
1

Supplementary Materials for “Functional-Input
Gaussian Processes with Applications to Inverse

Scattering Problems”

S1. Proof of Proposition 1

For any non-zero (α1, ..., αn) and (g1, ..., gn), it follows the quadratic form:

n∑
j=1

n∑
k=1

αjαkK(gj, gk) =
n∑
j=1

n∑
k=1

αjαk

∫
Ω

∫
Ω

gj(x)gk(x
′)Ψ(x,x′)dxdx′

=

∫
Ω

∫
Ω

n∑
j=1

n∑
k=1

αjαkgj(x)gk(x
′)Ψ(x,x′)dxdx′

=

∫
Ω

∫
Ω

(
n∑
j=1

αjgj(x)

)2

Ψ(x,x′)dxdx′ ≥ 0,

and the quadratic form is strictly greater than zero if g1, ..., gn are linearly inde-

pendent. This finishes the proof.

S2. Proof of Proposition 2

For any a, b ∈ R and g1, g2 ∈ V , it follows that

f(ag1 + bg2) =
∞∑
j=1

√
λj〈φj, ag1 + bg2〉L2(Ω)Zj

=
∞∑
j=1

√
λj
(
a〈φj, g1〉L2(Ω) + b〈φj, g2〉L2(Ω)

)
Zj

=af(g1) + bf(g2),

which finishes the proof.
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S3. Proof of Theorem 1

In order to prove the theorem, the following lemma is provided, which can be

found in Proposition 10.28 of Wendland (2004).

Lemma 1. Suppose Ψ is a symmetric and positive definite kernel on Ω. Then the

integral operator T maps L2(Ω) continuously into the reproducing kernel Hilbert

space NΨ(Ω). It is the adjoint of the embedding operator of the reproducing

kernel Hilbert space NΨ(Ω) into L2(Ω), i.e., it satisfies

〈g, v〉L2(Ω) = 〈g, T v〉NΨ(Ω), g ∈ NΨ(Ω), v ∈ L2(Ω).

Now we are ready to prove Theorem 1. For any un = (u1, ..., un)T ∈ Rn, it

follows that

E

(
f(g)−

n∑
j=1

ujf(gj)

)2

= K(g, g)− 2
n∑
j=1

ujK(g, gj) +
n∑
j=1

n∑
l=1

ujulK(gj, gl)

=

∫
Ω

∫
Ω

g(x)g(x′)Ψ(x,x′)dxdx′ − 2
n∑
j=1

uj

∫
Ω

∫
Ω

g(x)gj(x
′)Ψ(x,x′)dxdx′

+
n∑
j=1

n∑
l=1

ujul

∫
Ω

∫
Ω

gj(x)gl(x
′)Ψ(x,x′)dxdx′

=〈g, T g〉L2(Ω) − 2
n∑
j=1

uj〈g, T gj〉L2(Ω) +
n∑
j=1

n∑
l=1

ujul〈gj, T gl〉L2(Ω)

=〈T g, T g〉NΨ(Ω) − 2
n∑
j=1

uj〈T g, T gj〉NΨ(Ω) +
n∑
j=1

n∑
l=1

ujul〈T gj, T gl〉NΨ(Ω)

=

∥∥∥∥∥T g −
n∑
j=1

ujT gj

∥∥∥∥∥
2

NΨ(Ω)

, (S3.1)

where the third equality is by Lemma 1.

Since ûn := K−1
n kn(g) minimizes the MSPE, it also minimizes

∥∥∥T g −∑n
j=1 ujT gj

∥∥∥2

NΨ(Ω)
,

where Kn and kn(g) are as in (2.2). By taking minimum on both sides of (S3.1),
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we obtain

E
(
f(g)− f̂(g)

)2

= min
u∈Rn

∥∥∥∥∥T g −
n∑
j=1

ujT gj

∥∥∥∥∥
2

NΨ(Ω)

, (S3.2)

which finishes the proof.

