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This supplementary materials provides detailed proofs of Theorem 1 and 2 and Proposition

1-3 as well as the power simulation results under the heteroscedastic condition.

S1 Appendix: Proof of Main Theorems

S1.1 Lemmas for proof of theorems

Lemma A.1. (Lemma 2.1(i) inYang (2007)) Suppose that ξ and η are

Fk
1 - measurable and F∞

k+n - measurable random variables, respectively. If

E|ξ|p < ∞, E|η|p < ∞ for some p, q, s > 1 with 1/p+ 1/q + 1/s = 1, then

|E(ξη)− (Eξ)(Eη)| ≤ 10α1/s(n)(E|ξ|p)1/p · (E|η|q)1/q.

Lemma A.2. Suppose {ξi, i ≥ 1} is a random sequence and f : R → R is

a Borel function. If {ξi, i ≥ 1} is α-mixing, i.e., αξ(s) → 0 as s → ∞, then
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{ηi = f(ξi), i ≥ 1} is also α-mixing with αη(s) = αξ(s).

Proof. Let F b
a = σ {ξa, ξa+1, . . . , ξb} and Bb

a = σ {ηa, ηa+1, . . . , ηb} for

integers a < b, then by the definition of strong mixing coefficient,

αη(s)

= sup
k≥1

{
|P (Y ∈ (A ∩B))− P (Y ∈ A)P (Y ∈ B)| : A ∈ Bk

1 , B ∈ B∞
k+s

}
=sup

k≥1

{∣∣P (
X ∈ f−1(A ∩B

)
)− P (X ∈ f−1(A))P (X ∈ f−1(B))

∣∣ : A ∈ Bk
1 , B ∈ B∞

k+s

}
=sup

k≥1

{∣∣P (
X ∈ f−1(A) ∩ f−1(B)

)
− P (X ∈ f−1(A))P (X ∈ f−1(B))

∣∣ : A ∈ Bk
1 , B ∈ B∞

k+s

}
=sup

k≥1

{
|P (X ∈ C ∩D)− P (X ∈ C)P (X ∈ D)| : C ∈ Fk

1 , D ∈ F∞
k+s

}
= αξ(s).

Lemma A.3. (Theorem 17.2.1 in Ibragimov (1975)) Suppose that ξ and η

are Fk
1 - measurable and F∞

k+n - measurable random variables, respectively.

If |ξ| ≤ C1, |η| ≤ C2, then

|E(ξη)− (Eξ)(Eη)| ≤ 4C1C2α(n).

Lemma A.4. (Theorem 1 in Kim (1994)) Suppose {ξi, i ≥ 1} is a sequence

of dependent random variables satisfying E|ξi|p < ∞ for some p ≥ 1.

Assume that E(ξi) = 0 and M2r+ϵ = sup
{
(E|ξi|(2r+ϵ))1/(2r+ϵ), i ≥ 1

}
for

some ϵ > 0 and r = 1, 2. Further, suppose that p(k) ≤ (2r + ϵ)/k, q(k) ≤

(2r + ϵ)/(2r − k) for k = 1, . . . , 2r − 1, let f(r, ϵ) = min
k=1,...,2r−1

f [p(k), q(k)],



S1. APPENDIX: PROOF OF MAIN THEOREMS

then

E

(
n∑

i=1

ξi

)2r

≦ Cnr

[
M2r

2r +M2r
2r+ϵ

n∑
i=1

ir−1α(i)f(r,ϵ)

]
,

where C does not depend on the distribution of {ξi, i ≥ 1} or on n.

S1.2 Proof of Theorem 1

First, for 1 ≤ j ≤ p, define Lj = ωjt
2
j , σ

2 = var(
∑p

j=1 Lj), and µj = E(Lj).

