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In the Supplementary Material, we first provide the proofs of Theorems Then, the point-
wise asymptotic distributions of B\o(t) and B\l (t) are studied. Finally, some additional simulation

results are presented.

S1 Proof of Theorem 1

Proof of Theorem[]. The estimating equations are equivalent to
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where N = n~' S0, LiMi, Pi(y) = V7 and Py(y) = 222200 By

using counting process N;(t, s), we can rewrite the estimating equations as

=iy / / Kot — )X, (5)[Yi(t) — g{X} ()7 HAN;(t, 5) — NPy (v) — NBy() = 0,

where N;(t,s) = ZjL;l SV I(Tyy < t,Si < s) and I(-) is the indicator
function. Let a, = MY2h2 4 n~V2MY2p=1/2 4 pM~1/2 4 M~". We then

want to show that Vy € {v: v + a,w, [|w||s = C1}, Ve > 0, we have

P{ inf (7)) ¥n(7) > Ya(v0) "Pnlr0)} 21— (S1.1)

[lwll2=C1

when constant Cf is large enough. It implies that there exists a local min-
imizer 4 in the ball {7 : o + a,w, ||w||s < C1}, with probability at least
1 —e. That means ||¥ — yoll2 = Op(aw,).

Let

) = / / Ka(t — )X (Vi) — g{X () ANt 5) — NPi(v) — NBy(v).

Then ¢, (y) =n' > Uni(7y). For Uy(y), we have

Unz(’)’) = nz 70

[ [ Rt~ 901 (R 0o )+ 62200 e OP0)

o, o, ]anw{l +o(1)}

2 Uni(yo) — UL (w).
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Therefore,

_ %Z{Um('yo) — UL (W)} = vulv0) — UL (w),

where Ufll)(w) =13, U(I)( ). Then we have

Un (1) n(¥) = ¥ (30) " Yn(v0) = Ug? (w) U (w) = 20 (y0) UL (w) £ Sy = S
Let
=32 [ [ R R K K o)+ N

We have
Sy = [[Aianw]* = O(M)Amin(A] Ao [w]]3 = O(M)Amin (A1) w3,
15| < 2] (v0) 251" < 21110 (70) 2O (M) A (A1) 0] -

By Lemma [I| and Lemma [2| there exists constants C > 0,C5 > 0, such

that

Sl Z CQM(I2

allwll

|Ss| < CsMY2a2 w2
Then
Sy — Sy > CoMal|wl3 — CsM' a2 |w])».

Thus, when Cy is large enough, we have S; — Sy > 0. Then (S1.1)) is

obtained. So [§© = x|l = O,(an) and [§O = AV ||2 = Op(arn).

) é”52(’)’0)

970

I
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Since ||’y(gO)TB —Bolloc = O(M ™) by Assumption (Zhong et al., |2021)),

we have

%) = T T
150 = Bolloo < 1180 = 1 " Blloo + 17 B — Bolloo

~ 0 0T
= 1A = A" Bloe + 17 B = Bolso

L
~ 0 0)T
<A = %Mo (3 B;) + 17”"B = Bolloe

j=1
= 79 = %o + 17" "B — Boll
= Op(an) + Op(M ")

= Op(an>-

We can get |81 — Biloe = O,(cv,) in the same way. The proof is completed.

O

Lemma 1. Suppose that the conditions of Theorem 1| are satisfied, there
exists constants ¢; > 0 and ¢y > 0, such that ¢; < Apin(A1) < Apax(A1) <

Co.

Proof. Let

B = %Z/ / Kt = $)X; (5)9'{X; (5) 70} X; () dNi(t, 5).
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Then

BB, ://Kh (t— ) E[X ()9 {X " (5) 7o)X () TIA(E, 5)dtds
//K ()9 {X"(8) T} X () TIA\(s + hz, s)dzds
= {1+0(h?) }/ g{X (s) 70}5(*(3)T]/\(3,s)d3.

First, EB; is positive definite. In specific, if there exists a vector a

Y

such that

aT / EIX (5)g {X" ()T} X (5)TIA(s, 5)dsa = 0.

Then an(*(s) = 0 for any s € G with probability 1, which means a; B(s) +
a, B(s)X(s) = 0, where aj, a, are the first and second L elements of a. By
Assumption [6), we have a = 0. That means all eigenvalues of EB; are
positive.

Then, eigenvalues of EB; are finite. Specifically, Vb € R?" satisfying
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|Ibl]2 = 1, we have

b [ EIX (5)9/ (X' (5) 20} X (5)T (s, s
= [ EBTX (9% () by (X (5) 0} A5, s
< [ B ()X ()91 (5) 0} . s)ds
= [ BB [ R (0} + X)X () 0} A,
< [ BB X () 0 A o)

+ / B(s)TB(s)EY? [X*(s)9'{X"(5) "1} (5, 8)ds < o
;

The first inequality is derived by

o~k

X (X (9= {3056} <Y BY Ke) =X ()X (9)

where )?]*(3) is the j-th element of )z*(s). The last inequality can be ob-
tained by Assumption [2] and Assumption [5} Hence, eigenvalues of EB; are
finite.