S4. Proof of Corollary 1

In order to prove this corollary, we need the following lemma, which states the

asymptotic rates of the eigenvalues of K. Lemma 2 is implied by the proof of

Lemma 18 of Tuo and Wang (2020). In the rest of the Supplementary Materials,

we will use the following notation. For two positive sequences an and bn, we

write an � bn if, for some constants C,C ′ > 0, C ≤ an/bn ≤ C ′. For notational

simplicity, we will use C,C ′, C1, C2, ... to denote the constants, of which the

values can change from line to line.

Lemma 2. Let Ψ be a Matérn kernel function defined in (3.6), and λ1 ≥ λ2 ≥
... > 0 be its eigenvalues. Then, λk � k−2ν/d.

Proof of Corollary 1. By (3.2), we have T g(x) =
∫

Ω
g(x′)Ψ(x,x′)dx′ =

∑∞
j=1 λj〈g, φj〉L2(Ω)φj(x).

Therefore,∥∥∥∥∥T g −
n∑
j=1

ujT gj

∥∥∥∥∥
2

NΨ(Ω)

=

∥∥∥∥∥
∞∑
j=1

λj〈g −
n∑
k=1

ukgk, φj〉L2(Ω)φj

∥∥∥∥∥
2

NΨ(Ω)

=
∞∑
j=1

λj〈g −
n∑
k=1

ukgk, φj〉2L2(Ω), (S4.1)

where the last equality holds by Theorem 10.29 of Wendland (2004). Recall that

gk = φk for k = 1, ..., n. Now take uk = 〈g, φk〉L2(Ω) for k = 1, ..., n. It follows
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from Theorem 1 and (S4.1) that

E
(
f(g)− f̂(g)

)2

= min
u∈Rn

∥∥∥∥∥T g −
n∑
j=1

ujT gj

∥∥∥∥∥
2

NΨ(Ω)

≤
∞∑
j=1

λj〈g −
n∑
k=1

ukgk, φj〉2L2(Ω) =
∞∑

j=n+1

λj〈g, φj〉2L2(Ω). (S4.2)

This indicates that the MSPE depends on the tail behavior of the summation∑∞
j=1 λj〈g, φj〉2L2(Ω). Because Ψ is a Matérn kernel function defined in (3.6),

Lemma 2 implies λj � j−
2ν
d . Then, an explicit convergence rate can be obtained

via

E
(
f(g)− f̂(g)

)2

≤
∞∑

j=n+1

λj〈g, φj〉2L2(Ω) ≤ λn

∞∑
j=n+1

〈g, φj〉2L2(Ω) ≤ C1‖g‖2
L2
n−

2ν
d ,

where we utilize
∑∞

j=n+1〈g, φj〉2L2(Ω) ≤
∑∞

j=1〈g, φj〉2L2(Ω) = ‖g‖2
L2

. This finishes

the proof of (3.8).

Next, we consider the case g ∈ NΨ(Ω). Theorem 10.29 of Wendland (2004)

yields that

‖g‖2
NΨ(Ω) =

∞∑
j=1

〈g, φj〉2L2(Ω)

λj
<∞.

Then an alternative way to bound (S4.2) is by

E
(
f(g)− f̂(g)

)2

≤
∞∑

j=n+1

λj〈g, φj〉2L2(Ω) =
∞∑

j=n+1

λ2
j

〈g, φj〉2L2(Ω)

λj

≤λ2
n

∞∑
j=n+1

〈g, φj〉2L2(Ω)

λj
≤ λ2

n‖g‖2
NΨ(Ω) ≤ C2‖g‖2

NΨ(Ω)n
− 4ν
d . (S4.3)

This finishes the proof of (3.9), and thus the proof of Corollary 1.
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S5. Proof of Corollary 2

The following lemma is used in the proof.

