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This is the Supplementary Material for the main paper Li et al. (2022),

hereafter referred to as the main text. We present additional simulation

results and a real-data example.

S1 Additional simulation results

To further examine the properties of the proposed procedure (RICD), we

conduct the following additional simulations and also make a comparison

with other three methods mentioned in Section 3.1 of the main text.

Case (e) (Laplace distribution): Let p-dimensional random vector ξ

be composed of i.i.d. elements with the common density function f(ν) =

√
2
2
e−

√
2|ν|. Denote the distribution of ξ by Fξ. The simulated observations

x1, . . . ,xn are independently sampled from an ϵ contaminated distribution
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(1− ϵ)Fξ +
1
2
ϵNp (κηi, Ip) +

1
2
ϵNp (−κηi, Ip); κ = 8, 9, or 10 respectively for

p = 100, 200, or 400. Two settings of ηis are explored (Cases (i) and (ii)),

where ηi are defined at the beginning of Section 3.1 in the main text. It

can be shown that Fξ has excess peakedness and sub-exponential tail in this

case. Note that the first three moments of ξ1, the first element of ξ, match

those of the standard normal distribution, but the fourth moment is 6.

Case (f) (Dependent data): At first, each simulated observation xi is

generated by yi+2 + 0.4yi+1 + 0.25yi, where yi are independently drawn

from Np (0, Ip). Then [ϵn] observations among xi are randomly replaced by

outliers from Np (κηi, Ip) and Np (−κηi, Ip) in each half; κ = 9, 11, or 14

respectively for p = 100, 200, or 400.

Case (g): Let p-dimensional random vector ξ = 0.6908γ + 0.7230ν,

where γ has i.i.d. elements with the common distribution U(−
√
3,
√
3),

and ν, independent of γ, has i.i.d. elements with the common density

function

f(ν) =



a
2b
(ν
b
)−a−1, if ν ≥ b,

a
2b
(−ν

b
)−a−1, if ν < −b,

0, else.

The two parameters a and b in the above density function are chosen as

2 + 4/
√
3 and

√
2/(2 +

√
3), respectively so that Condition A5 in Section
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2.1 of the main text holds for ξ1; κ = 8, 9, or 10 respectively for p = 100, 200,

or 400.

Simulation results under Cases (e)-(g), (i)-(ii) for various values of

p at 5% significance, ϵ = 0.1 and 0.2 are summarized in Tables S1 and

S2, respectively. By these two tables, it can be seen that the proposed

method achieves the highest detection power against sparse signals (Case

(ii)) among the four methods, even when there are some dependence among

data. For example, detection power of the proposed method is 82.46% and

80.15% in Case (ii)(f) for n = 100, p = 400, ϵ = 0.1, and 0.2, which is

almost twice as much as detection power of the RMDP method in the same

settings. The PCout procedure performs fairly well in Case (i)(e), but it

still appears to be insensitive to sparse signals as discussed in the main text.

In contrast, for dense mean vector Case (i), the proposed method can also

maintain a desired efficiency.

Next, simulation results under Cases (a)-(g), (i)-(ii) for p = 400, n = 40

at 5% significance, ϵ = 0.1 and 0.2 are reported in Tables S3 and S4,

respectively; κ = 12, 18, 12, 12, 15, 12 respectively for Cases (a)-(c), (e)-(g).

Overall, the detection power of the proposed method does not vary much

when p/n increases to 10/1. The empirical size of the proposed method is

adequately controlled in most cases, though it is a little conservative when
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p/n becomes much larger than in the simulation settings of the main text.

The RMDP and the BDP methods both do not perform well in terms of

the test size in Cases (a)-(c), (i)-(ii).

For different values of p/n, the empirical sizes of all the four methods

except the PCout exceed the significance level in Cases (e), (i)-(ii), and

are conservative in Cases (f), (i)-(ii). These are mainly due to that the

detection rule of the RICD relies on some moment and i.i.d. conditions,

which are not satisfied in these cases, and that the RMDP and BDP are

both detection procedures for the data i.i.d. from normal distributions.

