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S1. The pooled algorithms

S1.1 The first pooled algorithm with dense solutions

For now we assume all observations {(xi, Yi), i = 1, . . . , N} are scattered at

a single machine. To implement (2.2), we must replace all unknowns with

their sample counterparts. Towards this goal, Ma and Zhu (2014) sug-

gested estimating m(xTα), its first derivative m1(x
Tα), E{w(x) | xTα},

and E{xw(x) | xTα} via nonparametric treatment, where α is an interme-

diate estimate. In particular, m̂(xT
kα) and m̂1(x

T
kα) can be simultaneously
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obtained through a local linear approximation procedure,

(̂bk, b̂k)
def
= arg min

bk,bk

N∑
i=1,i ̸=k

{Yi − bk − (xT
i α− xT

kα)bk}2 Kh1,∗(x
T
i α− xT

kα),

where Kh1,∗(·) = K(·/h1,∗)/h
d
1,∗, K is the multiplication of d univariate ker-

nel functions, h1,∗ is a bandwidth. Let m̂(xT
kα) = b̂k and m̂1(x

T
kα) = b̂k.

Ma and Zhu (2014) suggested estimating E{w(x) | xTα} and E{xw(x) |

xTα} through usual kernel smoothers. For now we assume w(x) is known.

We can simply specify w(x) as w∗(x), or assume it has a parametric form

w(x, θ). We can also estimate w(x) directly with kernel smoothers. As

long as w(x) is correctly specified (Ma and Zhu, 2014) or consistently esti-

mated (Luo and Cai, 2016) , the resulting estimate of the pooled algorithm

described below is semiparametrically efficient, despite the fact that the

convergence rate of nonparametric estimate of w(x) is pretty slow in high

dimensions. Even if it is misspecified or estimated inconsistently, the re-

sulting solution remains to be consistent. To be specific, we let h2,∗ and

h3,∗ be two bandwidths. Define

Ê{w(xk) | xT
kα} def

=

∑N
i=1,i ̸=k Kh2,∗(x

T
i α− xT

kα)w(xi)∑N
i=1,i ̸=k Kh2,∗(x

T
i α− xT

kα)
, and,

Ê{xkw(xk) | xT
kα} def

=

∑N
i=1,i ̸=k Kh3,∗(x

T
i α− xT

kα){xiw(xi)}∑N
i=1,i ̸=k Kh3,∗(x

T
i α− xT

kα)
.
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We further define

x̂k(α)
def
= vecl

{[
xk −

Ê{xkw(xk) | xT
kα}

Ê{w(xk) | xT
kα}

]
m̂T

1 (x
T
kα)

}
.

Let Ŝ{xk, Yk,α, w(xk)}
def
= {Yk − m̂(xT

kα)}w(xk)x̂k(α). To implement (2.2)

we simply replace E
[
S{x, Y,α, w(x)}

]
and H(α) with their respective sam-

ple averages,

Êpool,1

[
S{x, Y,α, w(x)}

]
def
= N−1

N∑
k=1

Ŝ{xk, Yk,α, w(xk)}, and

Ĥ(α)
def
= N−1

N∑
k=1

[
w(xk) {x̂k(α)} {x̂k(α)}T

]
.

Starting from β(0), we iterate the Newton–Raphson algorithm as follows,

vecl(β(t+1)
pool,1)

def
= (S1.1)

vecl(β(t)
pool,1) +

{
Ĥ(β

(t)
pool,1)

}−1

Êpool,1

[
S{x, Y,β(t)

pool,1, w(x)}
]
.

We denote the final solution by β̂pool,1.

S1.2 The second pooled algorithm with sparse solutions

Under the least squares framework (2.4), we can incorporate penalties into

the loss functions to produce sparse solutions. In particular, we define

Ŷ (α)
def
= {x̂(α)}T vecl(α) + {Y − m̂(xTα)}. (S1.2)

We start from an initial value β(0), which may be sparse or not. We in-

corporate the least absolute shrinkage and selection operator (Tibshirani,
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1996) into the least squares framework. Suppose, after t iterations, we have

β
(t)
pool,2. We proceed to update it with β

(t+1)
pool,2, the minimizer of the following

penalized least squares,

(2N)−1

N∑
k=1

{Ŷk(β
(t)
pool,2)− x̂k(β

(t)
pool,2)

Tvecl(α)}2w(xk) + λN∥α∥1. (S1.3)

We iterate (S1.3) until convergence. The final solution is denoted by β̂pool,2.

S1.3 The third pooled algorithm under orthogonality constraints

We define the pooled algorithm under orthogonality constraint as follows.

Suppose β
(t)
pool,3 is an orthonormal matrix, which is the pooled estimate at

the t-th iteration. We use the definitions of x̂k

(
β

(t)
pool,3

)
and Ŷk

(
β

(t)
pool,3

)
in

Section 5, and define

β
(t+1)
pool,3

def
= argmin

α

[
N∑
k=1

{Ŷk(β
(t)
pool,3)− x̂k(β

(t)
pool,3)

Tvec(α)}2w(xk)

]
,

for αTα = Id×d. We iterate the above minimization process until conver-

gence. The final solution is denoted by β̂pool,3. In this pooled algorithm, we

also use non-monotone line search of Barzilai and Borwein (1988) to choose

the step size τ (t).
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In this subsection, we provide additional simulation studies for three dis-

tributed algorithms and other competitors.

S2.1 Simulation study for algorithm 1

For algorithm 1, we generate data from the following two examples.

Example 1. We generate x from a multivariate normal distribution with

mean zero and covariance matrix Σ =
(
0.5|i−j|)

p×p
, where p = 6. We gener-

ate Y from a normal distribution with mean m(xTβ) = (xTβ)(xTβ+1) and

variance σ2(x) = {(xTβ)2 + 1}/2, where β = (1, 0.5, 1, 1.5, 2,−2)T, d = 1.

Example 2. We generate x independently from a uniform distribution

defined on [−2, 2]. We generate Y from a normal distribution with mean

m(xTβ) = exp(xTβ1)+(xTβ2)
2 and variance σ2(x) = log{(xTβ1)

2+(xTβ2)
2+

2}, where β1 = (1, 0, 0.5, 1, 1.5, 2)T, β2 = (0, 1,−0.5, 1,−1.5, 2)T, and d = 2.

We run 500 replicates to compare the performance of the following

estimates:

1. β̂pool,1(w): The pooled estimate that pools all observations together

and uses the true weight w(x) = {σ2(x)}−1. This serves as a bench-

mark.
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2. β̂dist,1(w): The distributed estimate that uses w(x) = {σ2(x)}−1.

3. β̂dist,1(w
∗): The distributed estimate that uses w∗(x) = 1.

4. β̂dist,1(ŵ): The distributed estimate that estimates w(x) with kernel

smoother ŵj(x) at the jth machine, for j = 1, . . .m.

5. OSIR1: The online sliced inverse regression via perturbation method

(Cai et al., 2020).

6. OSIR2: The online sliced inverse regression via gradient descent op-

timization (Cai et al., 2020).

7. DKPCA: The distributed kernel principal component analysis (Bal-

can et al., 2016).

Let β be a basis matrix of the central mean subspace, and β̂ be its

estimate. To assess the estimation accuracy of β̂, we use the Euclidean

distance between β and β̂, defined as the Frobenius norm of the matrix

β̂(β̂
T
β̂)−1β̂

T
−β(βTβ)−1βT. A smaller distance indicates a better estimate.

Throughout, we fix the total sample size N = 2500. We consider three

combinations, (n,m) = (500, 5), (250, 10), and (100, 25), where m is the

number of machines. We choose the initial value β(0) by using a minimum

average variance estimation (Xia et al., 2002). We choose the bandwidths
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using a “rule-of-thumb” approach because the semiparametric estimating

equations approach is not sensitive to the bandwidth selections (Ma and

Zhu, 2014). In particular, we set h1 = h2 = h3 = cn−1/(4+d). To estimate

w(x) with kernel smoother ŵj(x), we follow Luo and Cai (2016) and set

h4 = cn−1/(2p), where c is the average of marginal standard deviations of

the p covariates.

