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This material is organized as follows. Section S1 presents more numerical examples including

the LSTM model, the comparisons of LEnKF with sequential importance sampling, and the

comparisons of LEnKF with some stochastic gradient MCMC algorithms such as SGLD, pS-

GLD and SGNHT. Section S2 presents the convergence theory of LEnKF, where the proofs for

Theorem 1 and Theorem 2 are provided.

S1 More Numerical Examples

S1.1 Bayesian Variable Selection for Large-Scale Linear Regres-

sion

Comparison of LEnKF with SGLD, pSGLD and SGNHT as reported in Sec-

tion 4.1

For comparison, SGLD (Welling and Teh, 2011), preconditioned SGLD

(pSGLD, Li et al., 2016), and stochastic gradient Nosé-Hoover thermo-

stat (SGNHT, Ding et al., 2014) were applied to this example. For these
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algorithms, the learning rates have been tuned to their maximum values

such that the simulation converges fast while not exploding. For SGLD,

we set ϵt = 4 × 10−6/max{t0, t}0.6 with t0 = 1000; for pSGLD, we set

ϵt = 5 × 10−6/max{t0, t}0.6 with t0 = 1000; and for SGNHT, we set

ϵ = 0.0001. Other than the learning rate, pSGLD contains two more tuning

parameters, which control the extremes of the curvatures and the balance of

the weights of the historical and current gradients, respectively. They both

were set to the default values as suggested by Li et al. (2016). SGNHT also

contains an extra parameter, the so-called diffusion parameter, for which

different values, including 1, 5, 10, and 20, have been tried. The algorithm

performed very similarly with each of the choices. Figure S1 summarizes

the results of the algorithm with the diffusion parameter being set to 10.

Further, for fairness of comparison, we ran SGLD, pSGLD and SGNHT

for 20,000 iterations, 10,000 iterations, and 15,000 iterations, respectively;

and they took about 387 CPU seconds, 410 CPU seconds and 380 CPU

seconds, respectively. Each of the three algorithms took slightly longer

CPU time than LEnKF.
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Figure S1: Trajectories of (β1, β2, . . . , β9) produced by SGLD (upper), pSGLD (upper
middle), SGNHT (lower middle), and LEnKF (lower) for a large-scale linear regression
example, where the blue rectangle highlights the first 5% iterations of the runs. The
highlighted parts are presented in Figure 2 of the main text.

Comparison of LEnKF with parallel SGLD, pSGLD and SGNHT

For a thorough comparison, we also ran SGLD (Welling and Teh, 2011),

pSGLD (Li et al., 2016) and SGNHT (Ding et al., 2014) in parallel for

the linear regression example considered in Section 4.1. Each of the three

algorithms was run for 1,000 iterations with 100 chains and exactly the same

parameter setting as used in Section 4.1. The CPU times costed by SGLD,

pSGLD, and SGNHT were 38.18, 43.19, 42.39 CPU seconds, respectively.
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Recall that LEnKF with an ensemble size of m = 100 cost 35.14 CPU

seconds for 1,000 iterations on the same computer. Figure S2 shows the

trajectories of (β1, β2, . . . , β9) produced by SGLD, pSGLD, SGNHT and

LEnKF in the runs, where each trajectory was obtained by averaging over

100 chains at each iteration. For this example, LEnKF took less than

100 iterations to converge to the true values, SGNHT took about 1000

iterations, while SGLD and pSGLD failed to converge with 1000 iterations.

S1.2 Comparison of LEnKF with sequential importance sam-

pling

To evaluate the performance of LEnKF, we compared it with sequential

importance sampling (see e.g. Kantas et al. (2009)). For sequential im-

portance sampling, at each stage t ∈ {2, 3, . . . , T}, we set the trial density

functions as π(xt|xt−1)π(xt−1|y1:t−1) for drawing importance particles from

π(xt|y1:t) based on the particles from π(xt−1|y1:t−1) and then perform a re-

sampling step to get equally weighted particles. This setting of the trial

density function is in parallel to the stage transition procedure of LEnKF,

which uses the predictive distribution π(xt|y1:t−1) as the prior distribution

at each stage. Such a sequential importance sampling algorithm is also

called a sequential Monte Carlo (SMC) algorithm, as it generates equally
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Figure S2: Convergence trajectories of SGLD, pSGLD, SGNHT and LEnKF for a large-
scale linear regression example.
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weighted particles via resampling at each stage.

The comparison was conducted with the Lorenz-96 model where we set

T = 500. LEnKF was run with an ensemble size m = 50 and the same

settings of K and learning rates as given in Section 4.2. At each stage, the

state was estimated by averaging over the ensembles generated in the last

iteration, i.e., setting k0 = K − 1. The run was replicated for 100 times

independently, and each run cost 18.4 seconds (with a standard error of

0.23 seconds). SMC was also run for 100 times independently. In each run,

we set the population size m′ = 5000 to maintain its effective sample size at

a reasonable size, and estimated the states in the standard way by weighted

averaging all particles produced at each stage. Each run cost about 59.7

seconds (with a standard error of 0.61 seconds). With these runs, each

algorithm produced 100 estimates for each state X t for t = 1, 2, . . . , T .

Figure S3 shows 100 estimation curves of X10
t produced by each algorithm,

which indicate that the estimates produced by SMC have a large variation,

while those by LEnKF are more accurate and follow the pattern of the true

curve closely, although SMC cost longer CPU time than LEnKF. From

the between-runs variation of their estimated curves, we can conclude that

LEnKF produced almost the same effective sample size (ESS) at each stage,

while the ESS produced by SMC varied with stages. This further implies
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that LEnKF tends to be immune to sample degeneracy, while SMC doesn’t.
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Figure S3: Comparison of LEnKF and SMC: estimated curves of X10
t by LEnKF (red)

and SMC (purple) along with stage t in 100 independent runs.

Further, to quantify the relative efficiency of the two algorithms, we

calculated the ESS ratio by RESS,t,10 = m′σ2
SMC,t,10/(mσ2

LEnKF,t,10), where

σ2
SMC,t,10 and σ2

LEnKF,t,10 denote the variance of 100 estimates of X10
t pro-

duced by SMC and LEnKF, respectively. Figure S4(a) shows the curve of

RESS,t,10 along with stage t. The ESS ratio has very large values around

stage 50, which correspond to a high fluctuation of X10
t around the same

stage. Figure S4(b) shows the curve of RESS,t =
∑40

k=1RESS,t,k/40, which

averages the values of RESS,t,k over components k. It implies that LEnKF
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can be much more efficient than SMC especially for the problems with

drastically fluctuated state values.
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Figure S4: Comparison of LEnKF and SMC: (a) curve of RESS,t,10 along with stage t,
which has an average value of 28270.62 over all stages; (b) curve of RESS,t along with
stage t, which has an average value of 26443.01 over all stages.

S1.3 Online Learning with LSTM Neural Networks

Reformulation of LSTM Model The LSTM model is a recurrent neural

network model proposed by Hochreiter and Schmidhuber (1997), which has

been widely used for machine learning tasks in dealing with time series

data. Compared to traditional recurrent neural networks, hidden Markov

models and other sequence learning methods, LSTM is less sensitive to gap

length of the data sequence. In addition, it is easy to train, less bothered by

exploding and vanishing gradient problems. The LSTMmodel has been suc-

cessfully used in natural language processing and handwriting recognition.
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It won the ICDAR handwriting competition 2009 (Graves et al., 2009) and

achieved a record 17.7% phoneme error rate on the classic TIMIT natural

speech dataset (Graves et al., 2013). In this section we show that LEnKF

is not only able to train LSTM models as the stochastic gradient descent

(SGD) method, but also able to quantify uncertainty of the estimates for

the quantities of interest.

