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This supplementary material contains a proposition on the sums of discrete Gaussian random

variables, derivations of the full conditionals for the Gibbs sampler in the main text, and dis-

cussion of extensions of targeting non-unique individuals and other types of disclosure attacks.

S1 Other Attacks

This section examines other attacks an adversary could perform in addition

to the attack focused on in the main text. One class of attacks considers

the same attack as in the main text, but with a target who is not unique in

group g1. Another class considers different attacks that are mathematically

equivalent to the attack from the main text. A final class considers an attack



2 ZEKI KAZAN AND JEROME P. REITER

by an adversary with substantially more information than the adversaries

examined in the main text.

S1.1 Non-unique Individuals

The empirical analysis in Section 4 of the main text focuses on the case

where the targeted individual is unique at the lowest level of the hierarchy

(the block-level in the 2020 decennial census application). This assumption

is not necessary for the methodology. If rather than x1,−t = 0 and x1 = 1,

we had x1,−t = m and x1 = m + 1—i.e., the adversary knows there are m

individuals other than the target with characteristics c—the analysis would

be identical to what is presented in the main text. All the probabilities

plotted in Section 4 of the main text would stay the same, and all plots

involving X∗
1 and X∗

2 would be shifted by m.

S1.2 Equivalent Attacks

The methodology and empirical evaluations in the main text consider the

scenario where an adversary is interested in determining whether individual

t has characteristics c. In this section we describe how several other attacks

map onto our notation with only the meaning of the prior probability, p,

changing. The results from the main text thus can be applied to these other
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attacks directly.

An adversary may seek to determine whether the target filled out the

census at all. In this setting, we assume the adversary possesses the com-

plete information for all n1 individuals in g1, and believes a priori with

probability pf ∈ (0, 1) that individual t actually filled out the census. The

adversary assumes that the other n1 − 1 individuals filled out the census

accurately. Thus, the data holder can simply replace p with pf in the main

text and examine the risk from this attack.

Another adversary may seek to determine whether a census respondent

lied or made a mistake when completing the census. In this setting, we

assume the adversary possesses complete information for all n1 individuals

in g1, and believes a priori with probability pℓ ∈ (0, 1) that individual t

reported the correct information. The adversary assumes that the other

n1 − 1 individuals filled out the census accurately. Thus, the data holder

can simply replace p with pℓ in the main text and examine the risk from

this attack.

Finally, an adversary may seek to determine an unknown variable. In

this setting, we assume the adversary possesses the complete information

for all n1 individuals in g1, except that they do not know one of the variables

for individual t. For example, the adversary could know individual t’s race,
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HHGQ status, and whether they are of voting age, but not their ethnicity.

Let ce be the true ethnicity of the individual as reported on the decennial

census, and let pv be the prior probability the adversary assigns to individual

t having ethnicity ce. The data holder can simply replace p with pv in the

main text and examine the risk from this attack.

S1.3 Adversaries with Additional Information

The settings in Sections S1.1 and S1.2 presume the adversary only has

information on individuals in g1. Another class of attacks presumes the

adversary has information at higher levels of the hierarchy as well. For

example, and as suggested by a reviewer, consider an adversary who seeks

to determine an unknown variable for target t, say the individual’s ethnicity.

Let ce be the true ethnicity of the target (unknown to the adversary), and

let c−e be the true characteristics of the target for the other three variables

(known to the adversary). We now include the additional assumption that

the adversary knows a priori that the target’s value of c−e is unique at

ℓ levels of the hierarchy. For example, if ℓ = 2, the target is the only

individual in their block group with characteristics c−e; if ℓ = 4, the target

is the only individual in their county with characteristics c−e. Because the

target is so distinct, the released noisy counts X∗
1 , . . . , X

∗
ℓ can be combined
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to improve the adversary’s posterior, which now has the form

P[X1 = x1 | X∗
1 = x∗

1, . . . , X
∗
ℓ = x∗

ℓ ]

=
p
∏ℓ

i=1 e
−ρi(x

∗
i−x1)2

p
∏ℓ

i=1 e
−ρi(x∗

i−x1)2 + (1− p)
∏ℓ

i=1 e
−ρi(x∗

i−x1,−t)2
. (S1.1)

We can marginalize over the ℓ noisy counts, as in the main text, to compute

the marginal posterior the adversary makes the correct conclusion and the

corresponding disclosure risk.