By applying the big- block-little-block method by Rosenblatt (1956), we

Partition the sequence

σ−1 {Lj − µj} , 1 ≤ j ≤ p

into N blocks, where each block contains t variables such that Nt ≤ p <

(N + 1)t. Further, for each 1 ≤ i ≤ N , we partition the ith block into

two sub-blocks with a larger one Qi1 and a smaller one Qi2. Suppose each

Qi1 has t1 variables and each Qi2 has t2 = t − t1 variables. We require

N → ∞, t1 → ∞, t2 → ∞, Nt1/p → 1 and Nt2/p → 0as p → ∞.We write

Qi1 =
∑t1

j=1

[
L{(i−1)t+j} − µ{(i−1)t+j}

]
Qi2 =

∑t2
j=1

[
L{(i−1)t+t1+j} − µ{(i−1)t+t1+j}

]
.

And then define

L1 = σ−1
∑N

i=1 Qi1

L2 = σ−1
∑N

i=1 Qi2

L3 = σ−1
∑p

j=Nt+1 {Lj − µj} .
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Now we have

σ−1

p∑
j=1

{Lj − µj} = L1 + L2 + L3.

The big- block-little-block method makes Qi1’s ”almost” independent,

thus the study of L1 may be related to the well-studied cases of sums of

independent random variables. Also, since t2 is small compared with t1, the

sum L2 and L3 will be small compared with the total sum of variables in

the sequence, i.e., σ−1
∑p

j=1 {Lj − µj}. We next show

σ−1

p∑
j=1

{Lj − µj} = L1 + op(1).

As E(L2) = E(L3) = 0, it is sufficient to prove that var(L2) =

var(L3) = o(1). Consider var(L2) and we have

var (L2) = σ−2 var

{
N∑
i=1

Qi2

}

≤ σ−2

N∑
i1=1

N∑
i2=1

t2∑
j1=1

t2∑
j2=1

∣∣cov {L(i1t+t1+j1), L(i2t+t1+j2)

}∣∣ .
By Lemma A.1 & A.2, we have the following α-mixing inequality that for

any ϵ > 0,

cov {Li, Lj} ≤ CαX(|i− j|)ϵ/(2+ϵ) max
i

[
E {Li}2+ϵ](2+ϵ)/2

,
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where C is a constant. Then, take ϵ = 1,

∣∣cov {L(i1t+t1+j1), L(i2t+t1+j2)

}∣∣
≤ BαX {|(i1t+ t1 + j1)− (i2t+ t1 + j2)|}1/3

≤ BMδ|i1t+j1−i2t−j2|/3,

where B is some big constant. The above result implies that

var (L2) ≤ σ−2

N∑
i1=1

N∑
i2=1

t2∑
j1=1

t2∑
j2=1

∣∣cov {L(i1t+t1+j1), L(i2t+t1+j2)

}∣∣
≤ σ−2

N∑
i1=1

N∑
i2=1

t2∑
j1=1

t2∑
j2=1

BMδ|i1t+j1−i2t−j2|/3

= O(1)Nt2/p,

which goes to 0 as p → ∞. This implies L2 = op(1). Similarly, we can show

that L3 = op(1) under the strong mixing assumption. Therefore, we only

need to focus on L1. Then for properly chosen N and t2, we have

∣∣E {exp (irL1)} − EN
[
exp

{
irσ−1Q1,1

}]∣∣ ≤ 16NαX (t2) → 0, r ∈ R

by Lemma A.3, which implies that there exist independent random variables

{ξi; i = 1, 2, . . . , N} such that ξi and Qi1 are identically distributed and L1

has the same asymptotic distribution as σ−1
∑N

i=1 ξi.