Consider an autoregressive model of order q, denoted by AR(q). Let

zt = (zt−q+1, · · · , zt−1, zt) denote the regression vector at stage t. Let yt =

zt+1 ∈ Rd denote the target output at stage t. The LSTM model with s

hidden neurons is defined by the following set of equations:

ηt = h
(
W (η)zt +R

(η)ψt−1 + b
(η)
)
,

it = σ
(
W (i)zt +R

(i)ψt−1 + b
(i)
)
,

f t = σ
(
W (f)zt +R

(f)ψt−1 + b
(f)
)
,

ct = Λ
(i)
t ηt +Λ

(f)
t ct−1,

ot = σ
(
W (o)zt +R

(o)ψt−1 + b
(o)
)
,

ψt = Λ
(o)
t h (ct) ,

(S1.1)

where Λ
(f)
t = diag (f t) ,Λ

(i)
t = diag (it), and Λ

(o)
t = diag (ot). The acti-

vation function h(·) applies to vectors pointwisely and is commonly set to

tanh(·). The sigmoid function σ(·) also applies pointwisely to the vector el-



Peiyi Zhang, Qifan Song AND Faming Liang

ements. In terms of LSTM models, zt ∈ Rqd is called input vector, ct ∈ Rs

is called the state vector, ψt ∈ Rs is called the output vector, and it, f t and

ot are called the input, forget and output gates, respectively. For the coeffi-

cient matrices and weight vectors, we haveW (η),W (i),W (f),W (o) ∈ Rs×qd,

R(η),R(i),R(f),R(o) ∈ Rs×s, and b(η), b(i), b(f), b(o) ∈ Rs. For initialization,

we set ψ0 = 0, and c0 = 0. Given the output vector ψt , we can model the

target output yt as

yt =Wψt + b+ ut, (S1.2)

where W ∈ Rd×s, b ∈ Rd, and ut ∼ N(0,Γt).

For convenience, we group the parameters of the LSTM model as θ =

{W , b,W (η),R(η), b(η),W (i), R(i), b(i),W (f),R(f), b(f),W (o),R(o), b(o)} ∈

Rnθ , where nθ = 4s2 + 4sqd + 4s + sd + d. With the state-augmentation

approach, we can rewrite the LSTM model as a state-space model with a

linear measurement equation as follows:



θt

ct

ψt

γt


=



θt−1

Ω
(
ct−1, zt,ψt−1

)
τ
(
ct, zt,ψt−1

)
W tψt + b


+



et

ζt

ξt

εt


,

yt = γt + vt,

(S1.3)
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where εt ∼ N(0, αΓt) for some constant 0 < αt < 1, vt ∼ N(0, (1− α)Γt),

and Γt is as defined in (S1.2). Let xT
t = (θTt , c

T
t ,ψ

T
t ,γ

T
t ). Then

π(xt|xt−1, zt) = π(θt|θt−1, zt)π(ct|θt, ct−1,ψt−1, zt)π(ψt|θt, ct,ψt−1, zt)

× π(γt|θt,ψt).

As in (3.9), we can rewrite the state-space model (S1.3) as a dynamic sys-

tem:

xt,k = xt,k−1 +
ϵt
2
∇x log π(xt,k−1|x̃t−1,k−1, zt) + ωt,k

yt,k = Htxt,k + vt,k,

(S1.4)

where xt,k denote an estimate of xt obtained at iteration k for k = 1, 2, . . . ,K,

yt,k = yt for k = 1, 2, . . . ,K, Ht = (0, I) such that Htxt = γt, ωt,k ∼

N(0, ϵtIp), p is the dimension of xt, and vt,k ∼ N(0, (1− α)Γt). With this

formulation, Algorithm 3 can be applied to train the LSTM model and

quantify uncertainty of the estimates for the quantities of interest.

Wind Stress Data We considered the wind stress dataset, which can be

downloaded at https:// iridl.ldeo.columbia.edu. The dataset consists of

gridded (at a 2×2 degrees resolution and corresponding to d = 1470 spatial

locations) monthly summaries of meridional wind pseudo-stress collected

from Jan 1961 to Feb 2002. For this dataset, we set q = 6 and T = 300,
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i.e., modeling the data of the first 300 months using an AR(6) LSTM model.

The data was scaled into the range (−1, 1) in preprocessing and then scaled

back to the original range in results reporting.

LEnKF was first applied to this example. For the model part, we

set et ∼ N(0, 0.0001I), ζt ∼ N(0, 0.0001I), ξt ∼ N(0, 0.0001I), ut ∼

N(0, 0.0001I). These model parameters are assumed to be known, although

this is not necessary as discussed at the end of the paper. For this example,

we have tried different settings for the model parameters. In general, a

smaller variance setting will lead to a better fitting to the observations. For

the algorithmic part, we set the ensemble size m = 100, K = 10, k0 = 9,

α = 0.9, the number of hidden neurons s = 20, and the learning rate ϵt,k =

0.0001/max{κb, k}0.95 with κb = 8 for k = 1, · · · ,K and t = 1, · · · , T . At

each stage t, the wind stress was estimated by averaging over ŷt,k = Htxt,k

for last K/2 iterations. In addition, the credible interval for each component

of xt was calculated based on the ensemble obtained at stage t. Each run

cost about 5334.5 CPU seconds. The results are summarized in Figure S5,

where the wind stress estimates at four selected spatial locations and their

95% credible intervals are plotted along with stages.

For comparison, SGD was also applied to this example with the same

setting as LEnKF, i.e., they share the same learning rate and the same
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iteration number K = 10 at each stage. The results are also summarized in

Figure S5, where the wind stress estimates at four selected spatial locations

are plotted along with stages. Each run of SGD cost about 15.9 CPU

seconds. Since LEnKF had an ensemble size m = 100, each chain cost only

53.3 CPU seconds. LEnKF cost more CPU time and as return, it produced

more samples for uncertainty quantification.

Further, we calculated the mean squared fitting error ||ŷt − yt||22 for

stages t = 1, 2, . . . , T and for both methods. The results are summarized

in Figure S6, which indicates that LEnKF produced slightly smaller fitting

errors than SGD. Figure S7 shows the heat maps of the wind stress fitted

by LEnKF and SGD for six different months, August 1965, October 1969,

December 1973, February 1978, April 1982, and June 1986. The comparison

with the true heat maps indicates that both SGD and LEnKF can train

the LSTM model very well for this example.

In summary, this example shows that LEnKF is not only able to train

LSTM model as does SGD, but also able to quantify uncertainty of the

estimates for the quantities of interest.
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Figure S5: Wind stress estimates at four spatial locations and their 95% credible interval
along with stages: the red line is for the LEnKF estimate; the pink shaded band is for
credible intervals of LEnKF, the green line is for the SGD estimate; and the blue cross
’+’ is for the true wind stress value.
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Figure S6: Comparison of the mean squared fitting errors produced by SGD, LEnKF
and ensemble averaging LEnKF.

