real world,

where each individual often has their own covariates, e.g. age. individual-

based compartmental models or simply individual-based models relax the

homogeneity assumption and look at the disease from an individual per-

spective. The main difference resides in the individual-specific (pn,0)n∈[1:N ]

and (Kn,•)n∈[1:N ] representing the heterogeneous dynamic of the individuals.

S2.1 Considerations on non-granular observation models

Compartmental models in epidemiology are generally treated as latent and

accompanied by an observation model representing the conditional distribu-

tion of the observations given the current compartments’ state often refer

as the emission distribution. Popular choices are the Negative binomial
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distribution (Fintzi et al., 2021) and the binomial distribution (Lekone and

Finkenstädt, 2006), with the latter being used by Ju et al. (2021) in an

individual-based model framework. The main limitation of these emission

distributions is that they are formulated over the aggregated population,

while for an individual-based model, it is fair to assume individual-based

observations.

S3 Hidden Markov models

In an HMM (xt,yt)t≥1 the recursive computation of p(xt|y[1:t], θ) and p(y[1:t]|θ)

is known as forward algorithm and it consists of the following steps:

Time 0: p(x0|θ) from the initial distribution;

Time t: p(xt|y[1:t−1], θ) =
∑

xt−1∈[1:M ]N p(xt|xt−1, θ)p(xt−1|y[1:t−1], θ) and

p(yt|y[1:t−1], θ) =
∑

xt∈[1:M ]N p(yt|xt, θ)p(xt|y[1:t−1], θ) and

p(xt|y[1:t], θ) =
p(yt|xt,θ)p(xt|y[1:t−1],θ)

p(yt|y[1:t−1],θ)
and

p(y[1:t]|θ) = p(y[1:t−1]|θ)p(yt|y[1:t−1], θ).

A close-form solution for the filtering is often not available and an SMC algo-

rithm can be employed to compute particle estimates of both p(xt|y[1:t], θ)

and p(y[1:t]|θ). A general SMC algorithm is presented in 1 and it con-

sists of: resampling the previous particles according to the resampling
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scheme and correcting the weights accordingly, proposing new particles

with the proposal distribution, update the weights. Note that it is re-

quired
∑

p∈[1:P ] w̃
p
s = 1 with w̃p

s ∝ wips
s /rs(i

p
s), with is resampled indices,

which is then updated according to the transition kernel, emission distri-

bution and proposal distribution. The likelihood estimate is then given by

p̂(y[1:s]|θ)← p̂(y[1:s−1]|θ)
∑

p∈[1:P ]w
p
s , where w

p
s are the weights after update.

Algorithm 1 A general sequential Monte Carlo algorithm

Require: P , θ, y[1:t], (q(xs|xs−1,y[1:t]))s∈[0:t], (rs(i))s∈[0:t]

1: Sample xp
0 ∼ q(•|y[1:t])

2: Compute wp
0 ←

p(xp
0 |θ)

q(xp
0 |y[1:t])

for p ∈ [1 : P ]

3: for s = 1, . . . , t do

4: Resample ips−1 ∼ rs−1(•) and set x̃p
s−1 ← x

ips−1

s−1 for p ∈ [1 : P ]

5: Correct the weights w̃p
s−1 ∝

w
i
p
s−1

s−1

rs−1(i
p
s−1)

and normalize for p ∈ [1 : P ]

6: Propose xp
s ∼ q(•|x̃s−1,y[1:t])

7: Compute wp
s ← w̃p

s−1

p(xp
s |x̃

p
s−1,θ)p(ys|xp

s ,θ)

q(xp
s |x̃p

s−1,y[1:t])
for p ∈ [1 : P ]

8: p̂(y[1:t]|θ)←
∏

s∈[1:t]

∑
p∈[1:P ] w

p
s

In the HMM terminology the initial distribution p(x0|θ), the transi-

tion kernel p(xt|xt−1, θ) and the emission distribution p(yt|xt, θ) for our
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individual-based model with granular observation are given by:

p(x0|θ) =
∏

n∈[1:N ]

p
(x

(n)
0 )

n,0 , p(xt|xt−1, θ) =
∏

n∈[1:N ]

K
(x

(n)
t−1,x

(n)
t )

n,ct−1 ,

p(yt|xt, θ) =
∏

n∈[1:N ]

(
q
(x

(n)
t )

t

)I
y
(n)
t

(x
(n)
t ) (

1− q
(x

(n)
t )

t

)I
y
(n)
t

(0)

.