Then, we only need to show that the central limit theorem holds for

σ−1
∑N

i=1 ξi. . This can be done by checking the Lyapunov condition. In



YIDI QU, LIANJIE SHU AND JINFENG XU

particular,by Lemma A.4, the strong mixing assumption implies

E
{
σ−1Q1,1

}4
= σ−4E

[
t1∑
j=1

{Lj − µj}

]4

= O(1)σ−4t21

{
B1 +B2

t1∑
j=1

jα(j)ϵ/(4+ϵ)

}

= O(1)t21/p
2 = O

(
t21/p

2
)
,

whereB1 andB2 are constants. Thus we have
∑N

i=1 σ
−4Eξ4i = O (Nt21p

−2) =

o(1) and the Lyapunov condition holds. Now we have proved the asymptotic

normal distribution of T .

S1.3 Proof of Theorem 2

For κ ∈ Γ = {0 ≤ κs ≤ 1, s = 1, 2, . . . ,m}, we have proved the asymptotic

normal distribution of T (κ) in Theorem 1. For any linear combination of

T (κ)′s with respect to different κ, a similar argument as proof of Theorem 1

gives the asymptotic normal distribution. Then the Cramér-Wold Theorem

implies the asymptotic joint distribution of {T (κ), κ ∈ Γ} when m is finite,

and the covariance matrix is derived in Proposition 3.

S2 Proof of Propositions

Before presenting the proof of Propositions 1-3, we need the following three

lemmas.
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Lemma S.1. (Theorem in Hall et al. (1987)) Let X1, X2, . . . , Xn be

independent and identically distributed random variables with mean µ and

variance σ2 < ∞ and Zn =
√
n(X̄ − µ)/s, where X̄ =

∑n
i=1Xi/n and

s2 = n−1
∑n

i=1 X
2
i − X̄2. Denote Fn(x) = P (Zn ≤ x) and Pi as the polyno-

mial of degree 3i − 1 appearing in the formal Edgeworth expansion of the

distribution of Zn, if E|X|k+2 < ∞ for k ≥ 1, then

Fn(x) = Φ(x) +
k∑

i=1

n−i/2pi(x)ϕ(x) + o
(
n−k/2

)
uniformly in x.

The coefficients in pi are functions of E(X), . . . , E(X i+2), for example,

p1(x) = 1/6τ (2x2 + 1) ,

p2(x) = −x {1/18τ 2 (x4 + 2x2 − 3)− 1/12κ (x2 − 3) + 1/4 (x2 + 3)} ,

where τ = E(X − µ)3/σ3 and κ = E(X − µ)4/σ4 − 3.

Lemma S.2. For k = 2, denote W = Z2
n and H(x) = P (W ≤ x), if

E(X4) < ∞,

H(x) = Φ(
√
x)− Φ(−

√
x) +O

(
n−1
)

uniformly in x.
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Proof. From Lemma S.1.

Lemma S.3. For k ≥ 1, E|X|k+2 < ∞, then

∣∣∣∣E(Z4
n)−

∫ ∞

−∞
x4dΦ(x)

∣∣∣∣ = O(n−1).

Proof. From Lemma S.1 and S.2,

∣∣∣∣E(Z4
n)−

∫ ∞

−∞
x4dΦ(x)

∣∣∣∣
=

∣∣∣∣E(W 2)−
∫ ∞

−∞
x4dΦ(x)

∣∣∣∣
=

∣∣∣∣∫ ∞

0

x2dH(x)−
∫ ∞

−∞
x4dΦ(x)

∣∣∣∣
=

∣∣∣∣∣
∫ ∞

0

x2d

{
Φ(

√
x)− Φ(−

√
x) +

∞∑
i=2

n−i/2pi(
√
x)ϕ(

√
x)

}
−

∫ ∞

−∞
x4dΦ(x)

∣∣∣∣∣
=

∣∣∣∣∣
∫ ∞

0

x2d

{
∞∑
i=2

n−i/2pi(
√
x)ϕ(

√
x)

}∣∣∣∣∣
=

∣∣∣∣∣
∞∑
i=2

n−i/2

∫ ∞

0

2xpi(
√
x)ϕ(

√
x)dx

∣∣∣∣∣ = O(n−1).