S2 Convergence Theory of LEnKF

We are interested in studying the convergence of LEnKF in 2-Wasserstein

distance. The r-Wasserstein distance between two probability measures µ

and ν is defined by

Wr(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
X×X

d(x, y)rdπ(x, y)

)1/r

= inf
π∈Π(µ,ν)

{Eπd(X, Y )r}1/r ,

where Π(µ, ν) denotes the collection of all probability measures on X × X

with marginals µ and ν respectively.
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Figure S7: Heat maps of the wind stress fitted by LEnKF and SGD for six different
months, August 1965, October 1969, December 1973, February 1978, April 1982, and
June 1986: For both left and right panels, the left, middle and right columns show
the true heat map, the heat map fitted by LEnKF, and the heat map fitted by SGD,
respectively.
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S2.1 Proof of Theorem 1

Proof. First, we consider the Kalman gain matrixKt = QtH
T
t (Rt+HtQHT

t )
−1,

which, with some algebra, can be shown

Kt = (I −KtHt)QtH
T
t R

−1
t = (HT

t R
−1
t Ht +Q−1

t )−1HT
t R

−1
t . (S2.1)

Let µt = E(xf
t |xa

t−1) = xa
t−1 + δt, where δt = ϵt

n
2N

∇ log π(xa
t−1). Therefore,

xf
t = µt + wt.

Taking conditional expectation on both sides of equation (3.5), we have

E(xa
t |xa

t−1) = µt+Kt(yt−Htµt) = xf
t +Kt(yt−Htx

f
t )−(I−KtHt)wt. (S2.2)
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With the identity (S2.1), (S2.2) can be further written as

E(xa
t |xa

t−1) = xa
t−1 + δt +Kt(yt −Htx

a
t−1 −Htδt)

= xa
t−1 +Kt(yt −Htx

a
t−1) + (I −KtHt)δt

= xa
t−1 + (I −KtHt)QtH

T
t R

−1
t (yt −Htx

a
t−1) + (I −KtHt)δt

= xa
t−1 + (I −KtHt)Qt

[
HT

t R
−1
t (yt −Htx

a
t−1) +Q−1

t δt
]

= xa
t−1 +

n

2N
(I −KtHt)Qt

[
N

n
HT

t V
−1(yt −Htx

a
t−1) +∇ log π(xa

t−1)

]
,

= xa
t−1 +

ϵt
2
Σt

[
N

n
HT

t V
−1(yt −Htx

a
t−1) +∇ log π(xa

t−1)

]
,

(S2.3)

by defining Σt =
n
N
(I −KtHt) and by noting Qt = ϵtIp and Rt = 2V .

For LEnKF, the difference between equations (3.5) and (S2.2) is

et = (I −KtHt)wt −Ktvt = wt −Kt(Htwt + vt),

for which the mean E(et) = 0 and the covariance is given by

Var(et) =
n

N
Qt +Kt(

n

N
HtQtH

T
t +

n

N
Rt)K

T
t − 2

n

N
KtHtQt

=
n

N
[Qt +KtHtQt − 2KtHtQt]

=
n

N
(I −KtHt)Qt = ϵtΣt,

where the second equality holds due to the symmetry of Qt and Rt and the



S2. CONVERGENCE THEORY OF LENKF

identityKt(HtQtH
T
t +Rt)K

T
t = Kt(HtQtH

T
t +Rt)(HtQ

T
t H

T
t +RT

t )
−1HtQ

T
t =

KtHtQt. Then, by (S2.3), we have

xa
t = xf

t +Kt

[
yn −Htx

f
t − vt

]
= xa

t−1 +
ϵt
2
Σt

[
N

n
HT

t V
−1
t (yt −Htx

a
t−1) +∇ log π(xa

t−1)

]
+ et,

(S2.4)

where N
n
HT

t V
−1(yt−Htx

a
t−1) represents an unbiased estimator for the gradi-

ent of the log-likelihood function, and ∇ log π(xa
t−1) represents the gradient

of the log-prior density function. The proof can then be concluded.

Remark S1. Let π̃t denote the empirical distribution of xa
t , and let π∗ =

π(x|y) denotes the target posterior distribution π(x|y). By Corollary S1

(with η = 0), we have limt→∞ W2(π̃t, π∗) = 0. For Algorithm 2, it is easy to

see that (S2.8) is satisfied, for which the bias factor η = 0 as N
n
HT

t V
−1(yt−

Htx
a
t−1)+∇ log π(xa

t−1) forms an unbiased estimator of ∇ log π(x|y) at xa
t−1,

and the variance of the estimation error is upper bounded by a quadratic

function of ∥xa
t−1∥.

S2.2 Proof of Theorem 2

Let πt = π(xt|y1:t) denote the filtering distribution at stage t, and let π̃t

denote the marginal distribution of xa,i
t,K generated by Algorithm 3 at iter-

ation K of stage t. To study the convergence of Algorithm 3, we make the
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following assumptions for the dynamic system (1.1):

Assumption S1. πt is st-strongly log-concave:

f(xt)− f(x′
t)−∇f(x′

t)
T (xt − x′

t) ≥
st
2
∥xt − x′

t∥22, ∀xt, x
′
t ∈ Rp

t , (S2.5)

where f(xt) = − log π(xt|y1:t) = − log πt, and st is a positive number satis-

fying st ≥ c1Nt for some constant c1 > 0.

Assumption S2. log(πt) is St-gradient Lipschitz continuous:

∥∇f(xt)−∇f(x′
t)∥2 ≤ St∥xt − x′

t∥2, ∀xt, x
′
t ∈ Rp

t . (S2.6)

where St is a positive number satisfying St ≤ c2Nt for some constant c2 > 0.

Note that we must have st ≤ St.

Assumption S3. Let Σt,k =
n
N
(I −Kt,kHt,k), and assume that

λt,l ≤ inf
k
λmin(Σt,k) ≤ sup

k
λmax(Σt,k) ≤ λt,u

for some λt,l and λt,u, where λmax(·) and λmin(·) denote the largest and

smallest eigenvalues, respectively. In addition, there exist constants c3 > 0

and c4 > 0 such that c3(nt/Nt) ≤ λt,l ≤ λt,u ≤ c4(nt/Nt).

Assumption S4. λmax(H
T
t,kV

−1
t Ht,k) ≤ c5nt for some constant c5 > 0.
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Assumption S5. The stochastic error induced by the sub-sampling proce-

dure has a bounded variance, i.e., ∀x ∈ Rp
t ,

E[∥(Nt/nt)H
T
t,kV

−1
t (yt,k −Ht,kx)−HT

t Γ
−1
t (yt −Htx)∥2] ≤ σ2

t,s(p+ ∥x∥2),

for some constant σ2
t,s > 0, where the expectation is with respect to random

sub-sampling. In addition, we assume that stλt,l −
√
2σt,sλt,u > 0.

Assumption S6. The state propagator g(xt) is l-Lipschitz and bounded by

Mg (i.e., supx ∥g(x)∥ ≤ Mg), and λ′
t,s ≥ λmax(Ut) ≥ λmin(Ut) ≥ λt,s > 0 for

some positive constants λ′
t,s and λt,s.