Tables 1 summarizes the averages and the standard deviations (in the

parentheses) of the distances. Not surprisingly, β̂pool,1(w) performs the

best among the distributed estimates from algorithm 1. It has the smallest

biases and standard deviations across all scenarios. It can be clearly seen

that, the biases and standard deviations of three distributed estimates,

β̂dist,1(w), β̂dist,1(w
∗) and β̂dist,1(ŵ), increase with the number of machines.

In addition, β̂dist,1(w) seems the most efficient, followed by β̂dist,1(ŵ). It is

not surprising that β̂dist,1(w
∗) is the least efficient among the distributed

estimates from algorithm 1 because the weight function is misspecified.

The online sliced inverse regressions, OSIR1 and OSIR2, have comparable

performance as the distributed estimates in Example 1 where the linearity

condition is satisfied. However, these two online estimates are much worse in

Example 2 where the linearity condition is violated. The distributed kernel

principal component analysis is not surprisingly the worst because it is an
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Table 1: The averages (aver) and the standard deviations (in the paren-

theses, std) of the distance of various estimates.

(n,m) (500,5) (250, 10) (100, 25)

aver std aver std aver std

Example 1

β̂pool,1(w) 0.092 (0.033)

β̂dist,1(w) 0.094 (0.037) 0.099 (0.041) 0.103 (0.045)

β̂dist,1(ŵ) 0.105 (0.042) 0.111 (0.048) 0.118 (0.052)

β̂dist,1(w
∗) 0.109 (0.048) 0.122 (0.066) 0.143 (0.075)

OSIR1 0.099 (0.037)

OSIR2 0.106 (0.041)

DKPCA 0.198 (0.072) 0.236 (0.085) 0.257 (0.091)

Example 2

β̂pool,1(w) 0.109 (0.038)

β̂dist,1(w) 0.115 (0.044) 0.122 (0.048) 0.139 (0.065)

β̂dist,1(ŵ) 0.119 (0.049) 0.125 (0.052) 0.146 (0.069)

β̂dist,1(w
∗) 0.138 (0.063) 0.147 (0.071) 0.175 (0.077)

OSIR1 0.241 (0.091)

OSIR2 0.167 (0.062)

DKPCA 0.321 (0.095) 0.364 (0.113) 0.478 (0.134)
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unsupervised method that completely ignores the response observations.

S2.2 Simulation study for algorithm 2

For algorithm 2, we generate data from the following two examples. In both

examples, p = 500.

Example 3. In this example, d = 1, β is a p-vector with its first five

components being (1, 1,−1, 1, 1)T and all other entries being identically

zero. We generate x independently from a uniform distribution defined

on [−31/2, 31/2]. We generate Y from a normal distribution with mean

m(xTβ) = (xTβ), and variance function σ2(x) = exp(X1), where X1 is the

first coordinate of x.

Example 4. In this example, d = 2, both β1 and β2 are p-vectors with

their first six components being (1, 0, 1, 1, 1, 1)T and (0, 1, 1,−1, 1,−1)T, re-

spectively, and all other entries being identically zero. We generate x from

a multivariate normal distribution with mean zero and covariance matrix

Σ =
(
0.5|i−j|)

p×p
. We generate Y from a normal distribution with mean

function m(xTβ) = (xTβ1)/{0.5 + (1.5 + xTβ2)
2}, and variance function

σ2(x) = {0.1 +m2(xTβ)/5}.

We implement the following estimates and run 500 replicates.

1. β̂pool,2(w): The regularized pooled estimate that aggregates all obser-
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vations together and uses the true weight w(x) = {σ2(x)}−1. This

serves as a benchmark.

2. β̂dist,2(w): The regularized distributed estimate that uses w(x) =

{σ2(x)}−1.

3. β̂dist,2(w
∗): The regularized distributed estimate that misspecifies

w(x) as w∗(x) = 1.

4. DMDR: Distributed mean dimension reduction by Zhu and Zhu (2022).

5. DKPCA: Communication efficient distributed kernel principal com-

ponent analysis by Balcan et al. (2016).

We evaluate the support recovery performance through the F1-score. It

is defined as

F1 = 2 · precision · recall
precision + recall ,

which ranges from 0 to 1. A larger F1-score implies better support recovery.

Throughout we fix the total sample size N = 2500. We consider three

combinations, (n,m) = (500, 5), (250, 10), and (100, 25), where m is the

number of machines. We choose the initial value β(0) by sparse sliced inverse

regression (Lin et al., 2019). We set the bandwidths in the same way as in

Section 3.3.
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Table 2: The average (aver) and the standard deviations (in the paren-

theses, std) of the distances and F1-scores. The data is generated from

example 3 and 4.
(n,m) (500,5) (250, 10) (100, 25)

distance score distance score distance score

Example 3

β̂pool,2(w) 0.19 1.00

(0.02) (0.00)

β̂dist,2(w) 0.22 1.00 0.27 0.97 0.32 0.95

(0.03) (0.00) (0.06) (0.08) (0.10) (0.11)

β̂dist,2(w∗) 0.26 0.96 0.31 0.92 0.39 0.88

(0.05) (0.09) (0.09) (0.12) (0.14) (0.18)

DMDR 0.24 1.00 0.29 0.97 0.37 0.91

(0.04) (0.00) (0.06) (0.11) (0.09) (0.15)

DKPCA 0.43 0.49 0.57 0.46 0.66 0.44

(0.08) (0.02) (0.12) (0.03) (0.17) (0.03)

Example 4

β̂pool,2(w) 0.25 1.00

(0.02) (0.00)

β̂dist,2(w) 0.31 0.99 0.37 0.94 0.39 0.91

(0.04) (0.01) (0.08) (0.02) (0.14) (0.04)

β̂dist,2(w∗) 0.35 0.95 0.43 0.90 0.52 0.82

(0.07) (0.10) (0.09) (0.14) (0.13) (0.21)

DKPCA 0.46 0.47 0.59 0.44 0.70 0.41

(0.10) (0.03) (0.14) (0.04) (0.15) (0.06)
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Table 2 summarizes the averages and the standard deviations of the dis-

tances and F1-scores. Not surprisingly, β̂pool,2(w) performs the best across

all scenarios among proposed estimates, followed by β̂dist,2(w). Though

β̂dist,2(w
∗) performs the worst, it is apparently consistent. The distributed

dimension reduction method proposed by Zhu and Zhu (2022) performs

worse than our approach. The distributed kernel principal component anal-

ysis algorithm has larger distances and fails to recover the support.

S2.3 Simulation study for algorithm 3

We use example 1 and 2 to illustrate the performance of algorithm 3. We

run 500 replicates and the consider the following proposed estimates.

1. β̂pool,3(w): The pooled estimate that aggregates all observations to-

gether and uses the true weight w(x) = {σ2(x)}−1. This serves as a

benchmark for algorithm 3.

2. β̂dist,3(w): The distributed estimate that uses w(x) = {σ2(x)}−1.

3. β̂dist,3(w
∗): The distributed estimate that misspecifies w(x) as w∗(x) =

1.

4. β̂dist,3(ŵ): The distributed estimate that estimates w(x) with kernel

smoother.
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Table 3: The average (aver) and the standard deviations (in the paren-

theses, std) of the distance of various distributed estimates. The data is

generated from example 1 and 2.
(n,m) (500,5) (250, 10) (100, 25)

aver std aver std aver std

Example 1

β̂pool,3(w) 0.085 (0.028)

β̂dist,3(w) 0.090 (0.034) 0.092 (0.039) 0.096 (0.041)

β̂dist,3(ŵ) 0.101 (0.039) 0.105 (0.046) 0.115 (0.054)

β̂dist,3(w
∗) 0.106 (0.044) 0.117 (0.057) 0.134 (0.068)

Example 2

β̂pool,3(w) 0.101 (0.031)

β̂dist,3(w) 0.109 (0.033) 0.117 (0.045) 0.134 (0.062)

β̂dist,3(ŵ) 0.113 (0.041) 0.121 (0.051) 0.141 (0.059)

β̂dist,3(w
∗) 0.126 (0.055) 0134 (0.062) 0.168 (0.071)
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Tables 3 summarizes the averages and the standard deviations (in the

parentheses) of the distances. It can be clearly seen that, among all dis-

tributed estimates from algorithm 3, β̂dist,3(w) performs the best across all

scenarios, followed by β̂dist,3(ŵ). Not surprisingly, β̂dist,3(w
∗) is the least

efficient.
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S3.1 Proof of Theorem 1

We first provide some auxiliary lemmas that will be used in the proof of

Theorem 1.