We have ||A; — EB;|1 < ||A1 — Bi||1 +||B1 — EBi||1, where || - ||; is the
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Ly norm for matrix. For ||A4; — By]|1,

OPy( . OP,
14y = Bill = |85 Ohlw) | . 2(70>H
Yo Oy Ih
- N M+19 1)
=[5V + 5 T / pa(BT (0" ]|

N M+1
<NVl + 5 - | [ B 0],

N M+1 82 1)
_N|[V H / B (1), dt”
“ PO, PlHl 2 T a’Yé )2 pA(| ( Yo |) "
_ N M+1
=No(1) + 5 T* o(M~1) = 0,(1). (S1.2)

The third equality is derived by Assumption |3|according to Lin et al.|(2017)).

Moreover,

N= %Z S D Z//dNts

=1 j=1 k=1
E‘//d]\fts

- E{//dN,-(t,s)} - ///\(t,s)dtds < .

Then by Markov inequality, we have N = O,(1), which is used in the

derivation of the last equality of (S1.2)). For ||B; — EB||1, let

Minia = = Z / / Kt — ) X5, ()9 (X () "0} X, (8)dNiE, ).

Then ||Bl — EB1||1 = Z]l 1 2]2 1 |77j1j2 — Enj1j2|' Similar to the pI‘OOf of
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Theorem 1 in (Cao et al.| (2015]), we have

var / / Kyt )%, ()9 (X (5) 0} K, ()N (1 5]

IH 3|'—‘

< / / Kt — $)X2,(5)9'{X (5) "0} X, () AN (2, s)]2

- —//K2< VE[X22(5)g'{X " (s) "0} X:2(s)]A(s + hz, s)dzds + O(n~ " M)

The above derivation is obtained by Assumptlonland f 32 (5)A(s, s)ds =

O(M™1), where éj(s) is the j-th element of B(s) = (B(s)T,B(s)T)T. Then
| By — EBy||; = O, (M32n~12p7Y2) = 0,(1). (S1.3)
Thus, by (S1.2)) and (S1.3), we have ||[4; — EB;|1 = 0,(1). Since

[ Amin(A1) = Amin(EB1)| < [|Ar — EBy |1,
’)\max(A1> - Amax(EBl)’ S HAl - EBle
eigenvalues of A; are bounded away from 0 and infinity as eigenvalues of

EB;. The proof is completed.

]

Lemma 2. Suppose that the conditions of Theorem|[]] are satisfied, ||1n(v0)|2 =

Op(a).
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Proof. Let

Qi) =Y [ [ Kt = ROMD) ~ 9K () Wl )

Then

1¢n(30)l2 < 1Qn(0)llz + NI Pi(v0) 2 + N Pa(0) |- (S1.4)

First, for Q,(v), we have

E[Qn(v0)lz = E{Qn(70) " Qu(70)} = tr[var{Qu(70)}] + E{Qu(v0)} " E{Qu(70)}

= L trfvar (22U (0)}] + E{Qu(70)) E{Qulr0)}. (S15)
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For E{Qn(70)}, we have
B{Qu(0)} / [ it - 9% ~ 9K (5) 0} AN t, )
//m—s o)
/ [ Eile = X (19X (o) 2 HA )
= [ [ Kt = X (9)5100(0) + X 050N s
= [ [ Bl = 9 BIX (99(% () ) AE e
= [ [ Kl = 9EX (99X (0720 + BO® + X(ORD ©))AE ieds
= [ [ Bl = 9 BIX (99(X () ) e, e
= [ [ Kl = 9EX (591X (0 20 HA. s)rds
- [ [ e = 9B ()X () bt )ieds
+ [ [ 5t = 9BX () 1K 0 20 HED () + X(ORD ()N, 9)duds

/ / Kn(t — )E[X (8)g'{X (1) Tv0 o, { RO (t) + X (1) RD (AL, s)dtds
L2+ I+ I, (S1.6)

where R\ (t) = fo(t) — BT (t)y” and RY (1) = Bi(t) — BT ().

Let (s, hz) = E[}z*(s)g{}z*(s—i—hz)T'yo}]. Then by Taylor expansion,

I = //K H{EFy (s, hz) — Fy (s,0)}A(s + hz, s)dzds

= Ch? + o(h?),
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where
OF,,(s,y) Oz, s) 10?F,,(s,y)
_ 2f Yo . - Yo\ I/ . .
C /Z (Z)dZ/{ 8y y=0 ox T=s * 2 8y2 y=0 >\(878>}d8
So we have
I = O(MRY). (S1.7)
Let

/ / Kot — 5)BX ()9 {X " (1) TqoH{1 + X(O)}A(L, s)dtds.