Assumption S7. There exist some constant M such that W2(νt+1, πt+1) ≤

M for all t ≥ 0, where νt+1(xt+1) =
∫
π(xt+1|xt)πt(xt)dxt is the ideal stage

initial distribution of xa,i
t+1,0 for t ≥ 1, and ν1 is the initial distribution used

at stage 1. Similarly, we define ν̃t+1(xt+1) =
∫
π(xt+1|xt)π̃t(xt)dxt to be the

practical stage initial distribution of xa,i
t+1,0 for t ≥ 1.

Assumption S8. There exists a constant c7 such that Ṽt =
∫
∥x∥2dπt ≤

c7p.

Remark S2. Log-concavity and strong log-concavity are preserved by prod-

ucts and marginalization (Saumard and Wellner, 2014). If the prior density

π(x1) is log-concave, the state transition density π(xt|xt−1) is log-concave
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with respect to both xt and xt−1 for each stage t, and the emission density

π(yt|xt) is λt-strongly-log-concave for each stage t where λt is the smallest

eigenvalue of HT
t Γ

−1
t Ht, then Assumption S1 holds with st = λt. Further-

more, by Brascamp-Lieb inequality (Brascamp and Lieb, 2002), we must

have that πt has finite variance, that is

pσ2
t,v := Eπt∥X − E(X)∥2 ≤ p/st. (S2.7)

Strongly log-concave conditions are commonly used in the theoretical study

of Langevin Monte Carlo, see e.g. Dalalyan and Karagulyan (2019) and

Cheng and Bartlett (2018). These conditions potentially can be relaxed

following the work of Durmus and Moulines (2017).

Remark S3. With some simple linear algebra, we can show

Σt,k =
nt

Nt

(I −Kt,kHt,k) =
nt

Nt

(I − ϵt,kH
T
t,k(ϵt,kHt,kH

T
t,k + 2Vt)

−1Ht,k),

which implies that all eigenvalues of Σt,k lie in the range (0, nt/Nt). Thus, it

is reasonable to assume that λt,l, λt,u ≍ nt/Nt. In addition, due to random

subsampling used in stochastic gradient evaluation, it is natural to assume

that σ2
t,s ≍ (Nt/nt). Therefore, stλt,l −

√
2σt,sλt,u > 0 holds trivially by

Assumption S1 and large subsample size nt.
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Remark S4. Assumption S7 says the ideal initialization distribution at

each stage is not too bad, which essentially requires that the data are co-

herent to the state space model (1.1) in the sense that the predictive distri-

bution based on y1:t (i.e., π(xt+1|y1:t)) and the state estimate based on yt+1

only (i.e., x̂t+1 = (HT
t+1Ht+1)

−1HT
t+1yt+1) are close.

Lemma S1. Let µ and ν be two distribution laws on Rp, and let f be an

L-Lipschitz continuous function, then

∥∥∥∥∫ f(x)dµ(x)−
∫

f(x)dν(x)

∥∥∥∥ ≤ LW2(µ, ν).

Proof. By the definition of 2-Wasserstein distance, there exist random vari-

ables X1 and X2, whose marginal distributions follow µ and ν respectively,

such that ∥X1 −X2∥L2 = (E∥X1 −X2∥22)1/2 = W2(µ, ν).

∥∥∥∥∫ f(x)dµ(x)−
∫

f(x)dν(x)

∥∥∥∥ = ∥Ef(X1)− Ef(X2)∥

≤ E∥f(X1)− f(X2)∥ ≤ EL∥X1 −X2∥2

= LE
√

∥X1 −X2∥22 ≤ L
√

E∥X1 −X2∥22 = LW2(µ, ν).
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Lemma S2. If Assumption S6 holds, then

W2(ν̃t+1, νt+1) ≤ lW2(πt, π̃t).

Proof. By the definition of 2-Wasserstein distance, there exist random vari-

ables X1 and X2, whose marginal distributions are πt and π̃t respectively,

and E(∥X1−X2∥22) = W 2
2 (π̃t, πt). Define Y1 = g(X1)+u, and Y2 = g(x2)+u,

where u ∼ N(0, Ut+1) such that the marginal distributions of Y1 and Y2 are

νt+1 and ν̃t+1 respectively. Then,

W 2
2 (ν̃t+1, νt+1) ≤ E∥Y1 − Y2∥22 = E∥g(X1)− g(X2)∥22

≤ El2∥X1 −X2∥22 = l2W 2
2 (πt, π̃t).

Lemma S3. If f is an L-Lipschitz continuous function, then E∥f(X) −

E(f(X))∥22 ≤ L2E∥X − E(X)∥22.
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Proof. Let X1 and X2 be two independent copies of X. Then

E∥f(X)− E(f(X))∥22 = (1/2)E∥f(X1)− f(X2)∥22

≤ (1/2)E(L∥X1 −X2∥2)2

≤ L2(1/2)E(∥X1 −X2∥2)2

= L2E∥X − E(X)∥22.

Lemma S4. Let X ∼ µ and Y ∼ ν, then

E∥Y −E(Y )∥22 ≤ E∥X−E(X)∥22+W 2
2 (µ, ν)+2W2(µ, ν)

√
E∥X − E(X)∥22.

Proof. By definition of Wasserstein metric, we can assume that X and Y

satisfy ∥X−Y ∥L2 = (E∥X−Y ∥22)1/2 = W2(µ, ν). Without loss of generality,

we also assume that EX, the mean of measure µ, is 0. Then

[E∥Y − E(Y )∥22 − E∥X∥22]−W 2
2 (µ, ν)

=EY TY − (EY )T (EY )− EXTX − EXTX − EY TY + 2EXTY

=2EXTY − 2EXTX − (EY )T (EY ) ≤ 2EXT (Y −X) ≤ 2E∥X∥2∥Y −X∥2

≤2
√

E∥X∥22E∥Y −X∥22 = 2W2(µ, ν)
√

E∥X∥22.
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Lemma S5. Let X ∼ µ and Y ∼ ν, then

E∥Y ∥2 ≤ E∥X∥2 +W 2
2 (µ, ν) + 2W2(µ, ν)

√
E∥X∥2.

Proof. By definition of Wasserstein metric, W.O.L.G, we can assume that

X and Y satisfy E∥X − Y ∥2 = W 2
2 (µ, ν). Then

[E∥Y ∥2 − E∥X∥2]−W 2
2 (µ, ν)

=EY TY − EXTX − EXTX − EY TY + 2EXTY

=2EXTY − 2EXTX = 2EXT (Y −X) ≤ 2E∥X∥∥Y −X∥

≤2
√

E∥X∥2E∥Y −X∥2 = 2W2(µ, ν)
√
E∥X∥2.

Lemma S6 is a generalization of Theorem 4 of Dalalyan and Karagulyan

(2019), and a generalization of Lemma S2 of Song et al. (2020) as well.

