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Supplementary Material

In this supplement we provide additional simulation results for non-stationary data and show

the complete proofs of Propositions A.5, C.1 and C.2 of the main article.

S1 Additional Simulation Results

S1.1 Non-stationary Data

While we showed simulation results in a model meeting all model assump-

tions, especially joint second order stationarity, we now would like to demon-

strate that the method still works for non-stationary data. To this end we

generate data according to

X(t) = (t+ 0.5)Z1, W (t) = (t+ 0, 5)Z2 +H

Y =
1

p+ 1

p∑
l=0

X(l/p) · β(l/p) + U

with
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Figure 1: Empirical size and power of the asymptotic test for several choices of α. The

gray solid line shows the target level γ = 0.05. The true slope parameter function is β1.
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with corr(Z1, Z2) = ν, corr(Z1, ε) = ρ and U = 7

5
ε. The random variable

H is uniformly distributed on (−1/2, 1/2) and independent of (Z1, Z2, ε)
′.

The parameter ρ controls the severity of endogeneity (if ρ = 0 we are

in the exogenous case, i.e. under the null H0) and ν the strength of the

instrument W . The standard deviation is assumed to be σ = 7/5. As slope

functions we use again the functions specified in (5.1). In contrast to the
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Figure 2: Empirical size and power of the bootstrap tests for several choices of α. The

gray solid line shows the target level γ = 0.05. The true slope function is β1.

example in Section 5, (X,W ) is not second order stationary and we show

these simulation results to demonstrate that the assumption of stationarity

might not be necessary.

In a first step, we inspect the influence of the choice of α on the perfor-

mance of the resulting tests. To this end, we fix the degree of endogeneity

with ρ = 0.4 and the strength of the instrument with ν = 0.6 and the slope

function β = β1. In Figure 1, the results for the asymptotic test using

β1 as slope parameter and different choices of α are shown. We see that

the best results are obtained for α between 0.05 and 0.055. For smaller α,

the test does not hold the prescribed level, while for larger α the power is



Manuela Dorn, Melanie Birke and Carsten Jentsch

n

25 50 75 100 125 150 175 200 225 250 275 300

β1 0.111 0.507 0.773 0.901 0.960 0.980 0.992 0.997 0.998 0.998 1 1

β2 0.164 0.568 0.798 0.912 0.958 0.979 0.992 0.997 0.999 0.998 1 1

β3 0.255 0.560 0.733 0.853 0.904 0.961 0.978 0.990 0.993 0.994 0.997 0.998

Table 1: Empirical power of the bootstrap tests for slope functions defined in (5.1) using

ρ = 0.4, ν = 0.6 and α = 0.0001.

comparably small up to biased tests for α larger than 0.07. We see that

the asymptotic test has only moderate power even for larger sample sizes.

This is a well known effect with asymptotic tests using plug-in estimators.

As way out we again inspect the bootstrap tests. The results for the

residual-based bootstraps proposed in Section 4 and again β1 are shown in

Figure 2.

It turns out, that the regularization parameter can be chosen consider-

ably smaller than for the asymptotic test and the procedure is much more

robust in choosing α. Nearly all tests hold the size of γ = 0.05 for larger

sample sizes and the power increases with sample size for most choices of

α up to a value close to 1 already for n = 300.

Comparing the performance of the bootstrap test for different slope

functions, we discover that in all models the bootstrap test holds the size

γ = 0.05 while we see in Table 1 that the power is similarly good for all



S1. ADDITIONAL SIMULATION RESULTS

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sample size

E
m

pi
ric

al
 p

ow
er

ρ

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Figure 3: Power of the bootstrap test for different degrees ρ of endogeneity

settings with only slight disadvantages for the smoothed indicator function

β3.

Finally, we inspect the influence of the degree of endogeneity and the

strength of the instrument on the performance of the test. In Figure 3, we

see that the power of the bootstrap test increases with increasing degree

ρ of endogeneity being already acceptable for ρ = 0.3. Figure 4 shows,

that the performance of the test is highly dependent on the strength of the

instrument. If the instrument is too weak, the power is too low and the

test does not hold the size. It turns out, that for the setting with slope

function β1, ρ = 0.4 and α = 0.0001, the bootstrap test performs best for
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Figure 4: Power and size of the bootstrap test for different strengths ν of the instrument

a strength of the instrument around ν = 0.7. In conclusion, we have seen,

that all simulation results without stationarity are as good as the ones with

stationarity assumed. This backs our hypothesis that the results still hold

without the assumption of joint second order stationarity.