Then we have |I,| < WM™"|I,|, where W is a constant. Further, by Taylor

expansion,
T, = //K ()94X" (s + h2) Ty 1 + X (5 + h2)}A(s + hz, s)d=ds
— [ BIX (9 (X () 0 HL + X (YA, s + O12).
Further,
[ EX (96 (X () TuH 1+ X(5)))As. o)
— [ B ()X ()l As.)ds + [ EX ()1 (5) 30} X (5)AGs.9)ds.

According to Assumption p| for 5 = 1,..., L, there exists a constant Cy

such that
| [ B 006 (X ) 20 HAG 95| = | [ By(5) Bl (X (5) b A, s)ds
§/Bj(s)E1/2[g'{)N( (5) "y A (s, 8)ds < 04/Bj(s))\(s,s)ds,
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| [ EE 004X () 90 X (N s 9)s] = | [ Bi0EX 91X () 30} Al s)ds
< / B;(s)EY2[X%(s)g'{X " (s) 70} A(s, 8)ds < C4 / B;(s)A(s, s)ds,
Similarly, for j = L + 1, ..., 2L, there exists a constant Cs such that
| [ B 5)5 (X 6) ubM s 5)ds| < s [ B(6) (s, ),
| [ B ()9 (X () b X (A s)ds| < G [ By(a(s. o).
Let Cg = 2max(Cy, Cs), we have
| [ BIX (519 (X ()30} + X(5))\(s, 5] < o [ Bls)A(s.s)ds.

On the other hand, by Assumption [2], there exists a constant C; such that

H/ A(s, s)ds

2

= Z { / By(s)\(s. 5)ds } < OZ { / By(s)ds} <2 cz 1B]3 = 0(1).

Hence,
| [ PR 1R 300+ X1 <
Further,
L1y < 2H/ (5)g'{X " (5) Ty {1 + X (s)}]A(s, 5)ds z (Mh*) < oo

Therefore, I, I, = O(M~?"). Moreover, we have I, Is = o(M~%"). Then by
BT and 17,

E{Qu(70)} E{Qu(70)} = O(MK* + M~*"). (S1.8)
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On the other hand,

var{h*?U,1 (o)} = var //hl/QKh (t—9)X (s)[Y(t) — g{)z*(s)T’)fo}]dN(t, s))
—hE Var //Kh (t—s)X (t)dN(t, s)| X (s), SET,N(t,s),(t,s)GTZH
s [ [ Katt =X Gla{m®) + B1OX(0) - (X () 0}V (1,5))

5D, 4+ D, (S1.9)

According to the derivation of (19) and (20) in Cao et al.| (2015)), we have

D, = /K2 dz/E{X ()X (5) Yo {s, X (s)}2A(s, s)ds + O(h).

(S1.10)

For D,, by Taylor expansion, we have

Dy =tvar( [ [ Kot = 9% () [o(X 0720+ BO@) + XORL®) - 9(X (5) 20} |V (15))
—ovar( [ [ Kt = 9% <>[g{x<> 0}~ 0K (50}
+ g {X (O HRD (1) + XORD )} + o RO(1) + X ()R (1)} dN (L, 5))
2hvar{ //Kht—s G(t, $)AN(t,5)}
] ////Kh tl_sl)Kh(tQ_SQ)X*(sl)X*(SQ)TG(tl,sl)G(tZ,SQ)dN(tl,sl)dN(tz,SQ)}
- / / Kh(t—s)E{)N(*(s)G(t,s)})\(t,s)dtdsr

éD21 - D22'
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For Dy, we have

~ %

D21 :h/ Kh(tl — Sl)Kh(tz — SQ)E{X*(S:[)X (32)TG(t1, 31)G(t2, 82)}
t17#ta J s17#52

. f(tl, S1, t2, 52))\(t2, Sg)dtldtgdsldSQ

~ %

+ h/t , Kh(tl — Sl)Kh(tl — SQ)E{)Z*(Sl)X (SQ)TG(tl, Sl)G(tl, 52)}

. f(tl, S1, tl, 82))\(t1, Sz)dtldSldSQ

s 3

+h\/t¢t / Kh(tl _Sl)Kh(t2_81)E{i*(51)X (31)TG(t1,31)G<t2,81)}

. f(tl, S1, tg, 81))\(t2, Sl)dtldthSl

~ %

+h /t / Kn(ts — 51)2E{X (s1)X (s1) G (t1, 51)2 I\ (t1, s1)dt1dsy

Through Taylor expansion, we can get that the first three terms are of order
O(hM~=?" + h3) and the last term is of order O(M~?*" + h?) element-wise.