Lemma S6. Let xk and xk+1 be two random vectors in Rp satisfying

xk+1 = xk − ϵΣ[∇f(xk) + ζk] +
√
2ϵek+1,

where ek+1 ∼ N(0,Σ), and ζk denotes the random error of the gradient

estimate which can depend on xk. Let πk be the distribution of xk, and let
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π∗ ∝ exp{−f} be the target distribution. Suppose that ζk satisfies

∥E(ζk|xk)∥2 ≤ η2p, E[∥ζk − E(ζk|xk)∥2] ≤ σ2
1p+ σ2

2∥xk∥2, (S2.8)

for some constants η and σ, and ζk’s are independent of ek+1’s. If the

function f is s-strongly convex and S-gradient-Lipschitz, λmin(Σ) = λl,

λmax(Σ) = λu, and the learning rate ϵ ≤ 2/(sλl + Sλu), then

W 2
2 (πk+1, π∗) ≤

[
(1− λlsϵ+

√
2σ2λuϵ)W2(πk, π∗) + 1.65S(λ3

uϵ
3p)1/2 + ϵηλu

√
p
]2

+ ϵ2σ2
1λ

2
up+ 2ϵ2σ2

2λ
2
upṼ ,

(S2.9)

where Ṽ =
∫
∥x∥2π∗(x)dx.

Proof. First of all, the updating iteration can be rewritten as:

x̃k+1 = x̃k − ϵ[∇f̃(x̃k) + ζ̃k] +
√
2ϵẽk+1, (S2.10)

where f̃(x) = f(Σ1/2x), x̃k = Σ−1/2xk, ζ̃k = Σ1/2ζk and ẽk+1 ∼ N(0, I).

Let π̃∗ denote the distribution π̃∗ ∝ exp{−f̃}. It is easy to see that the

distribution π̃∗ is sλl-strongly log-concave and Sλu-gradient-Lipschitz. In
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addition, ζ̃k satisfies

∥E(ζ̃k|x̃k)∥2 = ∥Σ1/2E(ζk|xk)∥2 ≤ λuη
2p

E[∥ζ̃k − E(ζ̃k|x̃k)∥2] = E[∥Σ1/2ζk − E(Σ1/2ζk|xk)∥2] ≤ λuσ
2
1p+ λuσ

2
2∥Σ1/2x̃k∥2,

(S2.11)

Let Lt be the stochastic process defined by dLt = −(Σ1/2∇f(Σ1/2Lt))dt+

√
2dWt with initialization L0 ∼ π̃∗ (hence Lt ∼ π̃∗). Define ∆2 = Lϵ − x̃t+1

and ∆1 = L0 − x̃t. Then, by the same arguments used in the proof of

Proposition 2 in Dalalyan and Karagulyan (2019). we have

∥Σ1/2∆2∥2L2
≤{∥Σ1/2∆1 − ϵΣ1/2U∥L2 + ∥Σ1/2W∥L2 + ϵ∥Σ1/2E(ζ̃k|x̃k)∥L2}2

+ ϵ2∥Σ1/2(ζ̃k − E(ζ̃k|x̃k))∥2L2
,

(S2.12)

where W =
∫ ϵ

0
(∇f̃(Lt)−∇f̃(L0))dt and U = ∇f̃(x̃k +∆1)−∇f̃(x̃k).

By Lemma 4 of Dalalyan and Karagulyan (2019),

∥W∥L2 ≤ 0.5
√

ϵ4S3λ3
up+ (2/3)

√
2ϵ3pSλu ≤ 1.65Sλu(ϵ

3p)1/2.

By similar arguments of Lemma 2 of Dalalyan and Karagulyan (2019), we

can show that ∥Σ1/2∆1 − ϵΣ1/2U∥2 ≤ ρ∥Σ1/2∆1∥2, where ρ = max(1 −
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sλlϵ, Sλuϵ− 1) = 1− sλlϵ. Combining with (S2.11) and (S2.12), we have

∥Σ1/2∆2∥2L2
≤ {ρ∥Σ1/2∆1∥L2 + 1.65S(λ3

uϵ
3p)1/2 + ϵλuη

√
p}2 + ϵ2λ2

uσ
2
1p

+ ϵ2λ2
uσ

2
2E∥xk∥2,

which further implies

W 2
2 (πk+1, π∗) ≤ {(1− sλlϵ)W

2
2 (πk+1, π∗) + 1.65S(λ3

uϵ
3p)1/2 + ϵλuη

√
p}2

+ ϵ2λ2
uσ

2
1p+ ϵ2λ2

uσ
2
2E∥xk∥2.

By Lemma S5, E∥xk∥2 ≤ (W2(πk, π∗) +
√

Ṽ )2, we can derive that

W 2
2 (πk+1, π∗) ≤

[
(1− sλlϵ)W2(πk, π∗) + 1.65S(λ3

uϵ
3p)1/2 + ϵηλu

√
p
]2

+ ϵ2σ2
1λ

2
up+ ϵ2σ2

2λ
2
u(W2(πk, π∗) +

√
Ṽ )2

≤
[
(1− sλlϵ)W2(πk, π∗) + 1.65S(λ3

uϵ
3p)1/2 + ϵηλu

√
p
]2

+ ϵ2σ2
1λ

2
up+ 2ϵ2σ2

2λ
2
uṼ + 2ϵ2σ2

2λ
2
uW

2
2 (πk, π∗)

≤
[
(1− sλlϵ+

√
2σ2ϵλu)W2(πk, π∗) + 1.65S(λ3

uϵ
3p)1/2 + ϵηλu

√
p
]2

+ ϵ2σ2
1λ

2
up+ 2ϵ2σ2

2λ
2
uṼ ,

which concludes the proof.

Remark S5. Consider a Langevin Monte Carlo algorithm with inaccurate
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gradients, varying conditioning matrices and a constant learning rate ϵ, i.e.,

xk+1 = xk − ϵΣk[∇f(xk) + ζk] +
√
2ϵξk+1; ξk+1 ∼ N(0,Σk).

If Σk is positive definite, λl ≤ infk λmin(Σk) ≤ supk λmax(Σk) ≤ λu and

ϵ ≤ 2/(sλl + Sλu), then (S2.9) holds for all iterations. Conditioned on

xk+1 ∈ Θ for some measurable set Θ, it is easy to justify that

W 2
2 (π̂k+1, π∗) ≤ W 2

2 (πk+1, π∗)/Pr(xk+1 ∈ Θ), (S2.13)

where π̂k+1 is the marginal distribution of xk+1 conditional on xk+1 ∈ Θ.

Combining it with (S2.9) and Lemma 1 of Dalalyan and Karagulyan (2019),

one can obtain that, if Pr(xk+1 ∈ Θ|xk ∈ Θ) ≥ 1 − δ for some sufficiently

small constant δ and all k, then conditional on the event {x1, . . . , xk ∈ Θ},

W2(πk, π∗) ≤

(
1− sλlϵ+

√
2σ2ϵλu√

1− δ

)k

W2(π0, π∗)

+
ηλu

√
p

sλl −
√
2σ2λu − δ

+
1.65S(λ3

uϵp)
1/2

sλl −
√
2σ2λu − δ

+

√
ϵλu(σ

2
1p+ 2σ2

2Ṽ )

1.65S(λup)1/2
√
1− δ

.

(S2.14)

The next corollary provides a decaying learning-rate version of the con-

vergence result (S2.14).
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Corollary S1. Consider a Langevin Monte Carlo algorithm

xk+1 = xk − ϵk+1Σk[∇f(xk) + ζk] +
√

2ϵk+1ξk; ξk ∼ N(0,Σk),

where ζk satisfies (S2.8) when xk ∈ Θ, Σk is positive definite,

λl ≤ inf
k
λmin(Σk) ≤ sup

k
λmax(Σk) ≤ λu,

and the learning rate ϵk = ϵ0/k
ϖ for some ϵ0 ≤ 2/[(sλl + Sλu) and ϖ ∈

(0, 1). Let K denote the total number of iterations of the algorithm. If

sλl >
√
2σ2λu and Pr(x1 . . . , xK ∈ Θ) ≥ 1− δ holds with δ = o(1/K), then

we have that conditioned on the event {x1, . . . , xK ∈ Θ},

lim sup
K→∞

W2(πK, π∗) ≤
φ

1− φ

ηλu
√
p

sλl −
√
2σ2λu

, for some constant φ ∈ (0, 1).