Now we are ready to prove Propositions 1-3.

S2.1 Proof of Proposition 1

Define Gj,0(x) and gj,0(x) as the cumulative distribution function and prob-

ability density function of t2j under the H0, respectively. Now under H0 :
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µ1 = µ2, by Lemma S.2 and S.3,

µj = E
{
Ijκt

2
j + (1− Ij)(1− (1− κ)Rt−2

j )t2j
}

= E
{
(κ− 1)Ijt

2
j + t2j + (1− κ)RIj − (1− κ)R

}
= (κ− 1)E(Ijt

2
j) + E(t2j) + (1− κ)RE(Ij)−R(1− κ)

= (1− κ)
{
RE(Ij)− E(Ijt

2
j)
}
+ E(t2j)− (1− κ)R

= (1− κ)

{
RGj,0(R)− (RGj,0(R)−

∫ R

0

Gj,0(x)dx)

}
+

∫ ∞

0

xgj,0(x)dx− (1− κ)R

= (1− κ)

{∫ R

0

F (x)dx−R

}
+

∫ ∞

0

xf(x)dx+O(1/n),

where F (x) and f(x) denote the cumulative distribution function and prob-

ability density function of a χ2
1 distribution, respectively.

S2.2 Proof of Proposition 2 & 3

Under H0 : µ1 = µ2, by Lemma S.2 and S.3,

ς2

=V ar {Kj}

=E
{
(κ− 1)Ijt

2
j + t2j + (1− κ)RIj

}2 − E2
{
(κ− 1)Ijt

2
j + t2j + (1− κ)RIj

}
=E

{
Ij(1− κ)(R− t2j )

[
(1− κ)(R− t2j ) + 2t2j

]}
+ E

{
t4j
}
− (κ− 1)2

{
E(Ijt

2
j )−RE(Ij)

}2

− E2(t2j )− 2(κ− 1)E(t2j )
{
E(Ijt

2
j )−RE(Ij)

}
=

∫ R

0
(1− κ)(R− x) [(1− κ)(R− x) + 2x] gj,0(x)dx+

∫ ∞

0
x2gj,0(x)dx− (κ− 1)2

{∫ R

0
Gj,0(x)dx

}2

−
[∫ ∞

0
xgj,0(x)dx

]2
− 2(κ− 1)

∫ R

0
Gj,0(x)dx

∫ ∞

0
xgj,0(x)dx

=

∫ R

0
(1− κ)(R− x) [(1− κ)(R− x) + 2x] f(x)dx+

∫ ∞

0
x2f(x)dx− (κ− 1)2

{∫ R

0
F (x)dx

}2
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−
[∫ ∞

0
xf(x)dx

]2
− 2(κ− 1)

∫ R

0
F (x)dx

∫ ∞

0
xf(x)dx+O(1/n).

Similarly,

ς′2

=Cov(Ki(κs),Ki(κt))

=

∫ R

0

[
(1− κs)(1− κt)(R− x)2 + (2− κs − κt)(R− x)x

]
gj,0(x)dx+

∫ ∞

0
x2gj,0(x)dx

− (1− κs)(1− κt)

{∫ R

0
Gj,0(x)dx

}2

−
[∫ ∞

0
xgj,0(x)dx

]2
− (2− κs − κt)

∫ R

0
Gj,0(x)dx

∫ ∞

0
xgj,0(x)dx

=

∫ R

0

[
(1− κs)(1− κt)(R− x)2 + (2− κs − κt)(R− x)x

]
f(x)dx+

∫ ∞

0
x2f(x)dx

− (1− κs)(1− κt)

{∫ R

0
F (x)dx

}2

−
[∫ ∞

0
xf(x)dx

]2
− (2− κs − κt)

∫ R

0
F (x)dx

∫ ∞

0
xf(x)dx+O(1/n).