Moreover, Doy = O(hM 2" + h3) by Taylor expansion. That means
Dy = O(M™% + h?). (S1.11)

Similar to the proof of Lemmall] under Assumption [5, we have that the
eigenvalues of [ E{X*(S)X*(S)T}O’{S, X (s)}2\(s, s)ds are bounded away

from 0 and infinity. Thus, according to (S1.9)-(S1.11)), we have var{h'/2U,1(yo)} =

O(1). Then

%tr[var{hl/zUnl('yo)}] — O~ MR, (S1.12)



S1. PROOF OF THEOREM 1

By combining (S1.5)), (S1.8) and (S1.12)), we can get E||Q,(v0)||3 = O(Mh*+

M= +n~'Mh™'). Therefore,

1Qn(Y0)||l2 = Op(MY2R? + M~ + n =2 M 2p712), (S1.13)

For N||Pi(70)|l2 and N||Py(vo) |2, we have

Pi(%0) " Pi(v0) =0 Vo s Voo = O(p* M), (S1.14)
o M+1 0 b
Py(~o) P :H——/ BtT()dtH.
2(v0) Pa(70) T ol TPA(| ) v ') )

Refer to [Lin et al| (2017)), by Assumption [3)]
oo [ (BTt = Ol = Lot
Moy S
Thus,
Py(v0) " Pa(0) = O(n™' M), (S1.15)
As N = O,(1), by (S1.14)) and (S1.15)), we have

N[ Pi(0)ll2 = Op(pM 72, (S1.16)

N||Pa(v0)ll2 = Op(n~/2M~1/2). (SL.17)

By combining (S1.4), (S1.13), (S1.16) and (S1.17), we have [[¢,(v0)|]2 =

O,(MY2h? + M~ 4+ n=\2MY2R=12 4 pM~1/?) = O,(a,). The proof is

completed.
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S2 Proof of Theorem 2

Define

Ti={tcT:|p(t) > aCs(\+ M)},
To={tcT:pA(t) =0},

=TT~ T

We further define §; = SUPP(B)),l=1,...,L. Let A; ={l:S§ C T;},j =

1,2, and Agz{l,...,L}—A1—A2.

Proof of Theorem 9. Let UT(Ll)('y) be the (L + [)-th element of U, () and

QY () be the (L + 1)-th element of Q, (7). For [ € Aj,

U0en) =0t 3 [ [ Katt = 9 Zals) 0500 - 9(X () TNt )

_ N M+1 0
- N. S e B() "~
V- o [ BT
N M+1

=QV(y) = N(p1 V) — = -

2 T/pg\ﬂB(t)TV(l)|)Bl(t)sgn('yl(1))dt'
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N M+1 -
5 G [ 2B, Bilb

~ (D=5 (1)

NQVE) ~ N+ (nVAN| < A7 [QUE)] + X N[ (p VAN

2L 0
oQn _ _
=AQY (o) + ) 96 () + A0, (pM )
J=1

(;}79 - 709)

arYg Y=

QW (o) | + A7 |29 () 3 A0 (pM ™!
DAY (o) + AT Y Gy | o = 00l AT O,
j=1 g o

(52.18)

where g lies between 7, and 4. According to the derivation of Lemma
Pl we have var{h'/2U, (o)} = O(1). Thus, var{QP (vo)} = O(n~h7Y).
Then
Q1 (v0) = BQ (v0)| = Op(n™"20717%). (82.19)
Moreover, based on the computation of E{Q, ()} in the proof of Lemma
2
QY ()| = 0. (52.20)
By combining and , we can get
1QV(v0)| = Op(n™h7% + 1) = Op(n~"/2h712). (S2.21)

On the other hand,

2Q\) () ‘
Vg lv=v

-2y / / Kt — ) Xu(s)g (X, () A} X5 (8)dNi (1, 5).
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Similar to the computation of var(n;,;,) in the proof of Lemma , we have

Var{aQ;:g( ) 7:7*} =O(M~'n7*h™'). Then
0 () 09 (v) Ry
— = O,(M~'2n=12p=1/2) (52,22
a”Yg Y=Y { 8’79 Y= } p( " ) ( )

Furthermore, by Taylor expansion and Assumption [5 we have

9Q% (v
{ 879 "/ ’70

‘//Kh (t—s)E zl( g {X (s ) } ( )A(t, s)dtds _O(M—l)'
(52.23)

By combining (52.22)) and (52.23)), we have

Q% (v)