Lemma 1. (Mack and Silverman, 1982) Let {(vi, Yi), i = 1, . . . , n} be inde-

pendent and identically distributed random observations and let v ∈ Rd. As-

sume that there exist r > 1 such that E(|Y |r) < ∞ and supv |Y |sf(v, Y )dY <

∞ where f denotes the joint density of (v, Y ). The kernel function K sat-

isfies the Condition (C1). Then

sup
v

∣∣∣∣∣n−1

n∑
i=1

[Kh(vi − v)Yi − E{Kh(vi − v)Yi}]

∣∣∣∣∣ = Op

[{
log(1/h)

nhd

}]
(S3.1)

provided that n2δ−1h → ∞ for some δ < 1− r−1.

Lemma 2. (Zhu and Fang, 1996) Let {(vi, Yi), i = 1, . . . , n} be independent

and identically distributed random observations and let v ∈ Rd. Assume

that the (q − 1)-th derivative of mean function m(v) = E(Y | v) is locally

Lipschitz continuous. Then

sup
v

|E{Kh(vi − v)Yi} −m(v)f(v)| = O(hq). (S3.2)

Lemma 3. (Ma and Zhu, 2014) Let {(vi, Yi), i = 1, . . . , n} be a random

sample. Define m(v)
def
= E(Y | v) and m1(v)

def
= d{m(v)}/dv for v ∈ Rd.
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The local linear estimate for m(v) and m1(v) is defined as

{m̂(vi), m̂1(vi)}
def
= argmin

ai,bi

[
n∑

k=1

{Yk − ai − bT
i (vk − vi)}2Kh(vk − vi)

]
.

Define ε
def
= Y −m(v). Assume the kernel function K satisfies the Condition

(C1). The density function of v, denoted by f(v) is bounded away from

zero and infinity, and the (q − 1)-th derivative of m(v) is locally Lipschitz

continuous. Then

n−1

n∑
i=1

εi

 m̂(vi)−m(vi)

m̂1(vi)−m1(vi)


1 0

0 hId×d


= Op

{
hq/n1/2 + h2q + log2 n/(nhd)

}
. (S3.3)

Before analyzing the approximate Newton distributed estimate, we es-

tablish some auxiliary results. We begin with defining three “good” events.

Recall that the initial value condition (C8) and the moment condition (C5)

guarantee the existence of a ball Uρ
def
= {β0 ∈ Rp×d : ∥β0 − β∥ < ρ} such

that ∥Ĥ(α1;x)− Ĥ(α2;x)∥2 ≤ L(x, Y )∥α1 −α2∥2 for all α1,α2 ∈ Uρ and

any (x, Y ), where E{L(x, Y )} ≤ L4. In addition, the covariate condition

(C4) guarantees that H(β) ≥ λI(p−d)d×(p−d)d. Now, choosing the potentially
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smaller radius δρ
def
= min{ρ, ρλ/4L}, we can define following events

E1
def
=

{
n−1

n∑
i=1

Lj(xi, Yi) ≤ 2L, j = 1, . . . ,m

}
, (S3.4)

E2
def
=

{∥∥∥Ĥj(β)−Hj(β)
∥∥∥
2
≤ ρλ/4, j = 1, . . . ,m

}
E3

def
=

{∣∣∣Êj [S{x, Y,β, w(x)}]
∣∣∣
2
≤ (1− ρ)λδρ/4, j = 1, . . . ,m

}
We first show these “good” events hold with high probability.

Lemma 4. Under Conditions (C1)-(C8), there exist constants C such that

E

{∣∣∣Êj [S{x, Y,β, w(x)}]
∣∣∣4
2

}
≤ CG4/n2,

E

{∥∥∥Ĥj(β)−Hj(β)
∥∥∥4

2

}
≤ C(log 2p)4H4/n2,

for j = 1, . . . ,m.

The proof of Lemma 4 follows the similar arguments of Lemma 7 in

Zhang et al. (2013), thus we omit it here.

Proof. As an immediate consequence of Lemma 4, we see that the events E2

and E3 occur with high probability. We further define E def
= E1

⋂
E2

⋂
E3, by

the Boole’s law and the union bound we have pr(Ec) = pr(Ec
1

⋃
Ec
2

⋃
Ec
3) ≤

pr(Ec
1) + pr(Ec

2) + pr(Ec
3). For the “bad” event Ec

1 , we know that pr(Ec
1) ≤

24E[|n−1
∑n

i=1 L1(xi)−E{L(x)}|4/L4] ≤ C1/n
2. For Ec

2 , it is direct to show

pr(Ec
2) ≤ 24E

{∥∥∥Ĥj(β)−Hj(β)
∥∥∥4

2

}
/ρ4λ4 ≤ C2(log 2p)

4H4/n2. For Ec
3 , we
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have pr(Ec
3) ≤ 24E

{∣∣∣Ê1 [S{x, Y,β, w(x)}]
∣∣∣4
2
/{(1− ρ)4λ4δ4ρ}

}
≤ C3G

4/n2.

Here C1, C2, C3 are some universal constants. Consequently, we find that

pr(Ec) = O(n−2).

Recall the definition E = E1
⋂

E2
⋂

E3. We then give a deterministic

result under the “good” event E .

Lemma 5. Under Conditions (C1)-(C8) and event E , we have

λmin

{
Ĥ(β̂pool,1)

}
≥ (1− ρ)λ/2,

∥∥∥Ĥ(β
(0)
dist,1)− Ĥ1(β

(0)
dist,1)

∥∥∥
2

(S3.5)

≤
{
2Lρ/λ2 + (ρ+ 4)/4λ

}{∥∥∥Ĥ(β)− Ĥ1(β)
∥∥∥
2
+ 4L

∣∣∣β(0)
dist,1 − β

∣∣∣
2

}
.

Proof. We can bound Ĥ(β̂pool,1) as λmin

{
Ĥ(β̂pool,1)

}
≥ λmin {H(β)} −

∥Ĥ(β)−H(β)∥2 − ∥Ĥ(β̂pool,1)− Ĥ(β)∥2 ≥ λ− ρλ/2− 2L|β̂pool,1 − β|2 ≥

(1− ρ)λ/2.

To bound the term ∥Ĥ(β
(0)
dist,1)− Ĥ1(β

(0)
dist,1)∥2, we make use of the fol-

lowing inequality, for any matrix A ∈ Rp×p,

∥∥(A+∆A)−1 −A−1
∥∥
2
≤

∥∥A−1
∥∥2

2
∥∆A∥2 (S3.6)

We choose A = H(β) and ∆A = Ĥ(β
(0)
dist,1) − H(β), then ∥∆A∥2 ≤

∥Ĥ(β
(0)
dist,1) − Ĥ(β)∥2 + ∥Ĥ(β) − H(β)∥2. Therefore, ∥Ĥ−1(β

(0)
dist,1)∥2 ≤

∥Ĥ−1(β
(0)
dist,1)−H−1(β)∥2+λ−1 ≤ 2Lλ−2|β(0)

dist,1−β|2+λ−2∥Ĥ(β)−H(β)∥2+

λ−1 ≤ 2Lλ−2ρ + λ−1 + λ−1ρ/4. We then choose A = Ĥ(β
(0)
dist,1) and
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∆A = Ĥ1(β
(0)
dist,1) − Ĥ(β

(0)
dist,1). Using inequality (S3.6) again, we ob-

tain ∥Ĥ(β
(0)
dist,1) − Ĥ1(β

(0)
dist,1)∥2 ≤ ∥Ĥ(β

(0)
dist,1)∥22∥Ĥ1(β

(0)
dist,1) − Ĥ(β

(0)
dist,1)∥2.

By the triangle inequality, we know that ∥Ĥ1(β
(0)
dist,1) − Ĥ(β

(0)
dist,1)∥2 ≤

∥Ĥ1(β)−Ĥ(β)∥2+∥Ĥ(β
(0)
dist,1)−Ĥ(β)∥2+∥Ĥ1(β

(0)
dist,1)−Ĥ1(β)∥2. As a con-

sequence, ∥Ĥ(β
(0)
dist,1) − Ĥ1(β

(0)
dist,1)∥2 ≤ ∥Ĥ(β

(0)
dist,1)∥22{∥Ĥ1(β) − Ĥ(β)∥2 +

4L|β(0)
dist,1 − β|2}. With the result of ∥Ĥ−1(β

(0)
dist,1)∥2, we complete the

proof.