Figure 1 plots the marginal posterior and disclosure risk as a function

of ℓ for adversaries with different prior beliefs, where the prior parameters

are set as in the analysis in the main text (levels 3-6 all have ρi ≈ 0.05; see

Table 2 in the main text for details). As expected, the risk increases as a

function of ℓ due to the increasing amount of information available to the

adversary. For all priors, the increase is most substantial between ℓ = 1 and

ℓ = 2, since ρ2 is the largest privacy parameter and thus provides the most

accurate release. Overall and in contrast to the findings from the main text,

we conclude that, for this type of attack, the hierarchical information can

sharpen the adversary’s estimates substantially.

To carry out this attack, this adversary requires detailed information

across geographical hierarchies. Whether this is a realistic adversary or not

is a matter for policymakers to determine in their particular scenarios.
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Figure 1: The left panel plots the marginal posterior probability the adversary makes

the correct decision that X1 = 1 as a function of the number of levels of the hierarchy at

which the target is known to be unique. The right panel plots the corresponding implied

disclosure risk. The colors correspond to different adversary prior beliefs; the ρ at each

level is the value used by the U. S. Census Bureau in 2020.

S2 Sums of Discrete Gaussian Random Variables

This section focuses on the following proposition.

Proposition 1. Let Z1, . . . , Zn
iid∼ DG(0, s = 1/(2ρ)). Then, for ρ < 1 and

n large,
∑n

i=1 Zi is well approximated by DG(0, s = n/(2ρ)).

We present an informal proof of this fact, based on empirical results.

To begin, we denote the variance of each Zi as σ
2. Figure 2 plots σ2 as

a function of both the scale parameter, s, and ρ = 1/(2s). We see that for
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Figure 2: Plot of σ2, the variance of Zi (computed to very high precision), as a function
of the scale parameter of the discrete Gaussian, s. The dashed line is the line σ2 = s;
the upper axis presents ρ = 1

2s for comparison. Note the log scales.

ρ < 1, which corresponds to s > 0.5, the approximation σ2 ≈ s = 1/(2ρ) is

quite accurate. Empirically, |σ2 − s| < 0.002 for all s > 0.5 and |σ2 − s| <

10−6 for all s > 1. Thus, we are able to approximate the variance of the Zi

in this range of ρ with s.

For n sufficiently large, we can apply the Central Limit Theorem, which

gives the approximation

n∑
i=1

Zi ≈ N (0, nσ2). (S2.1)

As this distribution is discrete and nσ2 = n/(2ρ) ≫ 1, it makes sense

intuitively to instead use the approximation,

N (0, nσ2) ≈ DG(0, nσ2) = DG

(
0,

n

2ρ

)
. (S2.2)
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Combining the two approximations gives

n∑
i=1

Zi ≈ DG

(
0,

n

2ρ

)
. (S2.3)

This approximation is quite accurate in practice. Figure 3 compares the

probability mass function of DG(0, n/(2ρ)) to
∑n

i=1 Zi for ρ ∈ {1, 0.099}

and for n ∈ {5, 27}. We note that 0.099 is the value of ρ1 used in the 2020

census application, and n = 27 is used in Section 4.3 of the main text. The

approximation does extremely well for these values. Even when n is small

and ρ is large, the approximation remains quite accurate.

S3 Full Conditionals for Gibbs Sampler

This section provides the derivations for and forms of the full conditionals

for the Gibbs Sampler described in Section 3.2 of the main text. We start

with the expression for the posterior distribution of (X1, X2) given D =



S3. FULL CONDITIONALS FOR GIBBS SAMPLER9

0.00

0.01

0.02

0.03

−60 −30 0 30 60

ρ = 0.099, n = 27

0.00

0.02

0.04

0.06

0.08

−20 −10 0 10 20

ρ = 0.099, n = 5

0.00

0.03

0.06

0.09

−20 −10 0 10

ρ = 1, n = 27

0.0

0.1

0.2

−8 −4 0 4 8

ρ = 1, n = 5

Discrete Gaussian Sum of Discrete Gaussians

Figure 3: Histograms comparing the probability mass function of DG(0, n/(2ρ)) (in red)
to the probability mass function of