S1.2 Runtime analysis

Since bootstrap and cross validation are time intensive methods it is inter-

esting to get an impression of the runtime for the evaluation of one data

set for different sample sizes and numbers of bootstrap repetitions. To this

end we generated a sample of size n ∈ {50, 100, 200, 300} from the model

in Subsection S1.1 once, performed a cross validation, calculated the test



S1. ADDITIONAL SIMULATION RESULTS

n
∖
B 250 500 1000 10000

50 10.45 8.91 8.89 8.94

100 51.05 33.51 33.4 33.44

200 323.57 139.16 140.55 138.86

300 343.26 330.21 330.01 331.52

Table 2: Runtime in sec. for different sample sizes and bootstrap repetitions

statistic and performed B ∈ {250, 500, 1000, 10000} bootstrap repetitions

on which finally the decision is based. The runtime for each combination

is given in Table 2. Due to parallelization in the bootstrap procedure an

increase in the bootstrap replications does not necessarily have an effect on

the runtime.
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S2 Proof of Proposition A.5

We give only the proof for Rn,2. We have

n2

t2n
E|Rn,2 −Rn|2

≤ 1

t2nn
2

∑
k∈Z

x2kI{λk ≥ αγνk}E

∣∣∣∣∣
n∑
i=1

(
|Di,kUi,k|2 −V1/2

(
wk
|ck|2

− 1

xk

)) ∣∣∣∣∣
2

+
1

t2nn
2

∑
k,l∈Z,
|k|6=|l|

xkI{λk ≥ αγνk}xlI{λl ≥ αγνl }

n∑
i=1

E
[(
|Di,kUi,k|2 −V1/2

( wk
|ck|2

− 1

xk

))(
|Di,lUi,l|2 −V1/2

( wl
|cl|2
− 1

xl

))]

+
1

t2nn
2

∑
k,l∈Z,
|k|6=|l|

xkI{λk ≥ αγνk}xlI{λl ≥ αγνl }

n∑
i,p=1,
i 6=p

E
[
|Di,kUi,k|2 −V1/2

( wk
|ck|2

− 1

xk

)]
E
[
|Dp,lUp,l|2 −V1/2

( wl
|cl|2
− 1

xl

)]
.

The terms quadratic in k ∈ Z can be estimated by Lemma B.1 und (S4.6),

while the other terms except the one coming from |〈β, φk〉|2xk vanish

E

∣∣∣∣∣
n∑
i=1

(
|Di,kUi,k|2 −V1/2

(
wk
|ck|2

− 1

xk

)) ∣∣∣∣∣
2

≤ Cn

α2
+ Cn2

(
xkwk
|ck|2

− 1

)2

|〈β, φk〉|4
(

1 +
1

n

)
.

Using the Cauchy-Schwarz inequality (S3.3), leads to

E

[(
|Di,kUi,k|2 −V1/2

(
wk
|ck|2

− 1

xk

))(
|Di,lUi,l|2 −V1/2

(
wl
|cl|2
− 1

xl

))]
≤ C

α2
.
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The expectations with k, l ∈ Z, |k| 6= |l| und i, p ∈ {1, . . . , n}, i 6= p can be

estimated by (S3.4). This finally yields

n2

t2n
E|Rn,2 −Rn|2

≤ 1

t2nn
2

∑
k∈Z

x2kI{λk ≥ αγνk}

{
Cn

α2
+ Cn2

(
xkwk
|ck|2

− 1

)2

|〈β, φk〉|4
(

1 +
1

n

)}

+
C

t2nn
2

∑
k,l∈Z,
|k|6=|l|

xkI{λk ≥ αγνk}xlI{λl ≥ αγνl }

{
n

α2
+ n(n− 1)

(
xkwk
|ck|2

− 1

)
|〈β, φk〉|2

(
xlwl
|cl|2

− 1

)
|〈β, φl〉|2

}

= o

(
1 +

1

t2n

)
.