Lemma 3 (Wu and Schaback, 1993, Theorem 5.14). Let Ω be compact and

convex with a positive Lebesgue measure; Ψ(x,x′) be a Matérn kernel given

by (3.6) with the smoothness parameter ν. Then there exist constants c, c0

depending only on Ω, ν and the lengthscale parameter Θ in (3.6), such that

Ψ(x,x) − rn(x)TR−1
n rn(x) ≤ ch2ν

Xn,Ω
provided that hXn,Ω ≤ c0, where Rn =

(Ψ(xj,xk))jk and rn(x) = (Ψ(x,x1), ...,Ψ(x,xn))T .

Proof of Corollary 2. For any un = (u1, ..., un)T , by (S4.1), we have∥∥∥∥∥T g −
n∑
j=1

ujT gj

∥∥∥∥∥
2

NΨ(Ω)

=
∞∑
j=1

λj〈g −
n∑
k=1

ukgk, φj〉2L2(Ω)

=
∞∑
j=1

λj〈g −
n∑
k=1

ukΨ(xk, ·), φj〉2L2(Ω) ≤ C
∞∑
j=1

〈g −
n∑
k=1

ukΨ(xk, ·), φj〉2L2(Ω)

=C

∥∥∥∥∥g −
n∑
k=1

ukΨ(xk, ·)

∥∥∥∥∥
2

L2(Ω)

≤ C1 sup
x∈Ω

∣∣∣∣∣g(x)−
n∑
k=1

ukΨ(xk,x)

∣∣∣∣∣
2

, (S5.1)

where the last equality holds because φj’s are orthogonal basis in L2(Ω). There-

fore, we can take un = R−1
n gn, where gn = (g(x1), ..., g(xn))T . Then the term,

supx∈Ω |g(x)−
∑n

k=1 ukΨ(xk,x)|, becomes the prediction error of the radial

basis function interpolation, which is well established in the literature (Wendland,

2004).

For the completeness of this proof, we include the proof of an upper bound

here. Let vk(x) = (R−1
n rn(x))k for k = 1, . . . , n. For any x ∈ Ω, the reproduc-
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ing property implies that∣∣∣∣∣g(x)−
n∑
k=1

ukΨ(xk,x)

∣∣∣∣∣
2

=

∣∣∣∣∣〈g,Ψ(x, ·)〉NΨ(Ω) −
n∑
k=1

vk(x)g(xk)

∣∣∣∣∣
2

=

∣∣∣∣∣〈g,Ψ(x, ·)〉NΨ(Ω) −
n∑
k=1

vk(x)〈g,Ψ(xk, ·)〉NΨ(Ω)

∣∣∣∣∣
2

≤‖g‖2
NΨ(Ω)

∥∥∥∥∥Ψ(x, ·)−
n∑
k=1

vk(x)Ψ(xk, ·)

∥∥∥∥∥
2

NΨ(Ω)

=‖g‖2
NΨ(Ω)(Ψ(x,x)− rn(x)TR−1

n rn(x)), (S5.2)

where the inequality is by the Cauchy-Schwarz inequality. A bound on Ψ(x,x)−
rn(x)TR−1

n rn(x) can be obtained via Lemma 3, which gives

Ψ(x,x)− rn(x)TR−1
n rn(x) ≤ C2h

2ν
Xn,Ω, (S5.3)

where hXn,Ω is the fill distance of Xn. Combining (3.5) with (S5.1), (S5.2) and

(S5.3), we obtain that

E
(
f(g)− f̂(g)

)2

≤ C3h
2ν
Xn,Ω,

which finishes the proof.

S6. Proof of Proposition 3

Without loss of generality, we assume γ = 1. It suffices to show that Kn =

(K(gj, gk))jk is positive definite for any g1, ..., gn ∈ V , which can be done by

showing that there exist n points a1, ..., an ∈ Rm with m <∞ such that ‖aj −
ak‖2 = ‖gj − gk‖L2(Ω). Let Vn = span({g1, ..., gn}), which is the linear space

spanned by g1, ..., gn. Clearly, Vn is a finite dimensional space. Let φ1, ..., φm be

an orthogonal basis of Vn with respect to L2(Ω), with m ≤ n, which can be found
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via the Gram–Schmidt process. Thus, given this basis, each gj can be written as

gj =
m∑
k=1

ajkφk

with aj = (aj1, ..., ajm)T ∈ Rm. Then it can be verified that ‖aj − ak‖2 =

‖gj−gk‖L2(Ω). Since Kn = (K(gj−gk))jk = (ψ(‖gj−gk‖L2(Ω)))jk = (ψ(‖aj−
ak‖2))jk, which is positive definite, this finishes the proof.