∑n
i=1 Zi (in blue). Histograms are included for

ρ = 0.099 on the top row, ρ = 1 on the bottom row, n = 27 on the left column, and
n = 5 on the right column.
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(X∗
1 = x∗

1, X
∗
2 = x∗

2, Y
∗
1 = y∗1). We have

P[X1 = k1, X2 = k2 | X∗
1 = x∗

1, X
∗
2 = x∗

2, Y
∗
1 = y∗1] (S3.1)

∝ P[X∗
1 = x∗

1, X
∗
2 = x∗

2, Y
∗
1 = y∗1 | X1 = k1, X2 = k2]

P[X2 = k2 | X1 = k1]P[X1 = k1] (S3.2)

∝ P[X∗
1 = x∗

1 | X1 = k1]P[X∗
2 = x∗

2 | X2 = k2]

P[Y ∗
1 = y∗1 | X1 = k1, X2 = k2]P[X2 = k2 | X1 = k1]P[X1 = k1]

(S3.3)

∝ exp
{
−ρ1(x

∗
1 − k1)

2
}
exp

{
−ρ2(x

∗
2 − k2)

2
}

· exp
{
−ρ1

d
(y∗1 − (k2 − k1))

2
}

1[k2 ≥ k1]P[X1 = k1]. (S3.4)

The full conditional for X1 is then, for k1 ∈ {x1,−t, x1,−t + 1} and k1 ≤ k2,

P[X1 = k1 | X2 = k2, X
∗
1 = x∗

1, X
∗
2 = x∗

2, Y
∗
1 = y∗1] (S3.5)

∝ exp
{
−ρ1(x

∗
1 − k1)

2
}
exp

{
−ρ1

d
(y∗1 − k2 + k1)

2
}
P[X1 = k1] (S3.6)

∝ exp
{
−ρ1(k

2
1 − 2k1x

∗
1)−

ρ1
d
(k2

1 − 2k1(k2 − y∗1))
}
P[X1 = k1] (S3.7)

∝ exp

{
−d+ 1

d
ρ1k

2
1 + 2ρ1(x

∗
1 +

1

d
(k2 − y∗1))k1

}
P[X1 = k1] (S3.8)

∝ exp

{
−d+ 1

d
ρ1

[
k1 −

dx∗
1 + (k2 − y∗1)

d+ 1

]2}
P[X1 = k1]. (S3.9)

This full conditional is straightforward to sample from.
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The full conditional for X2 is, for k2 ∈ {k1, k1 + 1, . . .},

P[X2 = k2 | X1 = k1, X
∗
1 = x∗

1, X
∗
2 = x∗

2, Y
∗
1 = y∗1] (S3.10)

∝ exp
{
−ρ2(x

∗
2 − k2)

2
}
exp

{
−ρ1

d
(y∗1 + k1 − k2)

2
}

(S3.11)

∝ exp
{
−ρ2(k

2
2 − 2k2x

∗
2)−

ρ1
d
(k2

2 − 2k2(y
∗
1 + k1))

}
(S3.12)

∝ exp
{
−
(
ρ2 +

ρ1
d

)
k2
2 + 2

(
ρ2x

∗
2 +

ρ1
d
(y∗1 + k1)

)
k2

}
(S3.13)

∝ exp

{
−
(
ρ2 +

ρ1
d

)[
k2 −

ρ2x
∗
2 +

ρ1
d
(y∗1 + k1)

ρ2 +
ρ1
d

]2}
. (S3.14)

This is a truncated discrete Gaussian distribution centered at
ρ2x∗

2+
ρ1
d
(y∗1+k1)

ρ2+
ρ1
d

.

It can be easily sampled over a grid, since the tails of the distribution decay

rapidly. Using these full conditionals, the adversary can sample from the

posterior distribution and examine the marginal posterior distribution for

X1.

S4 Prior Sensitivity

This section examines how sensitive the analysis producing Figure 4 in

Section 4.3 of the main text is to the choice of the adversary’s prior on

X2 | X1. In particular, since the prior

(X2 | X1 = k1) ∼ Unif({k1, k1 + 1, . . .}), k1 ∈ {0, 1}, (S4.1)
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is an improper probability distribution with unbounded support, it may

unduly favor values that are practically implausible. To determine whether

this is the case, we re-do the analysis producing Figure 4 with a selection of

other priors and examine how the conclusions change. We assume through-

out that the prior probability for X1 is p = 1/2, the number of other blocks

is d = 27, and the true counts are x1 = x2 = 1. Figure 4 from the main

text is reproduced as the top panel of Figure 4, for ease of comparison.