The second part can be shown by using

xkwk
|ck|2

− 1 ≤ 1

α
(xk − λk), (S2.1)

for all k ∈ Kn together with Lemma B.1. �

All the other parts of Proposition A.5 as well as Lemmas A.2-A.4 follow

by very similar techniques. For details we refer to [5] in the main article.
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S3 Details for the proof of Proposition C.1

Using that Uj,kDj,kUj,lDj,l is independent of (Fn,j−1)j=1,...,n, we can decom-

pose

Vn =
1

t2nn
2

n∑
j=2

E
[∣∣∣∑

k∈Z

Uj,kDj,kZn,j,k

∣∣∣2 | Fn,j−1]
=

1

t2nn

∑
k∈Z

xk

(
xkwk
|ck|2

− 1

)
I{λk ≥ αγνk}E|U1,k|2(

n−1∑
i=1

|Ui,kDi,k|2 +
n−1∑
i,p=1,
i 6=p

Ui,kDi,kUp,kDp,k

)

= Vn,1 + Vn,2.

We define

Hn =
V

t2nn

∑
k∈Z

xk

(
xkwk
|ck|2

− 1

)
I{λk ≥ αγνk}

n−1∑
i=1

E|Di,k|2

and show

Vn,1 = Hn + o(1)

by proving the corresponding L2-convergence. Afterwards we show that Hn

converges in probability to V. Writing for i ∈ {1, . . . , n} and k ∈ Z

|Ui,kDi,k|2E|U1,k|2 −VE|Di,k|2

= V1/2
[
|Ui,kDi,k|2 −V1/2E|Di,k|2

]
− |Ui,kDi,k|2|〈β, φk〉|2xk.
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and, observing that σ2+
∑

m∈Z |〈β, φm〉|2xm ≤ C1 for some constant C1 > 0,

we get

E (Vn,1 − Hn)2 ≤ Vn,1 + Vn,2 + Vn,3

with

Vn,1 =
C

t4nn
2

∑
k∈Z

x2k

(
xkwk
|ck|2

− 1

)2

I{λk ≥ αγνk}{
n−1∑
i=1

E
(
|Ui,kDi,k|2 −V1/2E|Di,k|2

)2
+

n−1∑
i,p=1,
i 6=p

E
[
|Ui,kDi,k|2 −V1/2E|D1,k|2

]
E
[
(|Up,kDp,k|2 −V1/2E|D1,k|2

]}
,

Vn,2=
C

t4nn
2

∑
k,l∈Z,
|k|6=|l|

xk

(
xkwk
|ck|2

− 1

)
I{λk ≥ αγνk}xl

(
xlwl
|cl|2

− 1

)
I{λl ≥ αγνl }

{
n−1∑
i=1

E
[(
|Ui,kDi,k|2 −V1/2E|Di,k|2

)(
|Ui,lDi,l|2 −V1/2E|Di,l|2

)]

+
n−1∑
i,p=1,
i 6=p

E
[
|Ui,kDi,k|2 −V1/2E|Di,k|2

]
E
[
|Ui,lDi,l|2 −V1/2E|Di,l|2

]}
,

Vn,3=
2

t4nn
2
E

(∑
k∈Z

x2k

(
xkwk
|ck|2

− 1

)
|〈β, φk〉|2I{λk ≥ αγνk}

n−1∑
i=1

|Ui,kDi,k|2
)2

.

We have

E|Uj,kDj,k|2 =

(
σ2 +

∑
m∈Z,
|m|6=|k|

|〈β, φm〉|2xm

)(
wk
|ck|2

− 1

xk

)
, (S3.2)
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because |Uj,k|2 and |Dj,k|2 are uncorrelated for all k ∈ Z and j ∈ {1, . . . , n}.