Finally, for examining the performance of a different h, we replace the

subset size hdefault = [n/2] + 1 at Step 1 of Algorithm 2 in the main text

by hdefault = [(α + 0.5)n]. We consider the setting in Case (c) and denote

the simulation results under this setting but with h = [(α + 0.5)n] as Case

(c′). Simulation results under Cases (c) and (c′), (i)-(ii) for various α, p,

and ϵ are reported in Tables S5 and S6. Results from these two tables show

that there is no noticeable difference in terms of empirical size and power

between these two choices of default subset sizes.
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Table S1: Average type-I error (ᾱ %) and detection power (β̄ %) under Cases (e)-(g),

(i)-(ii) with n = 100, p = 100, 200, 400, at significance level 0.05 and contamination ratio

0.1.

RICD RMDP BDP PCout

ηi Case p ᾱ β̄ ᾱ β̄ ᾱ β̄ ᾱ β̄

(i) (e) 100 21.22 98.92 22.69 99.37 23.84 98.50 5.53 99.18

200 20.52 98.41 24.40 99.11 26.95 98.25 4.89 99.49

400 19.47 96.04 25.73 98.11 28.13 97.62 4.67 99.10

(f) 100 3.79 91.00 3.25 87.66 3.48 82.84 5.08 96.44

200 2.15 86.54 1.53 78.32 2.07 76.67 4.37 94.89

400 0.63 80.37 0.27 63.62 0.62 67.31 4.41 93.51

(g) 100 3.21 97.15 3.20 96.68 3.66 94.71 4.61 99.31

200 3.37 96.20 3.29 95.13 4.24 93.34 4.28 99.65

400 3.61 93.94 3.11 91.83 5.05 90.61 4.22 99.15

(ii) (e) 100 21.21 99.19 22.95 96.45 23.97 96.77 8.12 43.61

200 20.57 98.36 24.35 94.93 27.06 95.11 7.78 32.01

400 19.43 96.32 25.77 91.40 28.43 90.93 7.51 22.99

(f) 100 3.81 90.74 3.36 78.84 3.64 83.88 7.79 29.60

200 2.15 87.29 1.88 65.06 2.42 74.01 7.51 20.87

400 0.63 82.46 0.59 41.84 1.04 56.05 7.15 33.24

(g) 100 3.23 97.12 3.17 94.66 3.82 94.77 6.76 37.43

200 3.38 96.31 3.25 92.56 4.35 93.41 6.95 28.06

400 3.59 93.27 3.16 85.11 5.21 85.20 7.28 21.23
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Table S2: Average type-I error (ᾱ %) and detection power (β̄ %) under Cases (e)-(g),

(i)-(ii) with n = 100, p = 100, 200, 400, at significance level 0.05 and contamination ratio

0.2.

RICD RMDP BDP PCout

ηi Case p ᾱ β̄ ᾱ β̄ ᾱ β̄ ᾱ β̄

(i) (e) 100 18.34 98.51 18.81 98.91 19.71 96.93 1.91 99.92

200 17.72 97.65 20.42 98.68 22.59 96.70 1.60 99.99

400 16.04 92.71 20.95 96.86 22.52 94.99 1.50 100.00

(f) 100 2.87 87.32 2.50 83.97 2.46 75.07 1.74 100.00

200 1.66 82.22 1.13 74.32 1.36 65.34 1.20 99.86

400 0.54 74.72 0.20 57.09 0.41 50.76 1.18 100.00

(g) 100 2.40 96.19 2.46 95.59 2.72 92.79 1.53 99.67

200 2.55 94.85 2.42 93.78 3.43 90.76 1.30 99.69

400 2.62 91.96 2.35 89.83 3.81 86.84 1.29 99.83

(ii) (e) 100 18.32 98.63 18.99 94.25 19.60 94.55 6.52 37.71

200 17.63 97.51 20.80 92.14 22.99 92.10 6.30 27.43

400 15.65 93.78 21.84 87.81 24.13 86.45 6.78 21.34

(f) 100 2.88 88.77 2.94 75.01 2.94 79.77 6.35 25.43

200 1.69 83.87 2.00 60.47 2.31 68.13 7.10 17.23

400 0.57 80.15 1.04 41.17 1.31 52.83 7.33 17.66

(g) 100 2.39 96.59 2.49 93.55 2.77 93.83 5.26 35.25

200 2.56 95.13 2.50 90.23 3.42 90.24 5.60 26.16

400 2.58 91.62 2.45 82.65 4.15 81.63 6.30 20.16
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Table S3: Average type-I error (%) and detection power (%) under Cases (a)-(g), (i)-(ii)

with n = 40, p = 400, at significance level 0.05 and contamination ratio 0.1.