S7. Proof of Theorem 2

We first provide a characterization on the function class V . Since Φ is a positive

definite function, we can apply Mercer’s theorem to Φ and obtain

Φ(x,x′) =
∞∑
j=1

λΦ,jφj(x)φj(x
′), x,x′ ∈ Ω, (S7.1)

where λΦ,1 ≥ λΦ,2 ≥ ... > 0 are the eigenvalues and {φk}k∈N are the eigen-

functions, and the summation is uniformly and absolutely convergent. Because

g ∈ V ⊂ NΦ(Ω), by Theorem 10.29 of Wendland (2004), the summation

‖g‖2
NΦ(Ω) =

∞∑
j=1

λ−1
Φ,j〈g, φj〉

2
L2(Ω) ≤ 1.

Definition 1. A set Ω ⊂ Rd is said to satisfy an interior cone condition if there

exists an angle α ∈ (0, π/2) and a radius r > 0 such that for every x ∈ Ω, a unit

vector ξ(x) exists such that the cone

C(x, ξ(x), α, r) :=
{
x + ηx̃ : x̃ ∈ Rd, ‖x̃‖ = 1, x̃T ξ(x) ≥ cos(α), η ∈ [0, r]

}
is contained in Ω.

We need the following lemma, which is Theorem 11.8 of Wendland (2004);
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also see Theorem 3.14 of Wendland (2004). Lemma 4 ensures the existence of

the local polynomial reproduction.

Lemma 4 (Local polynomial reproduction). Let l ∈ N0 and πl(Rd) be the set of

d-variate polynomials with absolute degree no more than l. Suppose Ω ⊂ Rd is

bounded and satisfies an interior cone condition. Define

C1 = 2, C2 =
16(1 + sin(α))2l2

3 sin2(α)
, c0 =

r

C2

,

where α and r are defined in Definition 1. Then for all Xn = {x1, . . . ,xn} ⊂ Ω

with hXn,Ω ≤ c0 and every x ∈ Ω there exist numbers ũ1(x), . . . , ũn(x) with

(1)
∑n

j=1 ũj(x)p(xj) = p(x) for all p ∈ πl(Rd),

(2)
∑n

j=1 |ũj(x)| ≤ C1,

(3) ũj(x) = 0, if ‖x− xj‖ > C2hXn,Ω.

The following lemma provides an upper bound of the MSPE using ũj(x),

which can be found from the proof of Theorem 11.9 and (11.6) of Wendland

(2004).

Lemma 5. Suppose Φ = r(‖ · ‖2) ∈ Ck(Rd) is positive definite. Let Ω be a

compact region satisfying an interior cone condition. Then for hXn,Ω ≤ h0,

Φ(x,x)− 2
n∑
j=1

ũjΦ(x,xj) +
n∑
j=1

n∑
k=1

ũjũkΦ(xj,xk) ≤ (1 + C1)2 max
0≤s≤2C2hXn,Ω

|φ(s)− p(s2)|,

where p ∈ πbl/2c(R).

Proof of Theorem 2. Define a map h : V → W between the function class V

and the set W = {a = (a1, ..., an, ...)
T :
∑∞

j=1 λ
−1
Φ,ja

2
j ≤ 1} ⊂ l2(R∞) as

h(g) = (〈g, φ1〉L2(Ω), ..., 〈g, φn〉L2(Ω), ...)
T .