These definitions are useful to see how the transition kernel and the emission

distribution can be used to simplify the formulation of p(yt|xt−1, θ):

p(yt|xt−1, θ) =
∑

xt∈[1:M ]N

∏
n∈[1:N ]

K
(x

(n)
t−1,x

(n)
t )

n,ct−1

(
q
(x

(n)
t )

t

)I
y
(n)
t

(x
(n)
t ) (

1− q
(x

(n)
t )

t

)I
y
(n)
t

(0)

=
∏

n∈[1:N ]

∑
x
(n)
t ∈[1:M ]

K
(x

(n)
t−1,x

(n)
t )

n,ct−1

(
q
(x

(n)
t )

t

)I
y
(n)
t

(x
(n)
t ) (

1− q
(x

(n)
t )

t

)I
y
(n)
t

(0)

.

Algorithm 2 Multinomial approximation by Whiteley and Rimella (2021)

Require: (p̄n,0)n∈[1:N ]), (K̄•)n∈[1:N ], (qs)s∈[t], (os)s∈[t]

1: m0|0 ← p̄n,0 ▷ Forward step

2: for s = 1, . . . , t do

3: ms−1|s ←
(
mT

s−1|s−1K̄ms−1

)T

4: ms|s ← os

N +
(
1− 1T

Mos

N

)
ms−1|s◦(1M−qs)

1−mT
s−1|sqs

5: for s = t− 1, . . . , 0 do ▷ Backward step

6: Ls ←
{[

(ms|t1
T
M ) ◦ K̄ms

]
/
[
1M (mT

s|tK̄ms)
]}T

7: ms|t ←
(
mT

s+1|TLs

)T
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S4 A priori estimate of the compartments’ state

The approximate homogeneous dynamic considered in the main paper is:

Time 0: x
(n)
0 ∼ CatM(•|p̄n,0) for n ∈ [1 : N ] and

c
(i)
0 =

∑N
n=1 Ix(n)

0
(i) for i ∈ [1 : M ];

Time t: x
(n)
t |xt−1 ∼ CatM

(
•
∣∣∣K̄(x

(n)
t−1,•)

ct−1

)
for n ∈ [1 : N ] and

c
(i)
t =

∑N
n=1 Ix(n)

t
(i) for i ∈ [1 : M ].

The full algorithm by (Whiteley and Rimella, 2021) is reported in al-

gorithm 2.

S5 Additional experiments

S5.1 Susceptible-infected-susceptible

Outcomes from the SIS model are shown in figure 1. The full table on the

marginal likelihood standard deviation is reported in table 2. Complete

marginal likelihood contour plot are reported in figure 2 and figure 3 in log

scale and normalized to have their max in zero.

We measure the sensitivity to q of APF and our method when h =

1, 5, 10, 20 when P = 512. We study the performance of the considered

methods when q varies, precisely we choose a scenario where data are gen-

erated according to q = [0.8, 0.8]T, but the algorithms use q = [i, i]T with
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Figure 1: SIS epidemic, on the left the unobserved process, on the right the observed

data.