With Lemma 4 and 5, we proceed to prove Theorem 1.

Proof. We begin with defining the global one-step Newton-Raphson esti-

mate,

vecl(β(1)
pool,1) = vecl(β(0)) +

{
Ĥ(β(0))

}−1

Êpool,1

[
S{x, Y,β(0).w(x)}

]
.

Here we assume that the global and distributed estimate share the same

initial value β(0). Recall the update scheme (3.2), we know that

vecl(β(1)
dist,1) = vecl(β(0)) +

{
Ĥ1(β

(0))
}−1

Êdist,1

[
S{x, Y,β(0), w(x)}

]
.

The error can be decomposed as vecl(β(1)
dist,1 − β̂pool,1) = vecl(β(1)

dist,1 −

β
(1)
pool,1) + vecl(β(1)

pool,1 − β̂pool,1).

We analyze the two terms separately. The first term vecl(β(1)
dist,1−β

(1)
pool,1)

can be expressed as
{
Ĥ1(β

(0))
}−1

Êdist,1

[
S{x, Y,β(0), w(x)}

]
−
{
Ĥ(β(0))

}−1
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Êpool,1

[
S{x, Y,β(0), w(x)}

]
= T1 + T2, where T1

def
=

{
Ĥ1(β

(0))
}−1

Êdist,1

[
S{x, Y,β(0), w(x)}

]
−
{
Ĥ1(β

(0))
}−1

Êpool,1

[
S{x, Y,β(0), w(x)}

]
and

T2
def
=

{
Ĥ1(β

(0))
}−1

Êpool,1

[
S{x, Y,β(0), w(x)}

]
−
{
Ĥ(β(0))

}−1

Êpool,1

[
S{x, Y,β(0), w(x)}

]
.

For term T1, we obtain Êj

[
S{x, Y,β(0), w(x)}

]
−E

[
S{x, Y,β(0), w(x)}

]
=

Op{hq
1(h

q
1+hq

2+hq
3+hq

4)+hq
1/n

1/2+log n/{n(hq
1h

q
2)

1/2}+log n/{n(hq
1h

q
3)

1/2}+

log n/{n(hq
1h

q
4)

1/2}+log n/(nhq
1)} by the proof in Ma and Zhu (2014). With

the simple averaging aggregation procedure Êdist,1

[
S{x, Y,β(0), w(x)}

]
=

m−1
∑m

j=1 Êj

[
S{x, Y,β(0), w(x)}

]
, the bias term remains the same while

the variance term becomes m times smaller. Specifically, we have

Êdist,1

[
S{x, Y,β(0), w(x)}

]
−E

[
S{x, Y,β(0), w(x)}

]
= Op{hq

1(h
q
1+hq

2+hq
3+

hq
4)+hq

1/n
1/2+log n/{N(hq

1h
q
2)

1/2}+log n/{N(hq
1h

q
3)

1/2}+log n/{N(hq
1h

q
4)

1/2}+

log n/(Nhq
1)}. With the bandwidths condition, we conclude that T1 =

Op(N
−1/2). For term T2, recall that Êpool,1

[
S{x, Y, β̂pool,1, w(x)}

]
= 0.

Then T2 =

[{
Ĥ1(β

(0))
}−1

−
{
Ĥ(β(0))

}−1
]{

Êpool,1

[
S{x, Y,β(0), w(x)}

]
−

Êpool,1

[
S{x, Y, β̂pool,1, w(x)}

]}
. By the proof of Ma and Zhu (2014), we

achieve Êpool,1

[
S{x, Y,β(0), w(x)}

]
−Êpool,1

[
S{x, Y, β̂pool,1, w(x)}

]
= vecl(β(0)−

β̂pool,1)+op(N
−1/2). With these arguments, we show that

∣∣∣vecl(β(1)
dist,1 − β

(1)
pool,1)

∣∣∣
2
≤

C

∥∥∥∥{Ĥ1(β
(0))

}−1

−
{
Ĥ(β(0))

}−1
∥∥∥∥
2

∣∣∣vecl(β(0) − β̂pool,1)
∣∣∣
2
. The second term

vecl(β(1)
pool,1− β̂pool,1) can be analyzed by using Theorem 5.3 in Bubeck et al.

(2015), which yields
∣∣∣vecl(β(1)

pool,1 − β̂pool,1)
∣∣∣
2
≤ L/λmin

{
Ĥ(β̂pool,1)

} ∣∣∣vecl(β(0) − β̂pool,1)
∣∣∣2
2
.
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With Lemma 4 and 5, we conclude that
∣∣∣vecl(β(1)

dist,1 − β̂pool,1)
∣∣∣
2

≤

C ′
{∣∣∣vecl(β(0) − β̂pool,1)

∣∣∣
2
+
∣∣∣vecl(β̂pool,1 − β)

∣∣∣
2
+
∥∥∥Ĥ(β)− Ĥ1(β)

∥∥∥
2

}
∣∣∣vecl(β(0) − β̂pool,1)

∣∣∣
2
. Then we turn to control

∥∥∥Ĥ(β)− Ĥ1(β)
∥∥∥
2
. Recall

that

Ĥ1(β) = n−1

n∑
k=1

[
w(xk,1) {x̂k,1(β)} {x̂k,1(β)}T

]
,

where

x̂k,1(β) = vecl
{[

xk,1 −
Ê{xk,1w(xk,1) | xT

k,1β}
Ê{w(xk,1) | xT

k,1β}

]
m̂T

1 (x
T
k,1β)

}
.

We further define

H̃1(β)
def
= n−1

n∑
k=1

[
w(xk,1) {x̃k,1(β)} {x̃k,1(β)}T

]
,

where

x̃k,1(β)
def
= vecl

{[
xk,1 −

E{xk,1w(xk,1) | xT
k,1β}

E{w(xk,1) | xT
k,1β}

]
mT

1 (x
T
k,1β)

}
.

Invoking the triangle inequality, we get
∥∥∥Ĥ1(β) − H(β)

∥∥∥
2
≤

∥∥∥Ĥ1(β) −

H̃1(β)
∥∥∥
2
+
∥∥∥H̃1(β)−H(β)

∥∥∥
2
. We will show

∥∥∥Ĥ1(β)−H̃1(β)
∥∥∥
2
= op(n

−1/2)

and
∥∥∥H̃1(β)−H(β)

∥∥∥
2
= Op(n

−1/2).

To control
∥∥∥Ĥ1(β) − H̃1(β)

∥∥∥
2
, we introduce an intermediate variable

xk,1(β),

xk,1(β)
def
= vecl

{[
xk,1 −

E{xk,1w(xk,1) | xT
k,1β}

E{w(xk,1) | xT
k,1β}

]
m̂T

1 (x
T
k,1β)

}
.
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We then have
∥∥∥Ĥ1(β)− H̃1(β)

∥∥∥
2
≤ 2M1 +M2 + 2M3 +M4, where

M1
def
=

∥∥∥n−1
∑n

k=1

[
w(xk,1) {x̂k,1(β)− xk,1(β)} {xk,1(β)}T

]∥∥∥
2
,

M2
def
=

∥∥∥n−1
∑n

k=1

[
w(xk,1) {x̂k,1(β)− xk,1(β)} {x̂k,1(β)− xk,1(β)}T

]∥∥∥
2
,

M3
def
=

∥∥∥n−1
∑n

k=1

[
w(xk,1) {xk,1(β)− x̃k,1(β)} {x̃k,1(β)}T

]∥∥∥
2
,

M4
def
=

∥∥∥n−1
∑n

k=1

[
w(xk,1) {xk,1(β)− x̃k,1(β)} {xk,1(β)− x̃k,1(β)}T

]∥∥∥
2
. By

Lemma 3 and condition (C5), we know that M1, M2, M3 and M4 are of

order op(n
−1/2). Thus

∥∥∥Ĥ1(β)− H̃1(β)
∥∥∥
2
= op(n

−1/2). Next we show that∥∥∥H̃1(β)−H(β)
∥∥∥
2
= Op(n

−1/2).