Average type-I error Detection power

Case ηi RICD RMDP BDP PCout RICD RMDP BDP PCout

(a) (i) 2.78 11.77 19.96 5.64 92.75 98.67 96.21 88.95

(ii) 2.45 11.56 19.91 8.50 93.53 75.72 70.12 39.09

(b) (i) 0.88 11.30 18.45 6.35 49.60 96.26 92.69 80.88

(ii) 0.88 12.33 20.19 9.23 52.30 71.22 67.51 30.35

(c) (i) 1.86 10.68 19.41 5.23 94.37 99.64 97.92 94.68

(ii) 1.83 10.92 19.74 8.35 94.32 75.21 71.07 46.38

(d) (i) — — — — — — — —

(ii) 2.48 11.65 18.51 8.85 83.59 91.05 86.38 36.23

(e) (i) 9.82 35.11 38.53 6.74 95.97 99.83 99.32 90.77

(ii) 9.76 33.85 36.94 9.36 97.11 88.06 80.69 45.93

(f) (i) 0.08 0.14 1.37 7.87 87.51 72.66 93.54 67.76

(ii) 0.11 0.28 2.50 10.22 89.08 33.84 55.52 41.75

(g) (i) 1.34 5.70 14.09 5.65 93.13 99.33 97.42 92.43

(ii) 1.38 5.59 14.53 8.61 93.25 74.56 70.58 41.07
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Table S4: Average type-I error (%) and detection power (%) under Cases (a)-(g), (i)-(ii)

with n = 40, p = 400, at significance level 0.05 and contamination ratio 0.2.

Average type-I error Detection power

Case ηi RICD RMDP BDP PCout RICD RMDP BDP PCout

(a) (i) 2.35 10.58 15.52 2.45 89.29 98.40 94.72 97.12

(ii) 2.07 11.14 18.51 7.27 90.58 70.37 66.32 37.16

(b) (i) 0.43 8.96 14.13 2.68 38.04 93.47 86.17 95.83

(ii) 0.46 10.81 18.82 8.24 43.19 67.31 64.73 27.12

(c) (i) 1.91 10.28 15.66 1.95 91.35 99.28 95.65 99.49

(ii) 1.62 9.95 18.13 6.40 91.26 72.09 68.20 39.43

(d) (i) — — — — — — — —

(ii) 1.95 8.72 14.21 7.56 79.80 87.58 82.70 31.95

(e) (i) 8.40 30.80 31.54 2.76 92.58 99.90 97.49 99.02

(ii) 7.50 29.04 32.40 8.17 92.67 82.92 75.04 39.82

(f) (i) 0.13 0.17 1.20 3.38 84.48 74.46 86.71 93.44

(ii) 0.13 1.18 3.89 9.74 88.79 37.38 54.63 27.66

(g) (i) 1.23 5.41 10.71 2.31 91.04 99.06 95.12 99.01

(ii) 1.16 5.39 13.07 7.17 90.82 69.73 66.00 37.93
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Table S5: Average type-I error (%) by the proposed procedure for various p, ϵ, and α

under Cases (c) and (c′).

ϵ = 0.1 ϵ = 0.2

ηi Case p α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

(i) (c) 100 1.63 6.06 11.49 1.09 4.84 9.55

200 1.33 6.00 11.73 0.92 4.74 9.81

400 1.31 5.99 10.87 0.90 4.66 8.60

(c′) 100 1.57 5.97 10.88 1.16 4.58 8.80

200 1.43 5.88 11.07 1.02 4.60 8.71

400 1.28 5.90 10.64 0.84 4.54 7.86

(ii) (c) 100 1.61 6.08 11.52 1.08 4.84 9.56

200 1.35 6.00 11.73 0.92 4.71 9.76

400 1.29 5.99 10.76 0.92 4.65 8.40

(c′) 100 1.57 5.94 10.97 1.15 4.63 8.99

200 1.46 5.73 10.91 1.03 4.68 8.87

400 1.22 5.74 10.42 0.82 4.28 7.49
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Table S6: Detection power (%) by the proposed procedure for various p, ϵ, and α under

Cases (c) and (c′).