(S2.15)

Proof. The proof of this corollary closely follows the proof of Theorem 2(i)

in Song et al. (2020). Let K0 = 0, and Ki (i > 0) be the smallest integer

such that K−ϖ
i ≤ (1 + i)−χ, where χ = ϖ/(1 −ϖ). Thus, asymptotically,

we have Ki+1 −Ki ≈ (χ/ϖ)Kϖ
i+1.

Note that Pr(x1 . . . , xk ∈ Θ) ≥ 1− δ implies that Pr(xi ∈ Θ|xi−1Θ) ≥

1−δ for all i ≤ k, and δ ≤ sλl−
√
2σ2λu given a large k since δ = o(1/k). In



Peiyi Zhang, Qifan Song AND Faming Liang

the spirit of (S2.14), we have that conditional on the event {x1, . . . , xKi+1
∈

Θ},

W2(πKi+1
, π∗) ≤ (1− (sλl −

√
2σ2λu)ϵKi+1

)Ki+1−Ki(1− δ)−(Ki+1−Ki)/2W2(πKi
, π∗)

+
ηλu

√
p

sλl −
√
2σ2λu − δ

+

[
1.65S(λ3

up)
1/2

sλl −
√
2σ2λu − δ

+
λu(σ

2
1p+ 2σ2

2Ṽ )

1.65S(λup)1/2
√
1− δ

]
√
ϵKi

.

Note that due to the fact that Ki+1 −Ki ≈ (χ/ϖ)ϵ−1
Ki+1

, we have

lim
i→∞

[1− (sλl −
√
2σ2λu)ϵKi+1

]Ki+1−Ki = exp

{
−ϵ0(sλl −

√
2σ2λu)χ

ϖ

}
< 1

lim
Ki+1≤k,k→∞

[1− δ]−(Ki+1−Ki)/2 = 1.

Therefore, for any positive constant φ > exp(− ϵ0(sλl−
√
2σ2λu)χ

ϖ
), there exists

a constant km such that when k ≥ km and Ki+1 ≤ k,

(1− (sλl −
√
2σ2λu)ϵKi+1

)Ki+1−Ki(1− δ)−(Ki+1−Ki)/2 ≤ φ,

that is,

W2(πKi+1
, π∗) ≤ φW2(πKi

, π∗) +
ηλu

√
p

sλl −
√
2σ2λu − δ

+

[
1.65S(λ3

up)
1/2

sλl −
√
2σ2λu − δ

+
λu(σ

2
1p+ 2σ2

2Ṽ )

1.65S(λup)1/2
√
1− δ

]
√
ϵKi

.
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The above recursive inequality implies that for KI ≤ k and k ≥ km

W2(πKI
, π∗) ≤ φIW2(πK0 = π0, π∗) + (

I∑
t=1

φt−1)
ηλu

√
p

sλl −
√
2σ2λu − δ

+ (
I∑

t=1

φt−1K
−ϖ/2
I−t )

√
ϵ0

[
1.65S(λ3

up)
1/2

sλl −
√
2σ2λu − δ

+
λu(σ

2
1p+ 2σ2

2Ṽ )

1.65S(λup)1/2
√
1− δ

]
.

(S2.16)

As k → ∞ and I → ∞,
∑I

t=1 φ
t−1K

−ϖ/2
I−t → 0, hence we have that

W2(πKI+1
, π∗) → φ

1−φ

ηλu
√
p

sλl−
√
2σ2λu

.

Remark S6. For technical simplicity, we require ϖ < 1 for the decay of

the learning rate (ϵt ∝ t−ϖ) in the above corollary. We conjecture that the

corollary still holds under the choice ϵt ∝ t−1, i.e., ϖ = 1. However, more

subtle technical tools are necessary to rigorously characterize the conver-

gence rate under the setting ϵt ∝ t−1, see Teh et al. (2016).

Assumption S9. The stochastic gradient can be expressed as ∇̃f(x, ζ)+ζ ′,

where ζ is random variable independent of the past SGLD path and the

SGLD noise et, and ζ ′ is deterministic, such that ∇̃f(x, ζ) is an unbiased

estimator of ∇f(x) and ζ ′ is a bounded bias. That is,

E∇̃f(x, ζ) = ∇f(x), ∥∇̃f(x1, ζ)− ∇̃f(x2, ζ)∥ ≤ L0∥x1 − x2∥,

∥∇̃f(x∗, ζ)∥ ≤ M, ∥ζ ′∥ ≤ B,

(S2.17)
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where x∗ is the optimum of density f .

Remark S7. In Assumption S9, ζ usually stands for a simple random

subsample used in stochastic gradient evaluation. Therefore, Assumption

S9 requires that for any fixed subsample, the stochastic gradient function

is L0-Lipschitz.

Lemma S7. Assume that conditions S9 for the stochastic gradient and

s-strongly convexity for the target distribution. For any constant κ > 1,

δ > 0, let

R ≥ max{
√

400p log(2K/δ)/s log κ, 2
√

(4M2 + 2B2 + 2p)/s, 8B/s},

where K is the number of SGLD iterations, and let ϵk = ϵ0/k
ϖ with ϖ ∈

[0, 1). If ∥x0 − x∗∥ ≤ R with at least (1− δ/2) probability and the learning

rate ϵ0 ≤ min((2−
√
2)2p(L0κR+B+M)−2, 1, s/(8L2

0)), then maxi≤T ∥xi−

x∗∥ ≤ κR holds with at least (1− δ) probability.

Proof. The proof strictly follows Lemma 6.1 of Zou et al. (2021). First,

denote by ek an independent normal variable with the identity covariance
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matrix, we then have

E[∥xk+1 − x∗∥22|xk] = E[∥xk − x∗ − ϵt(∇̃f(xt, ζ) + ζ ′) +
√
2ϵtek+1∥22|xk]

=∥xk − x∗∥2 − 2ϵtE[⟨xk − x∗, ∇̃f(xt, ζ)⟩|xk]− 2ϵtE[⟨xk − x∗, ζ
′⟩|xk]

+ ϵ2tE[∥∇̃f(xt, ζ) + ζ ′∥22|xt] + 2pϵt

≤∥xk − x∗∥2 − 2ϵts∥xk − x∗∥2 + 2ϵtB∥xk − x∗∥+ 4ϵ2tL
2
0∥xt − x∗∥22

+ 4ϵ2tM
2 + 2ϵ2tB

2 + 2pϵt

=(1− 2sϵt + 4L2
0ϵ

2
t )∥xk − x∗∥2 + 2ϵtB∥xk − x∗∥+ 4ϵ2tM

2 + 2ϵ2tB
2 + 2pϵt.

(S2.18)

The above result implies that E[∥xk+1−x∗∥22|xk] ≤ (1−sϵt)∥xk−x∗∥22, since

ϵt ≤ min(1, s/(8L2
0)) and ∥xt−x∗∥2 ≥ max((16M2+8B2+8p)/s, 64B2/s2).