We begin by examining a variation on the uniform prior used in the

main text. Suppose that an adversary, utilizing information from auxiliary

data sources, knows that the number of individuals in block group g2 with

characteristics c is at most 10. A reasonable prior might then be

(X2 | X1 = k1) ∼ Unif({k1, . . . , 10}), k1 ∈ {0, 1}. (S4.2)

This prior has bounded support and does not place any prior probability on

very extreme values for X2. The results for this prior are presented on the

bottom panel of Figure 4. We do not observe a substantial change between

the truncated and non-truncated priors; for both, the adversary makes the

correct decision 59% of the time. The lack of change is likely due to the

fact that, as suggested by Table 8 in the main text, the unbounded uniform

prior allows the data to rule out implausible values away from x2.

Another interesting comparison is to the case where the adversary
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Figure 4: Adversary’s decision under 0-1 loss for each combination of x∗
1, x

∗
2, and y∗1 . The

top plot reproduces Figure 4 from the main text, while the bottom plot uses the prior
X2 | X1 ∼ Unif({k1, . . . , 10}). Privacy parameters are set as in the census application,
p = 1/2, and d = 27. 103 MCMC draws are taken for each combination in most cases.
When the posterior probability X1 = 1 is close to 0.5, the number of MCMC draws is
increased to 2.5× 105.
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knows a priori that x2 = 1. This corresponds to a prior with all the prob-

ability mass on X2 = 1. As a consequence, the adversary’s decision about

x1 does not depend on x∗
2. The results for this prior are presented in the

top panel of Figure 5. We do not observe a substantial change from the

previous two figures; the adversary still makes the correct decision 59% of

the time, even with perfect knowledge at the second level. The agreement

between this result and the uniform priors suggests that the uniform priors

are not biasing the results to any substantial degree.

One might take the above as evidence that the choice of prior for X2 |

X1 is of little importance. We demonstrate that this is not the case by

examining the results under a poorly specified prior. Suppose that the

adversary incorrectly believes that x2 = 25 and places a prior with all the

probability mass on X2 = 25. The results for this prior are presented in the

bottom panel of Figure 5. We observe a substantial change between this

plot and the previous three: the adversary now makes the correct decision

74% of the time. But consider the counterfactual where in truth x1 = 0

(and x2 = 0). Now the misspecified prior leads the adversary astray, and

they make the correct decision only 42% of the time (the distribution of

X∗
1 and X∗

2 change in the counterfactual, so the probability is not simply

100%−74%). Evidently, an inaccurate prior can impact the results, possibly
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Figure 5: Adversary’s decision under 0-1 loss for each combination of x∗
1, x

∗
2, and y∗1 .

Priors are of the form P[X2 = k2 | X1 = k1] = 1 for k2 = 1 (top) and k2 = 25
(bottom). Privacy parameters are set as in the census application, p = 1/2, and d = 27.
103 MCMC draws are taken for each combination in most cases. When the posterior
probability X1 = 1 is close to 0.5, the number of MCMC draws is increased to 106.
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to the detriment or benefit of the adversary depending on the value of x1.

Of course, in practical contexts the adversary does not know whether they

benefit or suffer from an informative prior. Given that the uniform prior

(with support that includes the true count) allows the distributions of the

noisy counts to fully determine the posterior probability computations, it

appears to be a sensible choice when evaluating statistical disclosure risks.

S5 Composition of Risk

In this section, we briefly examine how the risk measures from the main

text behave under composition. That is, if the Census Bureau were to

perform a second data release, how would the risks from the two releases

combine? Let X∗
1i be the released noisy count from the ith release and x∗

1i

be the corresponding observed value. Recall that the disclosure risk from

the first release is

R′(x∗
11) =

P[X1 = x1 | X∗
11 = x∗

11]

P[X1 = x1]
. (S5.1)

We can similarly examine the disclosure risk from the second release. As-

suming the releases are sequential, the adversary will have already observed

x∗
11, so their prior probability for the second release corresponds exactly to
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their posterior from the first release. That is,

R′(x∗
12 | x∗

11) =
P[X1 = x1 | X∗

12 = x∗
12, X

∗
11 = x∗

11]