With Lemma B.1 and (S4.6), for all i ∈ {1, . . . , n} and k ∈ Kn, we have

E
(
|Ui,kDi,k|2 −V1/2E|Di,k|2

)2 ≤ C
(

E|D1,k|4 −
(
E|D1,k|2

)2) ≤ CE|D1,k|4

≤ C

α2
(S3.3)

as well as

E
[
|Ui,kDi,k|2 −V1/2E|Di,k|2

]
= −E|D1,k|2|〈β, φk〉|2xk

= −
(
xkwk
|ck|2

− 1

)
|〈β, φk〉|2. (S3.4)

For the mixed terms with k, l ∈ Z, |k| 6= |l| and i ∈ {1, . . . , n} and wk

|ck|2
−

1
xk
≥ 0 for all k ∈ Z, we get

E
[(
|Ui,kDi,k|2 −V1/2E|Di,k|2

)(
|Ui,lDi,l|2 −V1/2E|Di,l|2

)]
≤ E

[
|U1,kD1,kU1,lD1,l|2

]
+
( wk
|ck|2

− 1

xk

)( wl
|cl|2
− 1

xl

)
≤ C

{
1

α2
|〈β, φk〉|2xk|〈β, φl〉|2xl +

xl
α
|〈β, φl〉|2

( wk
|ck|2

− 1

xk

)
+
xk
α
|〈β, φk〉|2

( wl
|cl|2
− 1

xl

)
+
( wk
|ck|2

− 1

xk

)( wl
|cl|2
− 1

xl

)}
. (S3.5)
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Using this, we have

Vn,1 ≤
C

t4nn
2

∑
k∈Z

x2k

(
xkwk
|ck|2

− 1

)2

I{λk ≥ αγνk}

{
n

α2
+ n2

(
xkwk
|ck|2

− 1

)2

|〈β, φk〉|4
}

≤ C

t4nnα
2

∑
k∈Z

x2k

(
xkwk
|ck|2

− 1

)2

I{λk ≥ αγνk}

+
C

t4n

∑
k∈Z

x2k

(
xkwk
|ck|2

− 1

)4

|〈β, φk〉|4I{λk ≥ αγνk}

= o

(
1 +

1

t2n

)
,

with some constant C > 0. With similar arguments, we obtain

Vn,2 ≤
C

t4n

{
1

nα2

(∑
k∈Z

x2k

(
xkwk
|ck|2

− 1

)
|〈β, φk〉|2I{λk ≥ αγνk}

)2

+
t2n
nα

(∑
l∈Z

x2l

(
xlwl
|cl|2

− 1

)
|〈β, φl〉|2I{λl ≥ αγνl }

)
+

(t2n)2

n

}

+
C

t4n

(∑
k∈Z

xk

(
xkwk
|ck|2

− 1

)2

|〈β, φk〉|2I{λk ≥ αγνk}

)2

,

which can be further bounded using the Cauchy-Schwarz inequality to get

Vn,2 = o

(
1 +

1

t2n
+

1√
ntn

)
+O

(
1

n

)
.
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Using similar arguments as for the first two terms, Vn,3 can also be bounded

to get

Vn,3 ≤
C

t4nnα
2

∑
k∈Z

x4k

(
xkwk
|ck|2

− 1

)2

|〈β, φk〉|4I{λk ≥ αγνk}

+
C

t4n

∑
k∈Z

x2k

(
xkwk
|ck|2

− 1

)4

|〈β, φk〉|4I{λk ≥ αγνk}

+
C

t4nnα
2

(∑
k∈Z

x3k

(
xkwk
|ck|2

− 1

)
|〈β, φk〉|4I{λk ≥ αγνk}

)2

+
C

t4nn

(∑
k∈Z

xk

(
xkwk
|ck|2

− 1

)2

|〈β, φk〉|2I{λk ≥ αγνk}

)2

+
C

t4nnα

∑
k∈Z

xk

(
xkwk
|ck|2

− 1

)2

|〈β, φk〉|2I{λk ≥ αγνk}

∑
k∈Z

x3l

(
xlwl
|cl|2

− 1

)
|〈β, φl〉|4I{λl ≥ αγνl }

+
C

t4n

(∑
k∈Z

xk

(
xkwk
|ck|2

− 1

)2

|〈β, φk〉|2I{λk ≥ αγνk}

)2

= o

(
1 +

1

t2n
+

1

n
+

1√
ntn

)
.