APF 0.7s h=5 2.5s h=10 3.94s h=20 6.61s

DGP NDGP DGP NDGP DGP NDGP DGP NDGP

P std std std std std std std std

64 7.02 10.97 0.4 1.26 0.48 1.35 0.46 1.19

128 4.99 9.89 0.3 0.92 0.31 1.0 0.37 0.89

256 5.24 8.3 0.27 0.72 0.24 0.67 0.35 0.63

512 4.01 6.66 0.17 0.48 0.18 0.49 0.18 0.48

1024 3.42 7.17 0.15 0.34 0.21 0.33 0.15 0.35

2048 2.83 6.23 0.11 0.25 0.11 0.22 0.11 0.22

Table 2: Table reporting standard deviation for APF and our method when h = 5, 10, 20

under DGP and NDGP with P = 64, 128, 256, 512, 1024, 2048. The mean computational

cost is reported in the first row with the name of the algorithm.

i ∈ [0.1, . . . , 0.9]. As for the previous experiment we compute the standard

deviation and ESS bands by running 100 times algorithm 1 for each frame-
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Figure 2: Marginal likelihood contour plots on a βλ grid in log-scale. Columns refer to

t = 10, 50, 100 from left to right. Rows refer to h = 5, 10 from top to bottom. The

colorbar is common across the plots and in each plot, the maximum is set to 0. In red

is the DGP and in black is the MLE on the grid.

work. Results are reported in figure 4. APF is always associated with a

higher standard deviation of the marginal likelihood estimate and to a lower

ESS. As for the previous experiments, we have a significant improvement

in both standard deviation and ESS when choosing h = 1, this gets even

better when h ≥ 5, especially from an ESS perspective.
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Figure 3: Marginal likelihood contour plots on a βγ grid in log-scale. Columns refer to

t = 10, 50, 100 from left to right. Rows refer to h = 5, 10 from top to bottom. The

colorbar is common across the plots and in each plot, the maximum is set to 0. In red

is the DGP and in black is the MLE on the grid.

We now infer (β0, βλ, βγ,q) from data generated from DGP. For this

experiment, we employ a Particle marginal Metropolis-Hastings (PMMH)

(Andrieu et al., 2010) using an SMC with our proposal distribution and

resampling scheme along with the following set of priors: N (β
(1)
0 |0, 3),

N (β
(2)
0 |0, 3),N (β

(1)
λ |0, 3),N (β

(2)
λ |0, 3),N (β

(1)
γ |0, 3),N (β

(1)
γ |0, 3), Unif(q(1)|0, 1),
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Figure 4: Effective sample size and marginal likelihood standard deviation sensitivity to

q. The first column shows the marginal likelihood standard deviation, while the second

column reports ESS where mode, 5%-quantile, and 95%-quantile are reported.

Unif(q(2)|0, 1). As proposal distribution for the parameters, we use a Gaus-

sian random walk on the log-parameters with variance chosen to match the

optimal acceptance rate of 23%.

We run the PMMH for 100000 iterations and we used a burn-in period of

10000 and thinning. Marginal posterior distributions are reported in figure

5, we can notice that posterior are “peaky” and close to the DGP, with the

exception of β0 which has a flatter posterior, which is more difficult to learn

given that the only information is derived from y1. To push our study one

step further we also plot R
(n)
0 distribution and posterior predictive in figure

6. We can observe that the PMMH learned the R
(n)
0 distribution on a global

level (first column) and on an individual level (second column), with R
(n)
0

from the DGP almost indistinguishable. For the posterior predictive we
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Figure 5: Posterior distribution over the parameters of interest. On the columns

(β0, βλ, βγ ,q) from left to right. On the rows h = 5, 10 from top to bottom. Priors

are reported in red dotted lines. Vertical lines are the DGP.

sample 200 times from the posterior and we then simulate 200 epidemics

with those parameters. Figure 6 shows good coverage of the aggregated

data (fourth column) and of the aggregated latent data (third column).

The latter is not available during the inference process, but it is stored at

simulation time to add an additional level of comparison.