S3 Proof of Consistency of Estimators

S3.1 Consistency of ν̂

According to Proposition 1, we estimate ν by ν̂ = (1−κ)
{∫ R

0
F (x)dx−R

}
+

1 and ν − ν̂ = O(1/n). With p/n2 = op(1) in C.3, ν̂ = ν + oP (1/p
1/2).

S3.2 Consistency of ζ̂2

Based on the estimation of ρij, we have ρij = ρ̂ij(1+Op(
1√
p
)). Also, based on

the α−mixing assumption, we have ρij ≤ Mδ|i−j|. Here we take L = c log p
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for some constant c > 0.

ζ2 − ζ̂2 =
ς2

p

∑
i,j≤p

ρij − p(|i− j|/L)ρ̂ij

≤ ς2

p

( L
2∑

k=0

(1− p(k/L) +Op(
1
√
p
))pMδk +

p∑
k=L

2
+1

(1 +Op(
1
√
p
))pMδk

)

≤ ς2

p

( L
2∑

k=0

(1− p(k/L) +Op(
1
√
p
))pMδk +

p∑
k=L

2
+1

(1 +Op(
1
√
p
))pMδk

)

≤ ς2

p

(
A+B + C

)
,

where,

A =

L
2∑

k=0

(1− p(k/L))pMδk

=

L
2∑

k=0

6((
k

L
)2 − (

k

L
)3)pMδk

≤ 6

L3

∞∑
k=0

(k2L+ k3)pMδk

≤ 6

L3
(C1L+ C2)p

=
6(cC1 log p+ C2)p

(c log p)3

= o(p),

for some constants C1 > 0 and C2 > 0.

B =

L
2∑

k=0

Op(
1
√
p
)pMδk
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≤ Op(
1
√
p
)pLM

= op(p).

Then,

C =

p∑
k=L

2
+1

(1 +Op(
1
√
p
))pMδk

= M(1 +Op(
1
√
p
))

p∑
k=L

2
+1

pδk

≤ M(1 +Op(
1
√
p
))C3pδ

L
2

≤ M(1 +Op(
1
√
p
))C3p · p

1
2
c log δ

= op(p),

for some constant C3 > 0. Therefore, A + B + C = op(p), implying ζ̂/ζ =

1 + op(1).
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S4 Additional Simulation Results

Figure 1: Power curves of the various tests against r under different sparsity levels of β

based on Model (a) with normal innovations when p = 400, n1 = 200, and n2 = 300.

Figure 2: Power curves of the various tests against r under different sparsity levels

of β based on Model (a) with heteroscedastic centered gamma(4,2) innovations when

Σ1 = Σ2.
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Figure 3: Power curves of the various tests against r under different sparsity levels

of β based on Model (a) with heteroscedastic centered gamma(4,2) innovations when

Σ2 = 2Σ1.

Figure 4: Power curves of the various tests against r under different sparsity levels

of β based on Model (a) with normal innovations and Σ1 = Σ2 when p = 100 and

n1 = n2 = 100.
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Figure 5: Power curves of the AWCT tests with different choices of R based on Model

(a) with normal innovations and Σ1 = Σ2 (AWCT x: AWCT when R=x).

Figure 6: Power curves of the various tests against r under different sparsity levels of β

based on Model (b) with normal innovations when Σ1 = Σ2.
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Figure 7: Power curves of the various tests against r under different sparsity levels of β

based on Model (c) with normal innovations when Σ1 = Σ2.

S5 Real data application: additional results for DNA

methylation data

Table 1 summarizes the test results after the elimination of significant GcPs.

In this case, it is not surprising to see that the CLX aimed at testing sparse

signals fails to reject the null hypothesis. The BS also fails to reject the null

hypothesis. One partial reason is that the assumption of equal covariance

structures between the two samples is strongly violated by the data, which

is required by the BS. In contrast, the other tests, including AWCT, ASPU,

GCT and CQ can significantly reject the null hypothesis.
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Table 1: The p-values of the various tests for testing equality of the DNA methylation

levels measured by β-values on each chromosome after the elimination of significant

GcPs.