Altogether, we have

Vn,1 = Hn + oP (1) .

The stochastic convergence of Hn follows by

Hn = V
n− 1

t2nn

∑
k∈Z

(
xkwk
|ck|2

− 1

)2

I{λk ≥ αγνk}
P→ V

for n → ∞. For proving, that Vn,2 converges stochastically to 0, we show

again the corresponding L2-convergence. To this end we bound for all
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i ∈ {1, . . . , n} und k ∈ Z the term E|U1,k|2 by a constant C <∞ by using

that U is centered and Lemma B.1, to obtain

E|Vn,2|2 ≤
C

t4nn
2

{∑
k∈Z

x2k

(
xkwk
|ck|2

− 1

)2

I{λk ≥ αγνk}E

∣∣∣∣∣
n−1∑
i,p=1,
i 6=p

Ui,kDi,kUp,kDp,k

∣∣∣∣∣
2

+
∑
k,l∈Z,
|k|6=|l|

xk

(
xkwk
|ck|2

− 1

)
I{λk ≥ αγνk}xl

(
xlwl
|cl|2

− 1

)
I{λl ≥ αγνl }

E

[(
n−1∑
i,p=1,
i 6=p

Ui,kDi,kUp,kDp,k

)(
n−1∑
i,p=1,
i 6=p

Ui,lDi,lUp,lDp,l

)]}
.

Since Ui,kDi,k and Up,kDp,k are stochastically independent for p 6= i, only

the quadratic terms for k ∈ Z are relevant

n−1∑
i,p=1,
i 6=p

E
∣∣∣Ui,kDi,kUp,kDp,k

∣∣∣2 =
n−1∑
i,p=1,
i 6=p

E|Ui,kDi,k|2E|Up,kDp,k|2

= (n− 1)(n− 2)
(
E|U1,k|2E|D1,k|2

)2
≤ Cn2

(
wk
|ck|2

− 1

xk

)2

.

Under the assumptions of Theorem 2.1, this leads to

E|Vn,2|2 ≤
C

t4n

∑
k∈Z

(
xkwk
|ck|2

− 1

)4

I{λk ≥ αγνk} = o(1),

and therefore

Vn,2 = oP (1) .
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S4 Details for the proof of Proposition C.2

It is shown in [1] and [10] that the conditional Lindeberg condition follows

from the unconditional Lyapunov condition. We will show in the following,

that
n∑
j=2

E|Yn,j|4 = o(1)

and, for this purpose, we decompose

n∑
j=2

E|Yn,j|4 = Ln,1 + Ln,2 + Ln,3 + Ln,4,

where

Ln,1 =
1

t4nn
4

n∑
j=2

∑
k∈Z

E |Uj,kDj,kZn,j,k|4 ,

Ln,2 =
1

t4nn
4

n∑
j=2

∑
k,l∈Z,
|k|6=|l|

E
∣∣Uj,kDj,kZn,j,kUj,lDj,lZn,j,l

∣∣2 ,
Ln,3=

1

t4nn
4

n∑
j=2

∑
k,l,q∈Z,

|k|,|l|6=|q|,|k|6=|l|

E
[
|Uj,kDj,kZn,j,k|2Uj,lDj,lZn,j,lUj,qDj,qZn,j,q

]
,

Ln,4=
1

t4nn
4

n∑
j=2

∑
k,l,p,q∈Z,
|k|,|l|,|p|6=|q|,
|k|,|l|6=|p|,|k|6=|l|

E
[
Uj,kDj,kZn,j,kUj,lDj,lZn,j,lUj,pDj,pZn,j,pUj,qDj,qZn,j,q

]
.

For Ln,1, we use that for all k ∈ Z, n ∈ N, j ∈ {1, . . . , n}, Zn,j,k are stochas-

tically independent of Uj,kDj,k and Uj,k are uncorrelated with Dj,k. Fur-

thermore, the fourth absolute moment of Uj,k is uniformly bounded because

U is centered and due to Lemma B.1. The fourth absolute moment of Dj,k
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can be estimated using Assumption 3 and (X,W ) ∈ F4
η as

E|Dj,k|4 ≤ C

(
E|〈W,φk〉|4

|ck|4
+

E|〈X,φk〉|4

x4k

)
≤ Cη

(
w2
k

|ck|4
+

1

x2k

)
≤ Cη

α2
.