P[X1 = x1 | X∗
11 = x∗

11]
. (S5.2)

This quantity is analogous to R′(x∗
11) and, in practice, the posterior in the

numerator can be decomposed as follows via Bayes Theorem:

P[X1 = x1 | X∗
12 = x∗

12, X
∗
11 = x∗

11]

=
P[X∗

12 = x∗
12 | X1 = x1, X

∗
11 = x∗

11]P[X1 = x1 | X∗
11 = x∗

11]

P[X∗
12 = x∗

12 | X∗
11 = x∗

11]
(S5.3)

=
P[X∗

12 = x∗
12 | X1 = x1]P[X1 = x1 | X∗

11 = x∗
11]∑x1,−t+1

k1=x1,−t
P[X∗

12 = x∗
12 | X1 = k1]P[X1 = k1 | X∗

11 = x∗
11]

. (S5.4)

The latter equality assumes that the mechanism for releasing X∗
12 does not

depend on the observed x∗
11. (S5.4) has a form identical to the form of

P[X1 = x1 | X∗
1 = x∗

1] in the main text, except that the prior is conditional

on the observed x∗
11 from the first release. This means that the analysis of

the second release can proceed exactly as the first with the only difference

being an “updated” prior.

The total risk from the two releases is then

R′(x∗
11, x

∗
12) =

P[X1 = x1 | X∗
11 = x∗

11, X
∗
12 = x∗

12]

P[X1 = x1]
(S5.5)

=
P[X1 = x1 | X∗

12 = x∗
12, X

∗
11 = x∗

11]

P[X1 = x1 | X∗
11 = x∗

11]
· P[X1 = x1 | X∗

11 = x∗
11]

P[X1 = x1]

(S5.6)

= R′(x∗
12 | x∗

11)R
′(x∗

11). (S5.7)
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This argument generalizes to an arbitrary number of releases. Letting m

be the total number of releases, the total risk composes as

R′(x∗
11, . . . , x

∗
1m) = R′(x∗

1m | x∗
11, . . . , x

∗
1,m−1) · · ·R′(x∗

11). (S5.8)

Thus, the cumulative risk is simply the product of the risk from each re-

lease. The generalized marginal risk and generalized probability the adver-

sary makes the correct decision are straightforward to compute from the

generalized R′.

S6 The Effect of Post-Processing

In this section, we illustrate how a post-processing step could affect the

risk analysis in this article. Our intent is not to give a complete treatment

of this but rather to provide a rough intuition. Thus, in this analysis, we

make a substantial number of simplifying assumptions about the adversary

and the way the post-processing is performed compared to the TopDown

algorithm used for the 2020 decennial census data.

To begin, we outline our illustrative post-processing algorithm. Let

X̃1, X̃2 be the post-processed counts corresponding to X1, X2 and x̃1, x̃2 be

their observed values. Similarly, let Ỹ
(1)
1 , . . . , Ỹ

(d)
1 be the post-processed

counts corresponding to Y
(1)
1 , . . . , Y

(d)
1 and ỹ

(1)
1 , . . . , ỹ

(d)
1 be their observed
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values. We define the post-processing algorithm at the block level as follows.

Taking x̃2 as fixed, we enforce the aggregation constraint x̃2 = x̃1+
∑d

i=1 ỹ
(i)
1 ,

while minimizing the sum of squared deviations from the noisy counts:

argmin
x̃1,ỹ

(1)
1 ,...,ỹ

(d)
1

{
(x̃1 − x∗

1)
2 +

d∑
i=1

(ỹ
(i)
1 − y

(i)∗
1 )2

}
. (S6.1)

The post-processing algorithm used in the TopDown algorithm enforces

several aggregation constraints and minimizes a weighted sum of squared

deviations involving more quantities, so this is a substantial simplification,

but one that we expect to roughly approximate the effects of the true algo-

rithm. Letting x∗
1 and y∗1 be the observed noisy counts corresponding to X1

and Y1, this simplified problem has a closed form solution, which we denote

x̄1:

x̄1 =
dx∗

1 + (x̃2 − y∗1)

d+ 1
. (S6.2)

It is possible for x̄1 to be outside the range [0, x̃2] or to be non-integer valued.