The concavity of the log-function implies that for any ∥xk − x∗∥2 ≥ R,

E[log(∥xk+1−x∗∥22)|xk] ≤ log(E[∥xk+1−x∗∥22|xk]) ≤ −sϵt+log(∥xk−x∗∥22).

(S2.19)

On the other hand, ∥xk+1 − x∗∥2 − ∥xk − x∗∥2 ≤ ϵt∥∇̃f(x, ζ)∥ + ϵt∥ζ ′∥ +

√
2ϵt∥ek+1∥2 and ∥ek+1∥ has a sub-Gaussian distribution satisfying that

P (∥ek+1∥2 ≥
√
p+

√
2z) ≤ e−z2 for z ≥ 0. If ∥xk∥2 ≤ κR, then ∥∇̃f(x, ζ)∥ ≤

L0κR +M . If we further assume that ϵt ≤ (2−
√
2)2p(L0κR +B +M)−2,
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then for any z > 0,

P (∥xk+1 − x∗∥2 − ∥xk − x∗∥2 ≥ 2
√
ϵtp+ 2

√
ϵtz) ≤ e−z2 .

If further R ≤ ∥xk∥2 holds, then

log(∥xk+1 − x∗∥22)− log(∥xk − x∗∥22) ≤
2∥xk+1 − x∗∥2 − 2∥xk − x∗∥2

R
.

Therefore, if R ≤ ∥xk∥2 ≤ κR,

P (log(∥xk+1 − x∗∥22)− log(∥xk − x∗∥22) ≥ 4
√
ϵ0pR

−1 + 4t
√
ϵ0R

−1) ≤ e−t2 .

(S2.20)

With slight modifications to the proof of Fact 1 in Lemma 6.1 of Zou

et al. (2021) and Theorem 2 of Shamir (2011) (such that they apply to vary-

ing step size SGLD), we have that [log(∥xk∥2) + s
∑k

i=1 ϵi]’s have subgaus-

sian martingale difference. Further, given 800p log(2K/δ)/(sR2) ≤ 2 log κ

for some C ′
ϖ, then conditioned on the event ∥x0−x∗∥ ≤ R, ∥xi−x∗∥ ≤ κR

for all 1 ≤ i ≤ K with probability at least 1 − δ/2. This concludes the

proof.

Remark S8. The result of Lemma S7 can be easily generalized to pre-

conditioned SGLD, i.e., (S2.4), via the transformation (S2.10). If the
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eigenvalues of the preconditioning matrix Σk are bounded from above and

from below by λu and λl, respectively, then Lemma S7 holds with ϵ0 ≤

min((2−
√
2)2p(L0κR +B +M)−2λ−2

u , 1, λls/(8λ
2
uL

2
0)) and

R ≥
√

λumax{
√

400p log(2K/δ)/(λls log κ), 2
√

(4λ2
uM

2 + 2λ2
uB

2 + 2p)/(λls),

8λuB/λls}.

Proof of Theorem 2

Proof. Define Ki as in the proof of Corollary S1, and we let K = Kκ(≍

κχ/ϖ) for some κ where χ = ϖ/(1−ϖ).

At stage t = 1, Algorithm 4 performs exactly as Algorithm 2; that is,

it is a Langevin Monte Carlo algorithm with a varying conditioning matrix

as discussed in Section 3. By Corollary S1 with no bias η = 0, Θ = Rp and

δ = 0, we obtain that there exists some φ1 > exp(−ϵ1,0(sλl−
√
2σ2λu)χ/ϖ),

such that

W2(π̃1, π1) ≤ φκ
1W2(ν1, π1)

+ (
κ∑

j=1

φj−1
1 K

−ϖ
2

κ−j)
√
ϵ1,0

[
1.65S1λ1,u

√
pλ1,u

s1λ1,l −
√
2σ1,sλ1,u

+
σ2
1,sλ1,u(p+ 2Ṽ1)

1.65S1

√
λ1,up

]
,

(S2.21)

where the first term is of order O(φκ
1 ) ≍ φKϖ/χ

1 and the second term is
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of order O(κ−χ/2) ≍ K−ϖ/2 with respect to (w.r.t.) the iteration number

K. Note that log(φκ
1 ) = Kϖ/χ logφ1 ≍ −Kϖ/χ/ logK, therefore, w.r.t. K,

W2(π̃1, π1) decreases polynomially.

Now, we study W2(π̃t+1, πt+1) for t ≥ 1. As discussed in Section 3.1, at

stage t+ 1, the algorithm can be rewritten as

xa,i
t+1,k+1 = xa,i

t+1,k + ϵt+1,k+1Σt+1,k+1

[N
n
HT

t+1,kV
−1
t+1(yt+1,k −Ht+1,kx

a,i
t+1,k)

+∇ log π(xa,i
t+1,k|x̃

i
t,k)
]
+ et+1

∆
= xa,i

t+1,k + ϵt+1,k+1Σt+1,k+1 [(I) + (II)] + et+1,

(S2.22)

where et+1 ∼ N(0, 2ϵt+1,k+1Σt+1,k+1), and x̃i
t,k denotes a sample drawn from

the set Xt according to an importance weight proportional to π(xa,i
t+1,k|x̃i

t,k).

We first study the bias of the gradient estimate used in (S2.22). Note

that the term (I) is unbiased due to the property of simple random sampling.

To study the bias of term (II), we define π(z|xa,i
t+1,k, y1:t) ∝ π(xa,i

t+1,k|z)πt(z|y1:t);

that is, π(z|xa,i
t+1, y1:t) can be viewed as a posterior density obtained with

the prior density πt(z|y1:t) and the likelihood π(xa,i
t+1|z). Similarly, we define

π̃(z|xa,i
t+1,k, y1:t) ∝ π(xa,i

t+1,k|z)π̃t(z|y1:t). Then, by equation (3.7) of the main
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text, the bias of term (II) can be bounded by

∥∥∥∥∫ ∇ log π(xa,i
t+1,k|z)[dπ̃(z|x

a,i
t+1,k, y1:t)− dπ(z|xa,i

t+1,k, y1:t)]

∥∥∥∥
=

∥∥∥∥∫ U−1
t [xa,i

t+1,k − g(z)][dπ̃(z|xa,i
t+1,k, y1:t)− dπ(z|xa,i

t+1,k, y1:t)]

∥∥∥∥
=

∥∥∥∥−∫ U−1
t g(z)[dπ̃(z|xa,i

t+1,k, y1:t)− dπ(z|xa,i
t+1,k, y1:t)]

∥∥∥∥
≤2Mg/λt,s,

(S2.23)

which holds for any π̃(·|·). In other words, the bias of term (II) is uniformly

bounded, i.e., the bound bias requirement of Assumption S9 holds. For the

rest of Assumption S9, similar to the discussion in Remark S7, ζ represents

a minibatch of the data and an importance particle from the pool of parti-

cles collected at the proceeding stage. Thanks to Assumptions S4 and S6,

Assumption S9 holds with L0 ∝ Nt, and thus Lemma S7 applies.

Without loss of generality, we assume that the global optimum of πt,

t = 1, 2, . . . , T , denoted by x∗
t , is bounded by Mf , i.e., ∥x∗

t∥ ≤ Mf . Let

δ = K−2. Without loss of generality, we assume that the initialization of

each stage (for t > 1) is bounded by Mf + cgMg for some constant cg > 0.