ϵ = 0.1 ϵ = 0.2

ηi Case p α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

(i) (c) 100 93.04 97.80 98.85 89.23 96.84 98.61

200 87.99 96.61 98.20 85.53 95.67 97.86

400 81.47 93.76 97.13 77.35 92.22 95.67

(c′) 100 92.14 97.69 98.92 89.85 97.02 98.49

200 89.06 96.72 98.38 85.41 95.46 97.77

400 81.55 94.16 96.87 76.27 91.96 95.06

(ii) (c) 100 92.59 97.66 99.16 89.82 96.79 98.55

200 88.70 96.27 98.20 85.41 94.92 97.64

400 82.79 94.27 96.62 78.43 93.09 95.87

(c′) 100 92.29 97.63 98.95 90.39 97.08 98.53

200 89.27 96.84 98.51 85.97 95.56 97.86

400 82.54 94.30 97.11 78.43 92.43 95.69
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Table S7: Stock data set: Indices of the outliers detected by the four methods for various

α values.

α RICD RMDP BDP PCout

0.01 2, 8, 9, 13, 22, 23 2, 8, 13, 19, 22 2, 7, 8, 13, 22 NA

0.05 2, 7–10, 13, 19, 22, 23 2, 7, 8, 13, 19, 21, 22 2, 7, 8, 13, 21, 22 NA

0.1 2, 7–10, 13, 19, 22, 23 2, 7, 8, 13, 19, 21, 22 2, 7, 8, 13, 21, 22 NA

S2 Example: Stock data

Consider weekly returns of 300 stocks, all constituents of the CSI 300 In-

dex, from May 22, 2017 to December 19, 2017 (25 weeks), which were

actively traded in the Shanghai Stock Exchange (SSE) and the Shenzhen

Stock Exchange (SZSE). The returns are calculated in log-scale by log(Pt)−

log(Pt−1), where Pt is the closing price of the tth week, t = 1, . . . , 25. Thus,

for this data set, n is 25 and p is 300. Note that the data can be downloaded

from the Sina Finance database, which is publicly available.

To demonstrate the performance of the proposed detection procedure,

we consider the original data and the data contaminated in the following

way: When t = 2, 8, 9, 13, 22, and 23, the returns of the first stock, Ping

An Bank, are falsely recorded as log(Pt), which implies that the data on

these six weeks can be considered as outliers. Figure S1 displays the time
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Figure S1: Time plots of the log weekly returns of all constituents of the CSI 300

Index from May 22, 2017 to December 19, 2017: The original data (left panel) and the

contaminated data (right panel).
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Figure S2: Plots of the modified distances based on the RICD and the RMDP.
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plots of the log weekly returns of all constituents of the CSI 300 Index from

May 22, 2017 to December 19, 2017 with and without contamination. We

apply the aforementioned four methods to the contaminated stock data set

at different significance levels and summarize the results in Table S7. It can

be observed that the outliers 9 and 23 are missed by all methods except

ours. The performance of the RICD at the significance level 0.01 is the

best, with all six outliers detected and no false detection. We remark that

the PCout procedure is not feasible for this contaminated data set.

Moreover, at a significance level of 0.01, the modified distances (in log-

scale) based on the RICD and the RMDP are shown in Figure S2. These two

distances with the corresponding cutoffs can be obtained by (2.16), (10),

and Step 4 of Algorithm 2 in Section 2.4 of Ro et al. (2015), respectively.

As depicted in Figure S2, the dashed horizontal line displays the cutoff

values (in log-scale). “Good” weekly returns are marked by solid squares,

while the outlying weekly returns are shown in solid circles with times and

distances listed beside. This figure clearly demonstrates that the proposed

procedure performs better than the RMDP in this example.
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