Notice that
∥∥∥H̃1(β) − H(β)

∥∥∥
2
= supu∈S(p−d)d−1 g(u), where g(u) =

uT
(
n−1

∑n
k=1

[
w(xk,1){x̃k,1(β)}{x̃k,1(β)}T

]
−E

[
w(x){x̃(β)}{x̃(β)}T

])
u. Let

N be a 1/4-covering of cone S(p−d)d−1 with cardinality |N | ≤ 9(p−d)d.

We further denote û = argmaxu g(u). If we can find such ũ ∈ N that

∥û−ũ∥ ≤ 1/4, then we have |g(ũ)−g(û)| ≤ g(û)/2. Thus supu∈Sp−1 g(u) ≤

2 supu∈N p−1 g(u). For any u ∈ N and ε ≥ 0, we further have Pr(g(u) ≥

ε/2) ≤ 2 exp{−c2 min(ε, ε2)n} by Bernstein’s inequality. Therefore Pr(
∥∥∥H̃1(β)−

H(β)
∥∥∥
2
≥ ε) ≤ 2 exp{c1(p − d)d − c2 min(ε, ε2)n}. By choosing ε =

{(p − d)d/n}1/2, we have
∥∥∥H̃1(β) − H(β)

∥∥∥
2
= Op(n

−1/2). Aggregating

the above arguments, we get
∥∥∥Ĥ1(β)−H(β)

∥∥∥
2
= Op(n

−1/2). By a similar

procedure, we know that
∥∥∥Ĥ(β)−H(β)

∥∥∥
2
= Op(N

−1/2).

Putting the pieces together, we obtain
∣∣∣vecl(β(1)

dist,1 − β̂pool,1)
∣∣∣
2
≤ C/n1/2
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dist,1 − β̂pool,1)

∣∣∣
2
. Applying the triangle inequality, we know that∣∣∣vecl(β(1)

dist,1 − β)
∣∣∣
2
≤ C(n−1 + N−1/2) with high probability. By replacing

the initial value, we can apply the one-round result recursively and achieve∣∣∣vecl(β(t)
dist,1 − β)

∣∣∣
2
≤ C(n−(t+1)/2 +N−1/2) with high probability.

S3.2 Proof of Theorem 2

We first provide some technical lemmas that will be used in the proof of

Theorem 2.

Lemma 6. We define

H̃1(β)
def
= n−1

n∑
k=1

[
w(xk,1) {x̃k,1(β)} {x̃k,1(β)}T

]
, (S3.7)

and

H̃(β)
def
= N−1

N∑
k=1

[
w(xk) {x̃k(β)} {x̃k(β)}T

]
, (S3.8)

where

x̃k(β)
def
= vecl

{[
xk −

E{xkw(xk) | xT
kβ}

E{w(xk) | xT
kβ}

]
mT

1(x
T
kβ)

}
.

Under Conditions (C1)-(C4) and (C5’)-(C8’), we have∥∥∥H̃1(β)−H(β)
∥∥∥
∞

≤ 2C
−1/2
1 (log p/n)1/2,∥∥∥H̃(β)−H(β)

∥∥∥
∞

≤ 2C
−1/2
1 (log p/N)1/2, (S3.9)

with probability at least 1− 2/p2.
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Proof. We let Gk
i,j

def
= {x̃k,1(β)}i{x̃k,1(β)}j − Hi,j(β), k = 1, . . . , n, i =

1, . . . , (p − d)d, j = 1, . . . , (p − d)d, where Hi,j(β) is the element in i-th

row and j-th column of H(β). We can verify that x̃k(β) is a sub-gaussian

random variable. By Remark 5.18 of Vershynin (2018), we know that both

{x̃k,1(β)}i{x̃k,1(β)}j and Gk
i,j are sub-exponential random variables. Ac-

cording to Corollary 5.17 of Vershynin (2018), we have pr(|n−1
∑n

k=1 G
k
i,j| ≥

t) ≤ 2 exp{−min(C1t
2, C2t)n}, where C1 and C2 are generic constants in-

dependent of pair (i, j). By a union bound over all (i, j) pairs,

pr
(∥∥∥H̃1(β)−H(β)

∥∥∥
∞

≥ t
)
≤ 2p2 exp{−min(C1t

2, C2t)n}.

Through assuming n ≥ 4C1C
−1
2 log p, we have

∥∥∥H̃1(β)−H(β)
∥∥∥
∞

≤ 2C
−1/2
1 (log p/n)1/2 with high probability by setting t = 2C

−1/2
1 (log p/n)1/2.

Following similar arguments, we can establish (S3.9).

Lemma 7. We define

Ỹk(β)
def
= {x̃k(β)}vecl(β) + {Yk −m(xT

kβ)}. (S3.10)

Under Conditions (C1)-(C4) and (C5’)-(C8’), we have∣∣∣∣∣N−1

m∑
j=1

n∑
i=1

[
x̃i,j(β)Ỹi,j(β)− E

{
x̃i,j(β)Ỹi,j(β)

}]∣∣∣∣∣
∞

≤ 2C
−1/2
1 (log p/N)1/2, (S3.11)

with probability at least 1− 2/p3.
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Proof. We let Gi,j
k

def
= {x̃i,j(β)}kỸi,j(β)−E

[
{x̃i,j(β)}kỸi,j(β)

]
, i = 1, . . . , n, j =

1, . . . ,m, k = 1, . . . , (p − d)d. By Remark 5.18 of Vershynin (2018), Gi,j
k is

a sub-exponential variable. Through applying Corollary 5.17 of Vershynin

(2018), we know that pr(|N−1
∑m

j=1

∑n
i=1 G

i,j
k | ≥ t) ≤ 2 exp{−min(C1t

2, C2t)N},

where C1 and C2 are generic constants independent of k. By a union bound

over k, we have

pr


∣∣∣∣∣N−1

m∑
j=1

n∑
i=1

[
x̃i,j(β)Ỹi,j(β)− E

{
x̃i,j(β)Ỹi,j(β)

}]∣∣∣∣∣
∞

≥ t


≤ 2p exp{−min(C1t

2, C2t)N}.

We set t = 2C
−1/2
1 (log p/N)1/2 under the assumption N ≥ 4C1C

−1
2 log p and

complete our proof.

Lemma 8. Under Conditions (C1)-(C4) and (C5’)-(C8’), if n ≥ 2C2
2(s+

log p), we have

∥∥∥H̃1,S×S(β)−HS×S(β)
∥∥∥
op

≤ 21/2C2c0{(s+ log p/n)}1/2,∥∥∥H̃−1
1,S×S(β)−H−1

S×S(β)
∥∥∥
op

≤ 21/2C2c
3
0{(s+ log p/n)}1/2, (S3.12)

with probability at least 1− 2p−C1C2
2 , where C1 and C2 are generic positive

constants depending on the sub-gaussian norm of xi,1.

Proof. By Remark 5.40 in Vershynin (2018), for t ≥ 0, with probability at

least 1 − 2p−C1C2
2 , we know that

∥∥∥H̃1,S×S(β)−HS×S(β)
∥∥∥
op

≤ max(δ, δ2),
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where δ = C2(s/n)
1/2 + t/n1/2, and C2 depends on the maximum of xi,1x

T
i,1

in sub-exponential norm. Set t = C2(log p)
1/2. If n ≥ 2C2

2(s + log p), we

establish
∥∥∥H̃1,S×S(β)−HS×S(β)

∥∥∥
op

≤ 21/2C2c0{(s+log p/n)}1/2 with high

probability.

For any A,B ∈ Rs×s, ∥(A+B)−1 −A−1∥op ≤ ∥A−1∥2op ∥B∥op. By

setting A = HS×S(β) and B = H̃1,S×S(β) − HS×S(β), we obtain that∥∥∥H̃−1
1,S×S(β)−H−1

S×S(β)
∥∥∥
op

≤
∥∥H−1

S×S(β)
∥∥2

op

∥∥∥H̃1,S×S(β)−HS×S(β)
∥∥∥
op

. To-

gether with the result of
∥∥∥H̃1,S×S(β)−HS×S(β)

∥∥∥
op

, we then complete the

proof.

We then provide a deterministic result, which shows that the estimation

error upper bound of β
(t)
dist,2 is actually proportional to the regularization

parameter λ
(t)
N .