= O,(M Y2 V2p=12 4 MY = O,(M7Y).
07y

Y=

Since [7, — Yog| = Op(n~Y2MY2h=1/2) we have
2L
=1

Then by (52.18]), (S2.21) and (52.24]), we have

QY (v)

o "77* ’ Wg B 709| = Op(n_l/QMl/Zh_lﬂ)- (52.24)
g =%

_ N M+1 _
VIUOE) + 5 s [N IBO )], Bilo
Y=Y
=0,(A"'n PRV AT EMY PR TR 4 AT p M) = 0.
Therefore, A~'U" (7) and -Z. Msgn f)\ )Ty W) " A(I)Bl(t)dt
Y=Y

share the same sign. Since Ul (4) = 0 and lim inf,,_,, lim inf, o+ A7) (z) >

0, we have /'?l(l) = 0 in probability for all [ € As.



S2. PROOF OF THEOREM 2

Define .121\2 ={le Ay: %(1) = 0}. Then we have ./Zl\Q = A, in probability.
Based on the compact support property of B-spline basis, (J,. 4, Si converges
to NULL(S;) as M — oo. Therefore,

J & = NULL(8) (S2.25)

leA;
in probability. Moreover, by the definition, we have for any € > 0, there
exists sufficient large n and M, such that
|J 8 < NULL#(5y), (52.26)
led;
where NULLe(B\l) is the e-neighborhood of NULL(B\l). Here the e-neighborhood
of a subset G of T is defined by {t € T : inf,c¢ |u — t| < €}. According
to Theorem , we have [|B1 — Bille = Op(n~"Y2MY2R=1/2 4 M), Since
n~Y2M12p=1/2 i dominated by A, we also have || B, — B ]|os = Op(A+M").
So for t € T;, there exists a constant Cy > 1 such that |5 (t) — Bi(t)] <
aCo(X\ + M™") in probability. Let Cs = 2Cy. As |B1(t)| > aCsg(A + M),
we have |B1(t)] > aCys(A + M) > a in probability. Thus, we have

t e SUPP(B}) in probability. That means 7; C SUPP(gl) in probability.

So asn — oo and M — oo,
NULL(B;) C T UT; = NULL(5,) U Ts. (S2.27)

Since 73 — ) in probability and NULL(El) is closed, we have NULL(Bl) —
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NULL(8;) and SUPP(B;) — SUPP(4;) in probability by (S2.25) - (S2.27).

The proof is completed.

S3 Proof of Theorem 3

Proof of Theorem[3 By Taylor expansion, we have

Yi(t) — g{X; ()T} = Yi(t) — g{mi(s, Bo)} — ¢/ {n:(s, Bo)}X; ()T (5 — 70) — ea()[{1 + 0,(1)},

where e;(s) = R&O)(s) + Xi(t)RS)(s). Then

=Y [ [ Kt K150~ oK)~ N (5) — NG

SaDY / [ Kt = K0 — gon(s, BNt 5) — NPy () ~ N Boo)
Z [ [ Kate = K61 s 801K (9T aNi ()] G = 10){1 + 0,1}
w3 [ [ Rt R s e ] 0+ 0, 0)

— N{Pi(3) = Pi(0)} = N{P:(3) = P(%)}. (S3.28)
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Moreover,

N{PIA) = Pi(30)} = NV, (F = %0),

N{é«?)—ﬁz(%)}:N-MQ;l{ o / B Dt = 3= [ B0’ >r>dt}

N { 88 “M)dt} (3 = 70){1 + 0p(1)}-
Then, can be written as

) =n~ Z [ [ Kt = X 0)0) - glnts. B YNt s

—{Q + 0, (1)}F = 0) + Vs

where
0, = n—lz [ [ Bt = Xl 0)g s 8o K (5) TN ),
Yo = —=NPi() — NPy(v0) Z//Kh (t = )X (5)g'{mi(s, Bo) }ei(s)dN;(t, 5).
As ¥,(5) = 0, we have

5 =20 = {2 + 0,(1) (12//Kht—s Yilt) - glm(s, ﬂo>}1dNi<t,s>+%).

(S3.29)
According to the derivation of I, I, = O(M~?") in the proof of Lemma [2]

we have

=0,(M™).

2

> [ [ it = 9K it ety
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Through (S1.16|) and (S1.17)),

N[ Pi(70)llz = Op(pM %),

N{IPo(y0)ll2 = Op(n™ 212,
Then, it follows that
W5 — )T~ 70) + O1) =0 S PTE, (53.30)
2%
where
P=n? [ [ Kalt = 9% 60) - gl (s, BN )
Since O,(1/1/2tr(X2)) = 0,(1), we then want to show that

n LS PTp (S
2y B By — °)i>N(o,1). (S3.31)
2tr(X2)

Here ¥y = var(FP;). Let Aqg = E(P;). By using similar technique in the

proof of Lemma [2], we have

AJ Ay = O(MDE),

tr(Xh) = O(M),1 =1,2,4.
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The proof of (S3.31)) is analogous to the proof of Theorem 4 in |Li et al.