It can be verified that ‖g‖L2(Ω) = ‖h(g)‖2. Therefore, we can define a new
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positive definite function K1 on W which satisfies

K1(a, a′) = ψ(‖a− a′‖2) = ψ(‖g − g′‖L2(Ω)) = K(g, g′), ∀g, g′ ∈ V,
(S7.2)

where a = h(g) and a′ = h(g′). Define a(j) = h(gj). For any un = (u1, ..., un)T ∈
Rn, it follows that

E

(
f(g)−

n∑
j=1

ujf(gj)

)2

=K(g, g)− 2
n∑
j=1

ujK(g, gj) +
n∑
j=1

n∑
k=1

ujukK(gj, gk)

=ψ(0)− 2
n∑
j=1

ujψ(‖a− a(j)‖2) +
n∑
j=1

n∑
k=1

ujulψ(‖a(j) − a(k)‖2). (S7.3)

Let bj = (a
(j)
1 , ..., a

(j)
m )T , b = (a1, ..., am)T , a(j)

c = (a
(j)
m+1, a

(j)
m+2, ...), and ac =

(am+1, am+2, ...), where m will be determined later. Then a(j) = (bTj , (a
(j)
c )T )T

and a = (bT , aTc )T . Applying Lemma 4 to (S7.3), we obtain that for some ũj ,

n∑
j=1

ũjp(bj) = p(b), for all p ∈ πl(Rm),
n∑
j=1

|ũj(b)| ≤ C1, and ũj(b) = 0, if ‖b− bj‖2 > C2hBn,Ω,

(S7.4)

when hBn,Ω ≤ c0, where Bn = {b1, ...,bn}. Note that C2 and c0 depend on the

interior cone condition and l. In particular, they change as the dimension of b

and the degree l of polynomials p in (S7.4) change.

Since a, a(j) ∈ W , it follows that a ≤
√
λΦ,j and a(j) ≤

√
λΦ,j . Define a

set V2 =×m

k=1
[0,
√
λΦ,k]. It can be verified that b,bj ∈ V2. Set α = π/6 and

r =
√
λΦ,m/2. It can be verified that the interior cone condition is satisfied. Then

C2 = 48l2 and c0 =

√
λΦ,m

96l2
.
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With ũj defined in (S7.4), by (S7.3), it follows that

E
(
f(g)− f̂(g)

)2

≤ψ(0)− 2
n∑
j=1

ũjψ(‖a− a(j)‖2) +
n∑
j=1

n∑
l=1

ũjũlψ(‖a(j) − a(l)‖2)

=

(
ψ(0)− 2

n∑
j=1

ũjψ(‖b− bj‖2) +
n∑
j=1

n∑
k=1

ũjũkψ(‖bj − bk‖2)

)

+

(
−2

n∑
j=1

ũj
(
ψ(‖a− a(j)‖2)− ψ(‖b− bj‖2)

)
+

n∑
j=1

n∑
k=1

ũjũk
(
ψ(‖a(j) − a(l)‖2)− ψ(‖bj − bk‖2)

))
:=I1 + I2. (S7.5)

The first term can be bounded by Lemma 5, which gives

I1 ≤9 max
0≤s≤2C2hBn,Ω

|ψ(s)− p(s2)| = 9 max
0≤s≤
√
λΦ,m

|ψ(s)− p(s2)|, (S7.6)

for some p ∈ πbl/2c(R), provided hBn,Ω ≤ c0. Since ‖bj − b‖2 ≤ ‖a− a(j)‖2 =

‖g − gj‖L2(Ω), we have hBn,Ω ≤ hGn,V so hBn,Ω ≤ c0 holds.