Lemma 9. Let C def
= {δ ∈ Rp : |δ|1 ≤ 4s1/2|δ|2}. In addition to Conditions

(C1)-(C4) and (C5’)-(C8’), we further assume

∣∣∣Ĥ1(β
(t−1)
dist,2)vecl(β)− zN(β

(t−1)
dist,2)− {Ĥ1(β

(t−1)
dist,2)− Ĥ(β

(t−1)
dist,2)}vecl(β(t−1)

dist,2)
∣∣∣
∞

≤ λ
(t)
N /2, (S3.13)

and

δTĤ1(β
(t−1)
dist,2)δ ≥ γ|δ|22, (S3.14)
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hold for any δ ∈ C and some constant γ > 0. Then we have

∣∣∣vecl(β(t)
dist,2 − β)

∣∣∣
2
≤ 6s1/2γ−1λ

(t)
N , (S3.15)

and

∣∣∣vecl(β(t)
dist,2 − β)

∣∣∣
1
≤ 24s1/2γ−1λ

(t)
N , (S3.16)

where t ≥ 1.

Proof. For simplicity, we define A
def
= Ĥ1(β

(t−1)
dist,2) and b

def
= zN(β

(t−1)
dist,2) +

(Ĥ1(β
(t−1)
dist,2)−Ĥ(β

(t−1)
dist,2))vecl(β(t−1)

dist,2). By the definition of β, we have |β|1 =

|βS |1. We define

Q def
= vecl(β(t)

dist,2)
TAvecl(β(t)

dist,2)/2− vecl(β(t)
dist,2)

Tb

−{vecl(β)TAvecl(β)/2− vecl(β)b}.

On one hand, by definition of β(t)
dist,2, we have Q ≤ λ

(t)
N {|vecl(β)|1−|vecl(β(t)

dist,2)|1}.

Since |vecl(β(t)
dist,2)|1 = |vecl(β(t)

dist,2,S)|1+|vecl(β(t)
dist,2,Sc)|1, we have |vecl(β)|1−

|vecl(β(t)
dist,2)|1 ≤ |vecl(β − β

(t)
dist,2)S |1 − |vecl(β − β

(t)
dist,2)Sc |1. By these argu-

ments, we achieve the upper bound of Q,

Q ≤ λ
(t)
N |vecl(β − β

(t)
dist,2)S |1 − λN |vecl(β − β

(t)
dist,2)Sc |1. (S3.17)

On the other hand, since A is non-negative definite, vecl(β−β
(t)
dist,2)

TAvecl(β−

β
(t)
dist,2) ≥ 0. This implies Q ≥ (Avecl(β)− b)Tvecl(β(t)

dist,2 − β). By Hölder
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inequality, (Avecl(β)−b)Tvecl(β(t)
dist,2−β) ≥ −|Avecl(β)−b|∞|vecl(β(t)

dist,2−

β)|1. With assumption (S3.13), we achieve the lower bound of Q,

Q ≥ −λ
(t)
N |vecl(β(t)

dist,2 − β)|1/2. (S3.18)

Combine (S3.17) and (S3.18) to obtain |vecl(β(t)
dist,2−β)Sc |1 ≤ 3|vecl(β(t)

dist,2−

β)S |1. This implies |vecl(β(t)
dist,2−β)|1 ≤ 4|vecl(β(t)

dist,2−β)S |1 ≤ 4s1/2|vecl(β(t)
dist,2−

β)S |2 ≤ 4s1/2|vecl(β(t)
dist,2 − β)|2. Consequently, vecl(β(t)

dist,2 − β) ∈ C.

By the first order condition of the surrogate loss function (4.3), we

have Avecl(β)(t)dist,2 − b ∈ λN∂|vecl(β(t)
dist,2)|1. This implies |Avecl(β)(t)dist,2 −

b|∞ ≤ λ
(t)
N . Combine (S3.13) to obtain |Avecl(β(t)

dist,2 − β)|∞ ≤ 3/2λN .

This, together with (S3.14) entails that γ|vecl(β(t)
dist,2 −β)|22 ≤ vecl(β(t)

dist,2 −

β)TAvecl(β(t)
dist,2−β). By Hölder inequality, vecl(β(t)

dist,2−β)TAvecl(β(t)
dist,2−

β) ≤ |vecl(β(t)
dist,2 − β)|1|Avecl(β(t)

dist,2 − β)|∞. Consequently, |vecl(β(t)
dist,2 −

β)|22 ≤ 6s1/2γ−1λ
(t)
N |vecl(β(t)

dist,2 − β)|2. Accordingly, we have |vecl(β(t)
dist,2 −

β)|2 ≤ 6s1/2γ−1λ
(t)
N and |vecl(β(t)

dist,2 − β)|1 ≤ 24s1/2γ−1λ
(t)
N . This completes

the proof.

The following lemmas show that the conditions (S3.13) and (S3.14) in

Lemma 9 hold with high probability.

Lemma 10. Under Conditions (C1)-(C4) and (C5’)-(C8’), we have for
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t ≥ 1

∣∣∣zN(β(t−1)
dist,2)− Ĥ(β

(t−1)
dist,2)vecl(β)

∣∣∣
∞

≤ 4C
−1/2
1 (log p/N)1/2, (S3.19)

holds with probability at least 1− 2/p3 − 2/p2.

Proof. By the triangular inequality,
∣∣∣zN(β(t−1)

dist,2)− Ĥ(β
(t−1)
dist,2)vecl(β)

∣∣∣
∞

≤

Q1 +Q2, where Q1
def
=

∣∣∣Ĥ(β
(t−1)
dist,2)vecl(β)−H(β)vecl(β)

∣∣∣
∞

and

Q2
def
=

∣∣∣H(β)vecl(β)− zN(β
(t−1)
dist,2)

∣∣∣
∞

.

We first control term Q1. It is direct to show

Q1 ≤
∣∣∣Ĥ(β

(t−1)
dist,2)vecl(β)− Ĥ(β)vecl(β)

∣∣∣
∞

+
∣∣∣Ĥ(β)vecl(β)− H̃(β)vecl(β)

∣∣∣
∞

+
∣∣∣H̃(β)vecl(β)−H(β)vecl(β)

∣∣∣
∞
.

By the similar arguments in Lemma S.2 of Ma et al. (2019), we know that∣∣∣Ĥ(β
(t−1)
dist,2)vecl(β)− Ĥ(β)vecl(β)

∣∣∣
∞

= op{(log p/N)1/2}. Applying Lemma

S.1 of Ma et al. (2019), we have
∣∣∣Ĥ(β)vecl(β)− H̃(β)vecl(β)

∣∣∣
∞

= op{(log p/N)1/2}.

According to Lemma 6, we establish
∣∣∣H̃(β)vecl(β)−H(β)vecl(β)

∣∣∣
∞

≤

2C
−1/2
1 (log p/N)1/2 with probability at least 1− 2/p2.

By the definition of Q2, we have

Q2 =

∣∣∣∣∣N−1

m∑
j=1

n∑
i=1

[
x̂i,j(β

(t−1)
dist,2)Ŷi,j(β

(t−1)
dist,2)− E

{
x̃i,j(β)Ỹi,j(β)

}]∣∣∣∣∣
∞

.
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Applying triangular inequality repeatedly, we conclude Q2 ≤ T1+T2+T3+

T4 + T5, where

T1
def
=

∣∣∣∣∣N−1

m∑
j=1

n∑
i=1

[
x̂i,j(β

(t−1)
dist,2)Ŷi,j(β

(t−1)
dist,2)− x̂i,j(β

(t−1)
dist,2)Ŷi,j(β)

]∣∣∣∣∣
∞

,

T2
def
=

∣∣∣∣∣N−1

m∑
j=1

n∑
i=1

[
x̂i,j(β

(t−1)
dist,2)Ŷi,j(β)− x̂i,j(β)Ŷi,j(β)

]∣∣∣∣∣
∞

,

T3
def
=

∣∣∣∣∣N−1

m∑
j=1

n∑
i=1

[
x̂i,j(β)Ŷi,j(β)− x̃i,j(β)Ŷi,j(β)

]∣∣∣∣∣
∞

,

T4
def
=

∣∣∣∣∣N−1

m∑
j=1

n∑
i=1

[
x̃i,j(β)Ŷi,j(β)− x̃i,j(β)Ỹi,j(β)

]∣∣∣∣∣
∞

,

T5
def
=

∣∣∣∣∣N−1

m∑
j=1

n∑
i=1

[
x̃i,j(β)Ỹi,j(β)− E

{
x̃i,j(β)Ỹi,j(β)

}]∣∣∣∣∣
∞

.