(2020)), so we just briefly introduce the idea here. First, we have

n! Z PP; —nAj Ay — tr(Xo)
.3

=S = 80)T(By = Do) + {n 7t DR = A0) (P = Ag) — tr(Zo) |
i#] i=1
+n! Z<PiTA0 + P Ao =280 Ag) £ Q1 + Q2 + Qs. (53.32)

1]

Then through Corollary 3.1 of Hall and Heyde| (1980), it can be shown that

Q1 4 N(0,1),

On

where o, = y/2tr(33). Furthermore, as

E(Qy) = E(Q3) = 0,var(Qs) < O(n'tr*(%y)), var(Qs) = O(nh®M?),

we have
2 <0, ) = 0,(1), L2 = 0,0 M) = 0,(1),
Moreover,
%TAO = O0,(nh°M'?) = 0,(1).

Therefore, by (S3.32]),

n~ S PTP —tr(2
L TP ) Quy ) ),
2tr(2(2)) On
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Hence, according to ((S3.30)), we have

nh(y — ) "Q2(F — vo) — tr(%o) 4
2tr(22)

N(0,1).

The proof is completed.

S4 Point-wise asymptotic distribution

Theorem 4. Suppose that the conditions of Theorem |4 are satisfied, then

for any pointt € T, we have
Vah{Bo(t) = o(t)} > N(0,05(1)).
Vih{Bi(t) = Bi(1)} = N(0, 7 (1)),

where o2(t) = lim By(t)TQ' Sx Q3 Bo(t), 02(t) = lim By (1) Q' Sx Q5 By (1),

n—o0 n—oo

By(t) = (B@®)T,0N)T, B,(t) = (0", Bt)")7, 0is a zero-valued vector with
length L, and

O = [ BX (X (57} (n(s, BN (s, 9)ds,

Sy = [ Kz [ BX X () )ols X () PAs s
Proof of Theorem [} For any ¢ € T, we have

Vah{Bi(t) — Bi(t)} = VahBi(t) (5 — v0) + Vah{Bi(t) v — £i(1)}.

(S4.33)
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First, by Assumption [I, we have
sup VB[ () 0 — (0] = ORI = 0,(1). (3434)
On the other hand, by (53.29), we have
VB (1) (7 = )
—VnhBy(t) {2 + 0,(1)}~ ( ! Z//Kh (t — )X (5)[Yi(t) — g{m(s, Bo) HNi(t, ) +7n)
—F + By, (S4.35)
where
= VihB () {0 + 0, (1)} ( - Z//K (t = )X, ([Yi(t) — 95, Bo) HANi(t, s>),
— VB (1) {0 + 0p(1)} M
According to the proof of Theorem [3 it can be shown that
[ F2[[2 = 0p(1). (S4.36)
For F), let
— Vol Ba(0) (2 + 0,0} [ [ Kl = 9K - glnls. Bo) Nt ).

Then F; = 3" | ¢;. Similar to the proof of Theorem 1 in |Cao et al. (2015),

we also have

S E{léi — Eéil*} = nOm® 21 n~3h2) = O(n”"*h~1/2),

i=1
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which verifies the Lyapunov condition. Hence, we have

n

> (¢ — E¢i) 5 N(0,0%(1)),

=1

2

where 02(t) can be obtained analogously to the computation of var{h'/2U,,; ()}

in . Moreover, we have || Y7 | E¢;||3 = o(1) by . Therefore,
Fi 5 N(0,02(t)). (S4.37)
Then combining —, we have
Vah{Bi(t) = 51(1)} S N (0, 03(1).

The asymptotic normality of (y(t) can be derived in the same way. The

proof is completed.

S5 Additional simulation studies

S5.1 The effect of L

In this section, we report the simulation results of LocKer and PLSE meth-
ods with the use of various values of L in Bernoulli and Poisson cases. The
settings are the same as settings in Section 4.1, except that the observation
times of response and covariate are set to be synchronous. Tables pro-

vide the averaged ISEg, ISE;, TP and FN for Bernoulli cases. Here PLSE
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becomes invalid because it only adapts to regression model with Gaussian
response. For identifying ability of the proposed LocKer method, it also
performs the best when using L = 13 for the sparse setting, which is caused
by the same reason as Gaussian cases. However, we find that large value
of L does not improve the estimation here. We conjecture the reason is
that large value of L can bring more parameters in the estimation, which
is quite adverse for Bernoulli cases. Furthermore, Tables present the
simulation results for Poisson cases. It is shown that for Poisson cases, large
value of L can bring helps to the estimation of our method in terms of both
accuracy and identifying ability. But large value of L would complicate the

estimation, which should also be taken into account.
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Table 1: The averaged ISEy, ISE;, TP and FN across 100 runs for PLSE and LocKer

using various values of L when n = 200,m = 15 in Bernoulli cases, with standard

deviation in parentheses.