Chr No. 1 2 3 4 5 6 7 8

AWCT 0 0 0 0 0 0 0 0

ASPU 0 0 0 0 0 0 0 0

GCT 0 0 0 0 0 0 0 0

CQ 3.34×10−5 3.84×10−5 3.35×10−5 2.89×10−6 5.37×10−5 2.66×10−5 1.10×10−4 2.85×10−4

BS 0.41 0.45 0.41 0.30 0.37 0.36 0.43 0.45

CLX 0.32 0.33 0.34 0.33 0.33 0.35 0.33 0.33

Chr No. 9 10 11 12 13 14 15 16

AWCT 0 0 0 0 0 0 0 0

ASPU 0 0 0 0 0 0 0 0

GCT 0 0 0 0 0 0 0 0

CQ 7.89×10−5 3.90×10−4 1.95×10−4 1.85×10−5 2.31×10−4 5.07×10−4 2.53×10−3 6.60×10−4

BS 0.46 0.47 0.45 0.39 0.36 0.47 0.48 0.53

CLX 0.33 0.34 0.33 0.33 0.32 0.35 0.35 0.34

Chr No. 17 18 19 20 21 22 X

AWCT 0 0 0 0 0 0 0

ASPU 0 0 0 0 0 0 0

GCT 0 0 0 0 0 0 0

CQ 4.52×10−4 4.98×10−4 5.37×10−4 8.96×10−4 2.52×10−3 0.01 3.93×10−10

BS 0.51 0.40 0.48 0.44 0.39 0.59 9.48×10−5

CLX 0.33 0.34 0.36 0.35 0.33 0.35 0.28
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S6 Real data application: A semi-conductor manu-

facturing process

A complex modern semi-conductor manufacturing process is normally under

consistent surveillance via the monitoring of signals or variables collected

from sensors and or process measurement points. However, not all of these

signals are equally valuable in a specific monitoring system. The measured

signals contain a combination of useful information, irrelevant information

as well as noise. It is often the case that useful information is buried in the

latter two.

The dataset consists of 1567 observations each with 591 features and a

label indicating a simple pass or failure for in-house line testing. The label of

“-1” represents a pass and “1” represents a fail. Among these observations,

1463 are classified as pass and 104 are classified as fail. As the features have

very different measurement units, we standardize the data by using their

sample standard deviations. Also, some features are constant in the data

set, which are removed in the analysis. The missing values are replaced with

their sample means in the same group. Furthermore, before testing whether

the mean vectors of the two groups (pass and fail) are equal, we also exclude

those features with extremely large mean differences, which may dominate
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PROCESS

Figure 8: The standardized mean differences for the features between the pass and fail

groups.

Table 2: The p-values of the various tests applied to the semi-conductor manufacturing

process dataset.

AWCT ASPU GCT CQ BS CLX

p-value 0.000 0.978 0.000 0.680 0.000 0.961

the test results. In particular, we removed some features with p-values less

than 0.01 based on the univariate two sample t test on each feature. After

that, we only retain 414 features in the final analysis. Figure 8 plots the

standardized mean differences for each of these 414 features. Clearly, there

exists multiple spikes with relatively large magnitudes.

Table 2 presents the p-values of the above six methods for testing the

equality of means between the pass and fail groups. The p-values of the
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AWCT (R = 3), GCT and BS methods are zero, indicating that there exists

a significant mean differences between the two groups. The ASPU, CQ

and CLX methods fail to reject the equality of the two mean vectors after

deleting those extremely large signals. Also, the κ adaptively chosen by the

proposed AWCT method is 0.95, which indicates that the rejection is more

likely to stem from accumulation of small differences on many components

without those deleted extremely large signals.
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