For simplicity of notation, we simply set cg = 1 in the proof. In simulations,

this can be ensured by setting xa,i
t,0 = g(xa,i

t−1,K) + ua,i
t and restricting ua,i

t to

an appropriate range.
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By Lemma S7 and remark S8, we define

Rt = C0κ
√

p log(2K/δ)/st log κ,

for some constant C0. Let ϵt+1,0 ≍ (n2
t+1 logK)−1 which satisfies the stepsize

assumption in Remark S8. Then we have that all K iterations of the SGLD

path in the (t+ 1)-th stage are bounded within a compact set Θt+1 = {x :

∥x− x∗
t+1∥ ≤ κRt+1} with probability 1− δ for a sufficiently large K.

On the other hand, when ∥xa,i
t+1,k − x∗

t+1∥ ≤ κRt+1 for all k, we can fur-

ther refine the bound for the bias of term II. Define ct :=
∫
π(xa,i

t+1,k|z)πt(z|y1:t)dz,

c̃t :=
∫
π(xa,i

t+1,k|z)π̃t(z|y1:t)dz, at :=
∫
∇xπ(x

a,i
t+1,k|z)πt(z|y1:t)dz,

ãt :=
∫
∇xπ(x

a,i
t+1,k|z)π̃t(z|y1:t)dz, δct := c̃t−ct, and δat := ãt−at. Therefore,

the bias of the term (II) can be re-expressed as

∣∣∣∣atct − ãt
c̃t

∣∣∣∣ ≤ ∣∣∣∣atδctctc̃t

∣∣∣∣+ ∣∣∣∣δatct
∣∣∣∣.

Note that ∥at∥ is uniformly bounded by (2π)−p/2(λt+1,s)
−(p+1)/2C for some

constant C, due to Assumption S6 and the fact

∇xπ(x
a,i
t+1,k|z) = (2π)−p/2(det(Ut+1))

−1/2U−1
t+1(x− g(z))

× exp{−(x− g(z))TU−1
t+1(x− g(z))/2},
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by Lemma S1, we have that |δct | ≤ [(2π)−p/2(λt+1,s)
−(p+1)/2Cl]W2(πt, π̃t)

and ∥δat∥ ≤ [(2π)−p/2(λt+1,s)
−(p+2)/2C ′l]W2(πt, π̃t).

With probability 1 − δ, x ∈ {x : ∥x − x∗
t∥ ≤ κR0} which implies that

∥x∥ ≤ κR0 +Mf , and

ct ≥ min
∥x∥≤R0+Mf ,z

1

(2π)p/2(det(Ut+1))1/2
exp{−(x− g(z))TU−1

t+1(x− g(z)/2)

≥(2π)−p/2(λ′
t+1,s)

−p/2 min
∥x∥≤κR0+Mf ,z

exp{−∥g(z)∥2/λt+1,s} exp{−∥x∥2/λt+1,s}

=(2π)−p/2(λ′
t+1,s)

−p/2 exp{−M2
g /λt+1,s} exp{−(κR0 +Mf )

2/λt+1,s}.

(S2.24)

The same bound applies to c̃t as well.

Combining all the above derivations together, we obtain the bound

when xa,i
t+1,k ∈ Θt+1,

Bias = BiasII ≤Cp
1C

′
2l(T/δ)

C3p/st+1W2(πt, π̃t), (S2.25)

for some constants C1, C2 and C3 that depend on constants κ, λt,s, λ
′
t,s,Mf

and cgMg.

By Condition (A.4), the variance of term (I) is bounded by σ2
t+1,s(p +
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∥x∥2). The variance of term (II) is upper bounded by

E

∥∥∥∥∇ log π(xa,i
t+1,k|x̃

i
t,k)− E

(
∇ log π(xa,i

t+1,k|x̃
i
t,k)
) ∥∥∥∥2

≤ (l/λt,s)
2E∥x̃i

t,k − E(x̃i
t,k)∥2 (by Lemma S3)

≤ (l/λt,s)
2
[
W2(πt, π̃t)

2 + pσ2
t,v + 2W2(πt, π̃t)

√
pσ2

t,v

]
,

(S2.26)

by Lemma S4 and (S2.7). Combining the above results together, the vari-

ance of the estimated gradient is upper bounded by

2σ2
t+1,sp+ 2(l/λt,s)

2(W2(πt, π̃t) +
√
pσ2

t,v)
2 + 2σ2

t+1,s∥x
a,i
t+1,k∥

2

:= σ2
p + 2σ2

t+1,s∥x
a,i
t+1,k∥

2.

(S2.27)

As implied by (S2.25) and (S2.27), a smaller value of W2(πt, π̃t) will help

to reduce the variance and bias of the stochastic gradient at stage t+ 1.

Recall that ν̃t+1 denotes the practical state initial distribution of xa,i
t+1,0.

Applying equation (S2.16) in Corollary S1, we obtain that conditioned on

the event {xt+1,0, . . . , xt+1,K ∈ Θt+1} whose probability is 1 − K−2, there
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exists some φt+1 ∈ (0, 1) such that

W2(π̃t+1, πt+1)

≤φκ
t+1W2(ν̃t+1, πt+1) +

φt+1

1− φt+1

λt+1,uC
p
1C

′
2l(K/δ)C3p/st+1

st+1λt+1,l − 2σt+1,sλt+1,u − δ
W2(πt, π̃t)

+(
κ∑

j=1

φj−1
t+1K

−ϖ/2
κ−j )

√
ϵt,0

 1.65St+1

√
pλ3

t+1,u

st+1λt+1,l − 2σt+1,sλt+1,u − δ
+

√
λt+1,u(σ

2
p + 4σ2

t+1,sṼt)

1.65St+1

√
p(1− δ)


≤φκ

t+1lW2(π̃t, πt) + φκ
t+1M +

φt+1

1− φt+1

λt+1,uC
p
1C

′
2l(K/δ)C3p/st+1

st+1λt+1,l − 2σt+1,sλt+1,u − δ
W2(πt, π̃t)

+(
κ∑

j=1

φj−1
t+1K

−ϖ/2
κ−j )

√
ϵt,0

 1.65St+1

√
pλ3

t+1,u

st+1λt+1,l − 2σt+1,sλt+1,u − δ
+

√
λt+1,u(σ

2
p + 4σ2

t+1,sṼt)

1.65St+1

√
p(1− δ)

 ,

(S2.28)

where we use the fact that W2(ν̃t+1, πt+1) ≤ M + lW2(π̃t, πt) (due to As-

sumption (A.6) and Lemma S2).

As shown by (S2.21) and the discussion below (S2.21), W2(π̃1, π1) de-

creases polynomially w.r.t. K. Recursively, when p/st+1 is small enough,

all terms in the RHS of (S2.28) decreases polynomially w.r.t. K. Therefore,

trivially by mathematical induction, we have that conditioned on the event

{xt,0, . . . , xt,K ∈ Θt∀t ≤ T}, W2(π̃T , πT ) = o(1) as K goes to infinity. Since

this event holds with probability 1 − T/K2, we interpret the convergence

result as, with dominating probability, xa,i
T,K follows a probability law π′

T

and limK→∞W2(π
′
T , πT ) = 0.
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