ISEq ISE, TP FN
PLSE 0.5297 (0.0156) 0.3267 (0.0218) - 0 (0)
Nonsparse
LocKer 0.0242 (0.0098) 0.0315 (0.0207) - 0 (0)
L=10
PLSE 0.5337 (0.0147) 0.4211 (0.0181) 0.2287 (0.2756) 0 (0)
Sparse
LocKer 0.0184 (0.0089) 0.0839 (0.0447) 0.6082 (0.2252) 0 (0)
PLSE 0.5340 (0.0192) 0.3225 (0.0289) - 0 (0)
Nonsparse
LocKer 0.0189 (0.0092) 0.0328 (0.0226) - 0 (0)
L=13
PLSE 0.5320 (0.0126) 0.4195 (0.0167) 0.3110 (0.2518) 0 (0)
Sparse
LocKer 0.0162 (0.0076) 0.0857 (0.0533) 0.8307 (0.1817) 0 (0)
PLSE 0.5302 (0.0200) 0.3280 (0.0283) — 0 (0)
Nonsparse
LocKer 0.0194 (0.0080) 0.0319 (0.0217) - 0 (0)
L=15
PLSE 0.5304 (0.0126) 0.4214 (0.0149) 0.2232 (0.2158) 0.0339 (0.0474)
Sparse
LocKer 0.0158 (0.0085) 0.0985 (0.0385) 0.8084 (0.1222) 0.0196 (0.0420)
PLSE 0.5238 (0.0190) 0.3408 (0.0299) - 0.0140 (0.0289)
Nonsparse
LocKer 0.0163 (0.0083) 0.0314 (0.0220) - 0 (0)
L =20
PLSE 0.5259 (0.0122) 0.4224 (0.0114) 0.2918 (0.2206) 0.0646 (0.0646)
Sparse
LocKer 0.0141 (0.0074) 0.0966 (0.0379) 0.7865 (0.1106) 0.0031 (0.0158)
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Table 2: The averaged ISEy, ISE;, TP and FN across 100 runs for PLSE and LocKer

using various values of L when n = 200,m = 20 in Bernoulli cases, with standard

deviation in parentheses.

ISEq ISE, TP FN
PLSE 0.5332 (0.0174) 0.3178 (0.0238) - 0 (0)
Nonsparse
LocKer 0.0148 (0.0069) 0.0225 (0.0165) - 0 (0)
L=10
PLSE 0.5362 (0.0113) 0.4174 (0.0112) 0.1601 (0.1962) 0 (0)
Sparse
LocKer 0.0130 (0.0067) 0.0597 (0.0265) 0.6826 (0.1948) 0 (0)
PLSE 0.5305 (0.0184) 0.3243 (0.0270) - 0 (0)
Nonsparse
LocKer 0.0135 (0.0057) 0.0228 (0.0155) - 0 (0)
L=13
PLSE 0.5339 (0.0107) 0.4186 (0.0120) 0.2811 (0.2380) 0 (0)
Sparse
LocKer 0.0117 (0.0070) 0.0607 (0.0327) 0.8926 (0.1584) 0 (0)
PLSE 0.5332 (0.0170) 0.3222 (0.0266) — 0 (0)
Nonsparse
LocKer 0.0133 (0.0064) 0.0237 (0.0147) - 0 (0)
L=15
PLSE 0.5318 (0.0116) 0.4184 (0.0126) 0.3171 (0.2334) 0.0401 (0.0520)
Sparse
LocKer 0.0112 (0.0060) 0.0716 (0.0365) 0.8462 (0.0844) 0.0252 (0.0389)
PLSE 0.5252 (0.0202) 0.3338 (0.0284) - 0.0105 (0.0254)
Nonsparse
LocKer 0.0115 (0.0054) 0.0228 (0.0149) - 0 (0)
L =20
PLSE 0.5268 (0.0120) 0.4247 (0.0136) 0.3450 (0.2281) 0.0875 (0.0595)
Sparse
LocKer 0.0116 (0.0065) 0.0741 (0.0382) 0.8549 (0.1199) 0.0035 (0.0154)
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Table 3: The averaged ISEy, ISE;, TP and FN across 100 runs for PLSE and LocKer

using various values of L when n = 200, m = 15 in Poisson cases, with standard deviation

in parentheses.