With Lemma S.2 of Ma et al. (2019), we have term T1 and T2 are of order

op{(log p/N)1/2}. By Lemma S.1 of Ma et al. (2019), we know that term

T3 and T4 are of order op{(log p/N)1/2}. Applying Lemma 7, we establish

T5 ≤ 2C
−1/2
1 (log p/N)1/2 with probability at least 1 − 2/p3. Combing the

results of Q1 and Q2, we complete our proof.

Lemma 11. Under Conditions (C1)-(C4) and (C5’)-(C8’), we set

λ
(t)
N = 8C0C

−1/2
1

{
(log p/N)1/2 + (log p/n)1/2|vecl(β(t−1)

dist,2 − β)|1 + |vecl(β(t−1)
dist,2 − β)|22

}
,

define the event E (t)

∣∣∣Ĥ1(β
(t−1)
dist,2)vecl(β)− zN(β

(t−1)
dist,2)− {Ĥ1(β

(t−1)
dist,2)− Ĥ(β

(t−1)
dist,2)}vecl(β(t−1)

dist,2)
∣∣∣
∞

≤ λ
(t)
N /2.
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Then
⋂

t≥1 E (t) holds with probability at least 1− 2/p3 − 2/p2.

Proof. We define the event

E0
def
=

{∣∣∣zN(β(t−1)
dist,2)− Ĥ(β

(t−1)
dist,2)vecl(β)

∣∣∣
∞

≤ 4C
−1/2
1 (log p/N)1/2

}
⋂{∣∣∣Ĥ1(β

(t−1)
dist,2)− Ĥ(β

(t−1)
dist,2)

∣∣∣
∞

≤ 4C
−1/2
1 (log p/N)1/2

}
.

For the bound
∣∣∣Ĥ1(β

(t−1)
dist,2)− Ĥ(β

(t−1)
dist,2)

∣∣∣
∞

, we know that

∣∣∣Ĥ1(β
(t−1)
dist,2)− Ĥ(β

(t−1)
dist,2)

∣∣∣
∞

≤
∣∣∣Ĥ1(β

(t−1)
dist,2)− Ĥ1(β)

∣∣∣
∞
+
∣∣∣Ĥ1(β)− H̃1(β)

∣∣∣
∞
+
∣∣∣H̃1(β)−H(β)

∣∣∣
∞

+
∣∣∣Ĥ(β

(t−1)
dist,2)− Ĥ(β)

∣∣∣
∞
+
∣∣∣Ĥ(β)− H̃(β)

∣∣∣
∞
+
∣∣∣H̃(β)−H(β)

∣∣∣
∞
.

Then with Lemma 6, 10, Lemma S.1 and S.2 of Ma et al. (2019), we can

establish pr(E0) ≥ 1− 2/p3 − 2/p2.

We then show E0 ⊂
⋂

t≥1 E (t). Actually, by the triangular inequality, we

get
∣∣∣Ĥ1(β

(t−1)
dist,2)vecl(β)− zN(β

(t−1)
dist,2)− {Ĥ1(β

(t−1)
dist,2)− Ĥ(β

(t−1)
dist,2)}vecl(β(t−1)

dist,2)
∣∣∣
∞

≤∣∣∣zN(β(t−1)
dist,2)− Ĥ(β

(t−1)
dist,2)vecl(β)

∣∣∣
∞
+
∣∣∣{Ĥ1(β

(t−1)
dist,2)− Ĥ(β

(t−1)
dist,2)}{vecl(β(t−1)

dist,2 − β)}
∣∣∣
∞

.

By Hölder inequality, we further have
∣∣∣{Ĥ1(β

(t−1)
dist,2)− Ĥ(β

(t−1)
dist,2)}{vecl(β(t−1)

dist,2 − β)}
∣∣∣
∞

≤∣∣∣{Ĥ1(β
(t−1)
dist,2)− Ĥ(β

(t−1)
dist,2)}

∣∣∣
∞

∣∣∣{vecl(β(t−1)
dist,2 − β)}

∣∣∣
1
. With the choice of the

regularization parameter λ
(t)
N , we achieve E0 ⊂ E (t) for each t ≥ 1. Fi-

nally, we conclude E0 ⊂
⋂

t≥1 E (t) and E0 holds with high probability, which

completes the proof.
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Lemma 12. Under Conditions (C1)-(C4) and (C5’)-(C8’),

δTĤ1(β
(t−1)
dist,2)δ ≥ γ|δ|22,

holds with probability at least 1− 4/p2.

Proof. We define events

E (t)
1

def
= δTĤ1(β

(t−1)
dist,2)δ ≥ γ|δ|22,

and

E2
def
= δTH̃1(β)δ ≥ γ|δ|22.

We know that E2 ⊂ E (t)
1 for each t ≥ 1. By the similar arguments in Lemma

D.3 of Huang et al. (2018), we achieve

λmin{H(β)}
68[4κλmin{H(β)}+ 1]2

δTH̃1(β)δ ≥ |δ|22

hold with probability at least 1− 4/p2. We conclude E2 ⊂
⋂

t≥1 E
(t)
1 and E2

holds with high probability, which completes the proof.

At last, we present the proof of Theorem 2.

Proof. We first give the error bound of the distributed estimate after one

round of iteration. With Lemma 9, we conclude that the error bound is

proportional to the regularization parameter λ
(1)
N . Furthermore, according
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to Lemma 10, 11 and 12, the conditions in Lemma 9 are satisfied with high

probability. It is direct to show that∣∣∣vecl(β(1)
dist,2 − β)

∣∣∣
2
= Op

{
(s log p/N)1/2 + s3/2 log p/n

}
.

We then turn to the results after multi rounds of iteration. The proof

proceeds by recursively applying the error bound result with one round

iteration. Let a
def
= 4Cas(log p/N)1/2 and b

def
= 4Cbs(log p/n)

1/2. If we treat

vecl(β(t−1)
dist,2 as the initial value, we will achieve∣∣∣vecl(β(t)

dist,2 − β)
∣∣∣
1
≤ a+ b

∣∣∣vecl(β(t−1)
dist,2 − β)

∣∣∣
1
,∣∣∣vecl(β(t)

dist,2 − β)
∣∣∣
2
≤ 1/4s−1/2

{
a+ b

∣∣∣vecl(β(t)
dist,2 − β)

∣∣∣
1

}
.

Through applying the inequality recursively and sum a geometric sequence,

we get∣∣∣vecl(β(t)
dist,2 − β)

∣∣∣
1
≤ (1− bt)(1− b)−1a+ bt

∣∣∣vecl(β(0)
dist,2 − β)

∣∣∣
1
,∣∣∣vecl(β(t)

dist,2 − β)
∣∣∣
2
≤ 1/4s−1/2

{
(1− bt+1)(1− b)−1a+ bt+1

∣∣∣vecl(β(0)
dist,2 − β)

∣∣∣
1

}
.

By the definition of a and b, we complete the proof.

S3.3 Proof of Theorem 3

We use the primal-dual witness construction (Wainwright, 2009, PDW for

short) to prove Theorem 3. We first present the result after one round

iteration, which mainly includes the following three steps:
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1. Let β̃ be the solution of the following semi–definite programming

(SDP):

β̃
def
= arg min

αSc=0

[
vecl(α)TĤ1(β

(0)
dist,2)vecl(α)/2 + λ

(1)
N |α|1 (S3.20)

−vecl(α)T{zN(β(0)
dist,2) + (Ĥ1(β

(0)
dist,2)− Ĥ(β

(0)
dist,2))vecl(β(0)

dist,2)}
]
.

The solution β̃ is unique as long as Ĥ1,S×S(β
(0)
dist,2) is invertible almost

surely.

2. Let Z̃ be the subgradient, which satisfies the zero-mean condition:

Ĥ1(β
(0)
dist,2)vecl(β̃) + λ

(1)
N Z̃ (S3.21)

−{zN(β(0)
dist,2) + (Ĥ1(β

(0)
dist,2)− Ĥ(β

(0)
dist,2))vecl(β(0)

dist,2)} = 0.