Next, we consider bounding I1 with a Matérn kernel function ψ. Lemma

2 implies that λΦ,j � j−
2ν1
d . By the expansion of modified Bessel function

(Abramowitz and Stegun, 1948), ψ can be written as

ψ(r) =

bνc∑
k=0

ckr
2k + cψ(r),

where

cψ(r) =

{
cr2ν log r +O(r2ν) ν = 1, 2, ...

cr2ν +O(r2(bνc+1)) otherwise.
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Therefore, we can take p(s2) = −
∑bνc

k=0 cks
2k and obtain that

max
0≤s≤
√
λΦ,m

|ψ(s)− p(s2)| ≤

{
C2λ

ν
Φ,m log(λ−1

Φ,m) ≤ C3m
− 2νν1

d logm, ν = 2, ...

C4λ
ν
Φ,m ≤ C5m

− 2νν1
d , otherwise.

(S7.7)

By (S7.6),

I1 ≤ 9 max
0≤s≤
√
λΦ,m

|ψ(s)− p(s2)| ≤

{
C6m

− 2νν1
d logm, ν = 2, ...

C7m
− 2νν1

d , otherwise.
(S7.8)

It remains to bound I2. For a Matérn kernel function ψ, it can be verified that for

all s1, s2 ∈ [0, s],

|ψ(s1)− ψ(s2)| ≤ C8|s1 − s2|2τ ,

where τ = min(ν, 1). Therefore, we can rewrite (S7.5) as

|I2| ≤2C8

n∑
j=1

ũj|‖a− a(j)‖2 − ‖b− bj‖2|2τ + C8

n∑
j=1

n∑
k=1

ũjũk|‖a(j) − a(k)‖2 − ‖bj − bk‖2|2τ

≤2C8

n∑
j=1

|ũj| ‖a− a(j) − (b− bj)‖2τ
2 + C8

n∑
j=1

n∑
k=1

|ũj| |ũl| ‖a(j) − a(l) − (bj − bk)‖2τ
2

≤C8(4C1 + 2C2
1)λτΦ,m+1 ≤ C8(4C1 + 2C2

1)m−
2τν1
d . (S7.9)

Because m−
2νν1
d logm ≤ m−

2ν1τ
d logm and logm > 1, combining (S7.7), (S7.9)

and (S7.5) leads to

E
(
f(g)− f̂(g)

)2

≤ C9m
− 2ν1τ

d logm. (S7.10)

The last step is to computem such that there exist n functions, hGn,V ≤ C0m
− 2ν1

d .
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Since it is known that a unit ball of NΦ(Ω) has a covering number

N(δ, V, ‖ · ‖L∞) ≤ C10 exp(C11δ
− d
ν1+d/2 ).

Thus, in order to make hGn,V ≤ C0m
− 2ν1

d , we set δ = C0m
− 2ν1

d . Thus, as

long as n ≥ C12 exp(C13m
2ν1

ν1+d/2 ), hGn,V ≤ C0m
− 2ν1

d holds. This implies

m ≤ C14(log n)
ν1+d/2

2ν1 . Since we require logm > 1, n should satisfy n >

exp((e/C14)
2ν1

ν1+d/2 ) =: N0. Plugging m ≤ C14(log n)
ν1+d/2

2ν1 in (S7.8), (S7.9),

and (S7.5), we finish the proof.

S8. Sample path

S8.1 Linear kernel

The focus of this section is to study how the unknown parameters in the proposed

linear kernel (3.1) affect the generated sample paths. We focus on the Matérn

kernel function, which has the form of (3.6). Three types of unknown parameters

are studied, including the d positive diagonal elements of the diagonal matrix Θ,

denoted by θ, the positive scalar σ2, and the smoothness parameter ν.

The sample paths are generated by the input functions g(x) = sin(αx),

where x ∈ Ω = [0, 2π] and α ∈ [0, 1]. The value α indicates the frequency

of the periodic function and the RKHS norm of g, i.e., ‖g‖NΨ(Ω), increases

monotonically with respect to α. As a result, this input function creates an

analogy to the sample paths in conventional GP by studying the paths as a

function of α with different parameter settings. In Figure S1, the sample paths

are demonstrated with different settings of the three types of parameters. The first

row illustrates the sample paths with three different settings of ν, given θ = 1

and σ2 = 1. It appears that the smoothness of the resulting sample paths is not

significantly affected by the setting of ν, which typically controls the smoothness