(S4.6)

Again using similar arguments, we obtain

E |Ui1,kDi1,k|
2 = E|Ui1,k|2E|Di1,k|2 ≤ C

(
wk
|ck|2

− 1

xk

)
. (S4.7)

This results in

E
∣∣∣ j−1∑
i=1

Ui,kDi,kxkI{λk ≥ αγνk}
∣∣∣4

= x4kI{λk ≥ αγνk}

{
j−1∑
i=1

E|Ui,k|4E|Di,k|4 + 2
∑

1≤i1<i2≤j−1

E|Ui1,kDi1,k|2E|Ui2,kDi2,k|2
}

≤ Cn

α2
x4kI{λk ≥ αγνk}+ Cn2x2k

(
xkwk
|ck|2

− 1

)2

I{λk ≥ αγνk}. (S4.8)

Putting these results together, for Ln,1, we get

Ln,1 =
1

t4nn
4

n∑
j=2

∑
k∈Z

E|Uj,k|4E|Dj,k|4E|Zn,j,k|4

≤ C

t4nn
4α2

n∑
j=2

∑
k∈Z

E
∣∣∣ j−1∑
i=1

Ui,kDi,kxkI{λk ≥ αγνk}
∣∣∣4

≤ C

t4nnα
2

∑
k∈Z

x2kI{λk ≥ αγνk}

(
1

nα2
x2k +

(
xkwk
|ck|2

− 1

)2
)

= o(1)
1

t4n

(∑
k∈Z

x4kI{λk ≥ αγνk}+
∑
k∈Z

x2k

(
xkwk
|ck|2

− 1

)2

I{λk ≥ αγνk}

)
,

where the first series converges due to Lemma B.1 and the second series

either also converges or, if not, can be bounded by Ct2n.
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Considering Ln,4, we use the stochastic independence of Zn,j,k and

Uj,lDj,l for all k, l ∈ Z, which results in

E
[
Uj,kDj,kZn,j,kUj,lDj,lZn,j,lUj,pDj,pZn,j,pUj,qDj,qZn,j,q

]
= E

[
Uj,kDj,kUj,lDj,lUj,pDj,pUj,qDj,q

]
E
[
Zn,j,kZn,j,lZn,j,pZn,j,q

]
.

The rest of the argumentation is just calculating the expectations using that

for all j ∈ {1, . . . , n}, Dj,k, Dj,l, Dj,p and Dj,q are uncorrelated with Sj,m for

all m ∈ Z\{m ∈ Z : |m| = |k|, |l|, |p|, |q|} and stochastically independent of

Uj. Finally,

E[Sj,kDj,k] = 〈β, φk〉E
[
〈φk, Xj〉

(
〈Wj, φk〉

ck
− 〈Xj, φk〉

xk

)]
= 〈β, φk〉

(
ck
ck
− xk
xk

)
= 0

(S4.9)

and, in the same way, E[Sj,kDj,k] = E[Sj,kDj,k] = 0, which gives Ln,4 = 0.

With similar arguments as above, we get

Ln,2 =
1

t4nn
4

n∑
j=2

∑
k,l∈Z,
k 6=l

E|Uj,kDj,kUj,lDj,l|2E|Zn,j,kZn,j,l|2,

which can be further bounded by using

E
∣∣Sj,kDj,k

∣∣2 ≤ |〈β, φk〉|2√E
∣∣〈X,φk〉|4E∣∣Dj,k

∣∣4
≤ √η|〈β, φk〉|2xk

(
E|〈W,φk〉|4

|ck|4
+

E|〈X,φk〉|4

x4k

)1/2

≤ C|〈β, φk〉|2xk
(
w2
k

|ck|4
+

1

x2k

)1/2

≤ C|〈β, φk〉|2xk
α
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and

E|Zn,j,kZn,j,l|2

≤ Cx2kx
2
l I{λk ≥ αγνk}I{λl ≥ αγνl }(n− 1){[

C

α2
|〈β, φk〉|2xk|〈β, φl〉|2xl +

C|〈β, φl〉|2xl
α

(
wk
|ck|2

− 1

xk

)

+
C|〈β, φk〉|2xk

α

(
wl
|cl|2
− 1

xl

)
+

(
wk
|ck|2

− 1

xk

)(
wl
|cl|2
− 1

xl

)]

+ (n− 2)

(
wk
|ck|2

− 1

xk

)(
wl
|cl|2
− 1

xl

)}
.