ISEq ISE, TP FN
PLSE 1.6899 (0.0574) 0.3516 (0.0719) - 0 (0)
Nonsparse
LocKer 0.0090 (0.0037) 0.0134 (0.0040) - 0 (0)
L=10
PLSE 1.4547 (0.0712) 0.0921 (0.0402) 0.2177 (0.2269) 0 (0)
Sparse
LocKer 0.0117 (0.0044) 0.0286 (0.0113) 0.6507 (0.1580) 0 (0)
PLSE 1.7498 (0.0713) 0.3881 (0.1143) - 0 (0)
Nonsparse
LocKer 0.0069 (0.0036) 0.0116 (0.0040) - 0 (0)
L=13
PLSE 1.5041 (0.0708) 0.0842 (0.0382) 0.2127 (0.2165) 0 (0)
Sparse
LocKer 0.0090 (0.0036) 0.0112 (0.0099) 0.9550 (0.1115) 0 (0)
PLSE 1.7761 (0.0642) 0.3724 (0.0838) — 0.0017 (0.0117)
Nonsparse
LocKer 0.0068 (0.0035) 0.0111 (0.0038) - 0 (0)
L=15
PLSE 1.5229 (0.0757) 0.0943 (0.0371) 0.2530 (0.2117) 0.0739 (0.0613)
Sparse
LocKer 0.0096 (0.0038) 0.0237 (0.0092) 0.8528 (0.0432) 0.0139 (0.0375)
PLSE 1.8080 (0.0809) 0.3674 (0.0803) - 0.0169 (0.0356)
Nonsparse
LocKer 0.0061 (0.0037) 0.0101 (0.0044) - 0 (0)
L =20
PLSE 1.5288 (0.0709) 0.1153 (0.0430) 0.2679 (0.1899) 0.1237 (0.0847)
Sparse
LocKer 0.0097 (0.0038) 0.0256 (0.0106) 0.8808 (0.0675) 0.0024 (0.0187)
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Table 4: The averaged ISEy, ISE;, TP and FN across 100 runs for PLSE and LocKer

using various values of L when n = 200, m = 20 in Poisson cases, with standard deviation

in parentheses.

ISEq ISE, TP FN
PLSE 1.7484 (0.0582) 0.3319 (0.0678) - 0 (0)
Nonsparse
LocKer 0.0059 (0.0023) 0.0095 (0.0026) - 0 (0)
L=10
PLSE 1.5469 (0.0651) 0.0791 (0.0340) 0.1689 (0.2231) 0 (0)
Sparse
LocKer 0.0084 (0.0034) 0.0241 (0.0066) 0.6560 (0.1649) 0 (0)
PLSE 1.8154 (0.0661) 0.3414 (0.0652) - 0 (0)
Nonsparse
LocKer 0.0046 (0.0022) 0.0086 (0.0028) - 0 (0)
L=13
PLSE 1.5771 (0.0760) 0.0813 (0.0345) 0.2748 (0.2236) 0.0020 (0.0200)
Sparse
LocKer 0.0064 (0.0027) 0.0091 (0.0064) 0.9954 (0.0283) 0 (0)
PLSE 1.8283 (0.0694) 0.3395 (0.0529) — 0 (0)
Nonsparse
LocKer 0.0046 (0.0022) 0.0084 (0.0030) - 0 (0)
L=15
PLSE 1.5891 (0.0652) 0.0856 (0.0322) 0.2806 (0.2482) 0.0745 (0.0573)
Sparse
LocKer 0.0068 (0.0032) 0.0180 (0.0093) 0.8691 (0.0493) 0.0238 (0.0368)
PLSE 1.8344 (0.0665) 0.3262 (0.0581) - 0.0105 (0.0224)
Nonsparse
LocKer 0.0044 (0.0024) 0.0076 (0.0030) - 0 (0)
L =20
PLSE 1.5903 (0.0665) 0.0973 (0.0300) 0.2870 (0.2094) 0.1162 (0.0778)
Sparse
LocKer 0.0056 (0.0029) 0.0103 (0.0079) 0.9430 (0.0278) 0.0087 (0.0331)
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S5.2 Asymptotic distribution

In this section, we explore the asymptotic distribution of 4 by numerical
study. We consider the sparse setting in Gaussian case with sample sizes
being 100, 200, 300, 400, respectively. For various sample size settings, we
conduct 100 runs and compute (3 —-,) Q2 (7 —~o) for each run. To reduce
computational cost, we fix L = 13 in the estimation. Figure (1| shows the
Q-Q plot of (7 — 40)"Q2(F — 7o) for each sample size. We can find that
(7 — 70) TQ2(F — o) is getting closer to Gaussian distribution with the

increase of sample size, which is consistent with the result in Theorem [3]
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Figure 1: Q-Q plot of (3 —~0) " Q2(7 — 7o) for the sparse setting in Gaussian case with

sample sizes being 100, 200, 300, 400, respectively.
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