S5.2 Susceptible-exposed-infected-removed

We can make the SEIR model heterogeneous by considering d ∈ N and

by defining (wn)n∈[1:N ] as the collection of d-dimensional vectors collect-
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Figure 6: R0 distribution and posterior predictive. First column distribution of the mean

R
(n)
0 . Second column R

(n)
0 and credible bands for each individual (sorted for increasing

R
(n)
0 ). The third and fourth columns are posterior predictive over xt and yt. Rows from

top to bottom h = 5, 10.

ing the individual-specific covariates. From wn we can define the initial

distribution:

pn,0 =



1− 1
1+exp (−βT

0 wn)

0

1
1+exp (−βT

0 wn)

0


for n ∈ [1 : N ] and β0 ∈ Rd
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Figure 7: SEIR epidemic, on the left the unobserved process, on the right the observed

data.

h=5 0.9s h=10 3.5s h=20 5.45s h=50 9.03s

DGP NDGP DGP NDGP DGP NDGP DGP NDGP

P std std std std std std std std

64 49.1 29.59 23.36 34.47 8.44 18.13 8.48 13.93

128 58.18 68.2 20.47 32.6 9.59 18.32 6.93 11.71

256 43.99 72.48 21.3 31.35 7.56 16.07 6.77 11.16

512 48.23 74.78 18.37 28.64 6.39 15.76 6.23 10.72

1024 45.64 66.12 19.36 29.75 5.71 14.1 5.38 10.5

2048 42.7 58.37 15.03 24.68 5.69 13.25 4.57 10.45

Table 3: Table reporting standard deviation for our method when h = 5, 10, 20 under

DGP and NDGP with P = 64, 128, 256, 512, 1024, 2048. The mean computational cost

is reported in the first row with the name of the algorithm.

and calculate (Kn,•)n∈[1:N ] as:

Kn,c =



1− 1
1+exp (−βT

λwn)
c(3)

N
1

1+exp (−βT
λwn)

c(3)

N
0 0

0 exp(−ρ) 1− exp(−ρ) 0

0 0 1− 1
1+exp (−βT

γ wn)
1

1+exp (−βT
γ wn)

0 0 0 1


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for n ∈ [1 : N ] and with βλ, βγ ∈ Rd and ρ ∈ R+. In this model, we

have individual-specific probabilities of infection and recovery and a homo-

geneous latent period of 1/ρ. Outcomes from the model are shown in figure

7.

Figure 8: Marginal likelihood contour plot on a βλ grid in log-scale. Columns refer to

t = 25, 50, 100 from left to right. Rows refer to h = 10, 20 from top to bottom. The

colorbar is common across the plots and in each plot, the maximum is set to 0. In red

is the DGP and in black is the MLE on the grid.

The full table on the marginal likelihood standard deviation is reported
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Figure 9: Marginal likelihood contour plot on a βγ grid in log-scale. Columns refer to

t = 25, 50, 100 from left to right. Rows refer to h = 10, 20 from top to bottom. The

colorbar is common across the plots and in each plot, the maximum is set to 0. In red

is the DGP and in black is the MLE on the grid.

in table 3. Complete marginal likelihood contour plots are reported in figure

8 and figure 9 in log scale and normalized to have their max in zero.

Sensitivity to q is measured as for the SIS case, with data generated

with q = [0, 0, 0.4, 0.6]T and our algorithm is run using P = 512 and q =

[0, 0, i, i]T with i ∈ [0.1, . . . , 0.9]. Figure 10 reports the results for different
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Figure 10: Effective sample size and marginal likelihood standard deviation sensitivity to

q. The first column shows the marginal likelihood standard deviation, while the second

column reports ESS where mode, 5%-quantile, and 95%-quantile are reported.

choices of h. As expected an increase in h is associated with a smaller

standard deviation and a bigger mean ESS. It is also important to mention

small values of h are more likely to fail even if they are close to the DGP,

see h = 5, while higher values of h report −∞ when they are far from the

DGP, see h = 50 on the values 0.1, 0.9.
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