in conventional GPs. This is mainly because, unlike the conventional Matérn

kernel function (Stein, 1999), the derivative of (3.1) with respect to the input
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g is not directly related to the parameter ν. The middle panels in Figure S1

demonstrate the sample paths with different settings of θ, given ν = 2.5 and

σ2 = 1. It shows that, as θ increases, the number of the local maxima and minima

increases, which agrees with the observations in conventional GPs. Lastly, the

bottom three panels show the sample paths with different settings of σ2, given

ν = 2.5 and θ = 1. Similar to conventional GPs, σ2 controls the amplitude of the

resulting sample paths.

S8.2 Nonlinear kernel

Based on the nonlinear kernel of (3.12) with the Matérn kernel function defined

in (3.7), the sample paths are studied with respect to different settings of the

γ, ν and σ2. As shown in Figure S2, the results appear to be consistent with

the observations in conventional GPs where ν controls the smoothness of the

function, θ controls the number of the local maxima and minima, and σ2 controls

the amplitude of the functions.

S9. Supporting tables and figures in Sections 4 and 5

The tables and figures that present the results in Sections 4 and 5 are provided in

this section.

g(x) x1 +x2 x2
1 x2

2 1 + x1 1 + x2 1 + x1x2 sin(x1) cos(x1+x2)

f1(g) 1 0.33 0.33 1.5 1.5 1.25 0.46 0.50
f2(g) 1.5 0.14 0.14 3.75 3.75 2.15 0.18 0.26
f3(g) 0.62 0.19 0.19 0.49 0.49 0.84 0.26 0.33

Table S1: Training data set for the numerical study, where f1(g) =
∫

Ω

∫
Ω g(x)dx1dx2,

f2(g) =
∫

Ω

∫
Ω g(x)

3dx1dx2, and f3(g) =
∫

Ω

∫
Ω sin(g(x)2)dx1dx2.
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Measurements Method f1(g) =
∫

Ω

∫
Ω
g f2(g) =

∫
Ω

∫
Ω
g2 f3(g) =

∫
Ω

∫
Ω

sin(g)

MSE
FIGP 6.4× 10−10 0.012 0.016
FPCA 1.8× 10−4 0.124 0.023
T3 0.093 1.271 0.047

Coverage (%)
FIGP 96.33 100 100
FPCA 100 92.33 76.00
T3 100 98.33 100

Score
FIGP 14.899 2.571 3.458
FPCA 6.631 1.207 0.290
T3 1.064 -1.364 2.047

Table S2: Prediction results of the FIGP and basis-expansion approach for the synthetic
examples (FPCA indicates an FPCA expansion approach and T3 indicates the Taylor
series expansion of degree 3), including MSEs, average coverage rates of the 95%
prediction intervals, and the average proper scores, in which the values with better
performances are boldfaced.
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Figure S1: Sample paths of linear kernels. Top panel shows the effect of varying the
parameter ν with the fixed θ = 1 and σ2 = 1, middle panel shows the effect of varying
the parameter θ with the fixed ν = 2.5 and σ2 = 1, and the bottom panel shows the effect
of varying the parameter σ2 with the fixed ν = 2.5 and θ = 1.
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Figure S2: Sample paths of nonlinear kernels. Top panel shows the effect of varying the
parameter ν with the fixed γ = 1 and σ2 = 1, middle panel shows the effect of varying
the parameter γ with the fixed ν = 2.5 and σ2 = 1, and the bottom panel shows the
effect of varying the parameter σ2 with the fixed ν = 2.5 and γ = 1.
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Figure S3: Principle components, which explain more than 99.99% variations of the
data.

g(x1,x2)=1−sin(x2)
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Figure S4: Prediction on the validation function. The left panel is the true output of the
functional input g(x1, x2) = 1− sin(x2), and the middle panels are the predictions of
FIGP, FPCA, and T3, and the right panels are their variances in logarithm.
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