In particular, Z̃S ∈ |β̃S |1 and satisfies

Ĥ1,S×S(β
(0)
dist,2)vecl(β̃)S + λ

(1)
N Z̃S (S3.22)

−{zN(β(0)
dist,2) + (Ĥ1(β

(0)
dist,2)− Ĥ(β

(0)
dist,2))vecl(β(0)

dist,2)}S = 0.

3. Construct Z̃Sc as

Z̃Sc
def
= −λ

(1)
N

[
{Ĥ1(β

(0)
dist,2)vecl(β̃)}Sc (S3.23)

−
{
zN(β

(0)
dist,2) + (Ĥ1(β

(0)
dist,2)− Ĥ(β

(0)
dist,2))vecl(β(0)

dist,2)
}
Sc

]
.

Define Zj
def
= (Z̃Sc)j for j ∈ Sc. We check if |Zj| < 1 uniformly for all

j ∈ Sc.



S3.3 Proof of Theorem 3

The first and second steps are obvious. We require Lemma 13 to prove the

third step.

Lemma 13. Assume the conditions in Theorem 3. With probability ap-

proaching one, we have |Zj| ≤ v uniformly for j ∈ Sc, for some 0 < v < 1.

Proof. Define

D1
def
= Ĥ1,Sc×S(β

(0)
dist,2) Ĥ

−1
1,S×S(β

(0)
dist,2) I,

D2
def
= Ĥ1,Sc×S(β

(0)
dist,2) Ĥ

−1
1,S×S(β

(0)
dist,2) Z̃S ,

D3
def
= λ−1

N {zN(β(0)
dist,2)− Ĥ(β

(0)
dist,2)vecl(β)}Sc ,

D4
def
= λ−1

N (ĤSc×{1,...,(p−d)d}(β
(0)
dist,2)− Ĥ1,Sc×{1,...,(p−d)d}(β

(0)
dist,2))vecl(β − β

(0)
dist,2),

where I def
= −λ−1

N

{
(zN(β

(0)
dist,2)−Ĥ(β

(0)
dist,2)vecl(β))S+(ĤS×{1,...,(p−d)d}(β

(0)
dist,2)−

Ĥ1,S×{1,...,(p−d)d}(β
(0)
dist,2))vecl(β−β

(0)
dist,2)

}
. By definition in (S3.23), we have

Z̃Sc = D1 +D2 +D3 +D4.

We study |D1|∞, |D2|∞, |D3|∞ and |D4|∞, respectively. We first deal

with D1. By triangle inequality, |D1|∞ ≤ ∥Ĥ1,Sc×S(β
(0)
dist,2)Ĥ

−1
1,S×S(β

(0)
dist,2)∥∞ |I|∞ .

Let E1
def
= {Ĥ1,Sc×S(β

(0)
dist,2)−HSc×S(β)}{Ĥ−1

1,S×S(β
(0)
dist,2)−H−1

S×S(β)}, E2
def
=

HSc×S(β){Ĥ−1
1,S×S(β

(0)
dist,2)−H−1

S×S(β)}, E3
def
= {Ĥ1,Sc×S(β

(0)
dist,2)−HSc×S(β)}H−1

S×S(β),

and E4
def
= HSc×S(β)H

−1
S×S(β). It follows immediately that Ĥ1,Sc×S(β

(0)
dist,2)Ĥ

−1
1,S×S(β

(0)
dist,2) =

E1 + E2 + E3 + E4. By the definition of the infinity norm and the operator

norm, ∥Ĥ1,Sc×S(β
(0)
dist,2) − HSc×S(β)∥∞ ≤ s|Ĥ1,Sc×S(β

(0)
dist,2) − HSc×S(β)|∞
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and ∥Ĥ−1
1,S×S(β

(0)
dist,2)−H−1

S×S(β)∥∞ ≤ s1/2∥Ĥ−1
1,S×S(β

(0)
dist,2)−H−1

S×S(β)∥op. It

follows that ∥E1∥∞ ≤ s3/2∥Ĥ1,Sc×S(β
(0)
dist,2)−HSc×S(β)∥∞∥Ĥ−1

1,S×S(β
(0)
dist,2)−

H−1
S×S(β)∥op. Lemma 8 indicates that ∥E1∥∞ = Op[s

3/2{(s+logN)/n}1/2{(logN/n)1/2}].

Therefore, ∥E1∥∞ = Op{s2(logN)/n}. Similarly, we can show that ∥E2∥∞ =

Op[s{(s + logN)/n}1/2] and ∥E3∥∞ = Op{s3/2(logN/n)1/2}. We have,

|D1|∞ ≤ (op(1) + ∥E4∥∞) |I|∞. By the assumption of Theorem 3, we know

that ∥E4∥∞ ≤ 1−α. The proof of Theorem 2 indicates that λN |zN(β(0)
dist,2)−

Ĥ(β
(0)
dist,2)vecl(β)|∞ is small enough through setting C0 in λN sufficiently

large. Assumption on the initial value ensures that pr(supp(β(0)
dist,2) ⊆ S) →

1. Consequently, λ−1
N |{Ĥ1,S×{1,...,(p−d)d}(β

(0)
dist,2)−ĤS×{1,...,(p−d)d}(β

(0)
dist,2)}vecl(β−

β
(0)
dist,2)|∞ = Op{λ−1

N (s logN/n)1/2|vecl(β−β
(0)
dist,2)|2} ≤ α/12. In other words,

|D1|∞ ≤ α/12 with probability approaching one. Following similar argu-

ments, we have |D3|∞ ≤ α/12 and |D4|∞ ≤ α/12 with probability approach-

ing one. Based on the result ∥E4∥∞ ≤ 1−α and assumption |Z̃S |∞ ≤ 1, we

have |D2|∞ ≤ 1 − α/2 with probability approaching one. These completes

the proof of Lemma 13.

With Lemma 13, we give the proof of Theorem 3.

Proof. On one hand, we have β
(1)
dist,2 = β̃ with probability approaching one.

Moreover, by the PDW construction, we have, pr
{
S(β(1)

dist,2) ⊆ S
}

→ 1.
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On the other hand, vecl(β̃S − βS) = H−1
S×S(β)(M1 + M2 + M3 + M4),

where M1 = −λ
(1)
N Z̃S , M2 = −{Ĥ1,S×S(β

(0)
dist,2) − HS×S(β)}{vecl(β̃S −

βS)}, M3 = −{Ĥ1,S×S(β
(0)
dist,2)− ĤS×S(β

(0)
dist,2)}{vecl(β − β

(0)
dist,2)}S , M4 =

{zN(β(0)
dist,2) − Ĥ(β

(0)
dist,2)vecl(β)}S . By the definition of the infinity norm

of a matrix, we have |vecl(β̃S − βS)|∞ ≤ ∥H−1
S×S(β)∥∞(|M1|∞ + |M2|∞ +

|M3|∞ + |M4|∞).

Next we study the infinity norms of M1, M2, M3 and M4, respec-

tively. By the definition of Z̃S , we have |M1|∞ ≤ λ
(1)
N . By the definition

of the ℓ2–norm, we have |M2|∞ ≤ |M2|2. By the definition of the op-

erator norm, we have |M2|2 ≤ ∥Ĥ1,S×S(β
(0)
dist,2) − HS×S(β)∥op|vecl(β̃S −

βS)|2. By Lemma 8, we have ∥H−1
S×S(β)∥∞ |M2|∞ ≤ C∥H−1

S×S(β)∥∞{s(s+

logN)/n}1/2|vecl(β̃S−βS)|∞. Following similar arguments, we have ∥H−1
S×S(β)∥∞|M3|∞ ≤

C∥H−1
S×S(β)∥∞|(vecl(β − β

(0)
dist,2)S |1(log p/n)1/2 and ∥H−1

S×S(β)∥∞|M4|∞ ≤

C∥H−1
S×S(β)∥∞(log p/N)1/2. Choosing λ

(1)
N properly, we have |vecl(β̃S −

βS)|∞ ≤ C∥H−1
S×S(β)∥∞

{
(log p/N)1/2 + |(vecl(β − β

(0)
dist,2)S |1(log p/n)1/2

}
.

This, together with the lower bound condition of βS , entails that pr(S(β(1)
dist,2) ⊇

S) → 1, and accordingly, pr(S(β(1)
dist,2) = S) → 1.

For t ≥ 2, we replace the initial estimate with β
(t−1)
dist,2 and update the

lower bound condition on βS . By similar arguments, the proof is completed.
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