This results in

Ln,2 ≤
C

t4n(nα2)2

(∑
k∈Z

|〈β, φk〉|4x4k

)2

+
C

t2nn
2α2

∑
l∈Z

|〈β, φl〉|4x4l +
C

n2

+
C

t4nnα
2

(∑
k∈Z

|〈β, φk〉|2x2k
(
wkxk
|ck|2

− 1

)
I{λk ≥ αγνk}

)2

+
C

t2nnα

∑
l∈Z

|〈β, φl〉|2x2l
(
wlxl
|cl|2

− 1

)
I{λl ≥ αγνl }+

C

n

≤ o

(
1

t4n
+

1

t2nn

)
+O

(
1

n
+

1

n2

)
+

C

t2nnα
2

∑
k∈Z

|〈β, φk〉|4x4k +
C

tnnα

√∑
k∈Z

|〈β, φk〉|4x4k

= o

(
1

t4n
+

1

t2nn
+

1

t2n
+

1

tn
√
n

)
+O

(
1

n
+

1

n2

)
= o(1),

using the Hölder inequality and Lemma B.1.
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For the summands in Ln,3, we get

E
[
|Uj,kDj,kZn,j,k|2Uj,lDj,lZn,j,lUj,qDj,qZn,j,q

]
= E

[
|Uj,kDj,k|2Uj,lDj,lUj,qDj,q

]
E
[
|Zn,j,k|2Zn,j,lZn,j,q

]
.

The first expectation is

E
[
|Uj,kDj,k|2Uj,lDj,lUj,qDj,q

]
=

(
wk
|ck|2

− 1

xk

)
|〈β, φl〉|2|〈β, φq〉|2

E

[
|〈Xj, φl〉|2

(
〈Wj, φl〉

cl
− 〈Xj, φl〉

xl

)]
E

[
|〈Xj, φq〉|2

(
〈φq,Wj〉

cq
− 〈φq, Xj〉

xq

)]
,

while

E
[
|Zn,j,k|2Zn,j,lZn,j,q

]
= x2kxlxqI{λk ≥ αγνk}I{λl ≥ αγνl }I{λq ≥ αγνq }

j−1∑
i=1

E
[
|Ui,kDi,k|2Ui,lDi,lUi,qDi,q

]
.

Altogether, we have

Ln,3 ≤
1

t4nn
2

∑
k,l,q∈Z,

|k|,|l|6=|q|,|k|6=|l|

x2kxlxqI{λk ≥ αγνk}I{λl ≥ αγνl }I{λq ≥ αγνq }

(
wk
|ck|2

− 1

xk

)2

|〈β, φl〉|4|〈β, φq〉|4(
E

[
|〈X,φl〉|2

(
〈W,φl〉
cl

− 〈X,φl〉
xl

)]
E

[
|〈X,φq〉|2

(
〈φq,W 〉
cq

− 〈φq, X〉
xq

)])2

.

The series can be bounded by t2n. Using the Hölder inequality for l ∈ Kn,
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we have(
E
[
|〈X,φl〉|2

(〈φl,W 〉
cl

− 〈φl, X〉
xl

)])2

≤ E|〈X,φl〉|4E
∣∣∣D1,l|2 ≤ ηx2l

(
wl
|cl|2
− 1

xl

)
≤ C

α2
x2l .

Finally, relying again on Assumption 3 and Lemma B.1, also Ln,3 converges

to 0 due to

Ln,3 ≤
C

t2nn
2

(∑
k∈Z

|〈β, φk〉|4xk
xk − λk
λk

)1/2

≤ C

t2nn
2α2

∑
k∈Z

|〈β, φk〉|4xk(xk − λk) = o

(
1

t2nn

)
.
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