To correct for this, we truncate the solution to be in the correct range

and round to the nearest integer. The complete post-processing algorithm

includes a non-negativity constraint in the optimization and performs a

second controlled rounding step, although we expect this change to have

a limited effect for our illustration. We denote the final solution to the
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optimization as f(x∗
1, y

∗
1, x̃2), which is given by

f(x∗
1, y

∗
1, x̃2) =



0, if x̄1 < 0;

x̃2, if x̄1 > x̃2;

[x̄1], otherwise.

(S6.3)

We now return to the perspective of the adversary. From the above,

the likelihood from the post-processing step is simply an indicator variable

P[X̃1 = x̃1 | X∗
1 = x∗

1, Y
∗
1 = y∗1, X̃2 = x̃2] = 1[x̃1 = f(x∗

1, y
∗
1, x̃2)]. (S6.4)

The full likelihood is then, assuming that the adversary considers x̃1, x̃2 and

not ỹ
(1)
1 , . . . , ỹ

(d)
1 ,

P[X̃1 = x̃1 | X1 = k1, X̃2 = x̃2]

=
∞∑

x∗
1=−∞

∞∑
y∗1=−∞

P[X̃1 = x̃1 | X∗
1 = x∗

1, Y
∗
1 = y∗1, X̃2 = x̃2]

P[X∗
1 = x∗

1 | X1 = k1]P[Y ∗
1 = y∗1 | X1 = k1] (S6.5)

=
∞∑

x∗
1=−∞

∞∑
y∗1=−∞

1[x̃1 = f(x∗
1, y

∗
1, x̃2)]P[X∗

1 = x∗
1 | X1 = k1]

P[Y ∗
1 = y∗1 | X1 = k1]. (S6.6)

To simplify P[Y ∗
1 = y∗1 | X1 = k1], we assume the adversary knows x2

exactly a priori, in addition to making the approximation from Section S2.

Assuming as in the main text that the true x1 = x2 = 1, the known count



S6. THE EFFECT OF POST-PROCESSING21

is x1,−t = 0, and the adversary’s prior on X1 is Bernoulli with parameter p,

the posterior probability the adversary makes the correct decision is

P[X1 = 1 | X̃1 = x̃1, X̃2 = X̃2]

=
P[X̃1 = x̃1 | X1 = 1, X̃2 = x̃2] p

P[X̃1 = x̃1 | X1 = 1, X̃2 = x̃2] p+P[X̃1 = x̃1 | X1 = 0, X̃2 = x̃2](1− p)
.

(S6.7)

Finally, for comparison to the results from the main text, we can marginalize

out X̃1 from the posterior:

P[X1 = 1 | x1 = 1, X̃2 = x̃2] =

x̃2∑
x̃1=0

P[X1 = 1 | X̃1 = x̃1, X̃2 = x̃2]

P[X̃1 = x̃1 | x1 = 1, X̃2 = x̃2]. (S6.8)

Note that the result will vary with x̃2.

We now examine whether, on average, releasing the counts with post-

processing will have lower disclosure risk than releasing the counts without

post-processing. The first panel of Figure 6 compares the marginal disclo-

sure risks in the case where ρ1 ≈ 0.099 for various values of x̃2. We find that

the marginal risk with post-processing is bounded above by the marginal

risk without post-processing, as expected. Larger values of x̃2 give risks

closer to the bound, which makes sense intuitively; larger values of x̃2 allow

for a larger range of possible observed x̃1, which will make it easier for the

adversary to “work backward” to x∗
1. The second panel of Figure 6 com-
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Figure 6: The left panel plots the marginal disclosure risk from (S6.8) as a function of

x̃2 when ρ1 ≈ 0.099. The right panel plots the marginal disclosure risk from (S6.8) as

a function of ρ1 colored by x̃2 ∈ {1, 10, 100}. The dashed line represents ρ1 ≈ 0.099.

In both panels, the purple line represents the marginal disclosure risk without post-

processing. Both set p = 1/2 and assume the adversary knows that x2 = 1.

pares the marginal disclosure risks as a function of ρ1 for a selection of x̃2.

We observe a similar effect, with the marginal risk without post-processing

providing an upper bound on the marginal risk with post-processing. In

general, we find that the bound is fairly tight; the reduction in disclosure

risk due to the post-processing is minor (given the simplifications and as-

sumptions we make).
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