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This is the Supplementary Material for the main paper Li et al. (2022),
hereafter referred to as the main text. We present additional simulation

results and a real-data example.

S1 Additional simulation results

To further examine the properties of the proposed procedure (RICD), we
conduct the following additional simulations and also make a comparison
with other three methods mentioned in Section 3.1 of the main text.

Case (e) (Laplace distribution): Let p-dimensional random vector &
be composed of i.i.d. elements with the common density function f(r) =
%e"/ﬂ”'. Denote the distribution of £ by F¢. The simulated observations

xq,...,x, are independently sampled from an € contaminated distribution
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(1 —€)Fe + 3eN, (kmi, I,) + 5€N, (—km;, I); £ = 8,9, or 10 respectively for
p = 100,200, or 400. Two settings of n;s are explored (Cases (i) and (i7)),
where 7n; are defined at the beginning of Section 3.1 in the main text. It
can be shown that F¢ has excess peakedness and sub-exponential tail in this
case. Note that the first three moments of &7, the first element of £, match
those of the standard normal distribution, but the fourth moment is 6.

Case (f) (Dependent data): At first, each simulated observation x; is
generated by ;1o + 0.4y;11 + 0.25y;, where y; are independently drawn
from N, (0, I,). Then [en] observations among «; are randomly replaced by
outliers from N, (km;, I,) and N, (—kmn;, I,) in each half; k = 9,11, or 14
respectively for p = 100, 200, or 400.

Case (g): Let p-dimensional random vector & = 0.6908vy + 0.7230v,
where 4 has i.i.d. elements with the common distribution U(—+/3,/3),
and v, independent of -+, has i.i.d. elements with the common density
function

)me-lify > b,

[\~
o
—~
SN

fFW)=q a1 ifv<-b

0, else.
\

The two parameters a and b in the above density function are chosen as

2 +4/v/3 and /2/(2 + V/3), respectively so that Condition A5 in Section
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2.1 of the main text holds for &1; kK = 8,9, or 10 respectively for p = 100, 200,
or 400.

Simulation results under Cases (e)-(g), (i)-(ii) for various values of
p at 5% significance, ¢ = 0.1 and 0.2 are summarized in Tables S1 and
S2, respectively. By these two tables, it can be seen that the proposed
method achieves the highest detection power against sparse signals (Case
(77)) among the four methods, even when there are some dependence among
data. For example, detection power of the proposed method is 82.46% and
80.15% in Case (ii)(f) for n = 100, p = 400, ¢ = 0.1, and 0.2, which is
almost twice as much as detection power of the RMDP method in the same
settings. The PCout procedure performs fairly well in Case (i)(e), but it
still appears to be insensitive to sparse signals as discussed in the main text.
In contrast, for dense mean vector Case (i), the proposed method can also
maintain a desired efficiency.

Next, simulation results under Cases (a)-(g), (¢)-(i¢) for p = 400, n = 40
at 5% significance, ¢ = 0.1 and 0.2 are reported in Tables S3 and S4,
respectively; k = 12,18,12,12, 15, 12 respectively for Cases (a)-(c), (e)-(g).
Overall, the detection power of the proposed method does not vary much
when p/n increases to 10/1. The empirical size of the proposed method is

adequately controlled in most cases, though it is a little conservative when
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p/n becomes much larger than in the simulation settings of the main text.
The RMDP and the BDP methods both do not perform well in terms of
the test size in Cases (a)-(c), (7)-(77).

For different values of p/n, the empirical sizes of all the four methods
except the PCout exceed the significance level in Cases (e), (i)-(i7), and
are conservative in Cases (f), (i)-(¢4). These are mainly due to that the
detection rule of the RICD relies on some moment and i.i.d. conditions,
which are not satisfied in these cases, and that the RMDP and BDP are
both detection procedures for the data i.i.d. from normal distributions.

Finally, for examining the performance of a different h, we replace the
subset size hgetauy = [n/2] + 1 at Step 1 of Algorithm 2 in the main text
by Adetamt = [(o + 0.5)n]. We consider the setting in Case (c) and denote
the simulation results under this setting but with A = [(a 4 0.5)n] as Case
(/). Simulation results under Cases (c) and (¢’), (i)-(i7) for various «, p,
and € are reported in Tables S5 and S6. Results from these two tables show
that there is no noticeable difference in terms of empirical size and power

between these two choices of default subset sizes.
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Table S1: Average type-I error (& %) and detection power (3 %) under Cases (e)-(g),
(4)-(47) with n = 100, p = 100, 200, 400, at significance level 0.05 and contamination ratio

0.1.

RICD RMDP BDP PCout

s
Q
o
2]
o)

bS]
Qi

™I
Qi

™I
Qi

I
Qi

I

(1) (e) 100 21.22 98.92 22.69 99.37 23.84 9850 5.53 99.18
200 20.52 9841 2440 99.11 26.95 98.25 4.89 99.49

400 19.47 96.04 25.73 98.11 28.13 97.62 4.67 99.10

(f) 100 3.79 91.00 3.25 87.66 3.48 82.84 5.08 96.44

200 215 86.54 1.53 7832 2.07 76.67 4.37 94.89

400 0.63 80.37 0.27 63.62 0.62 67.31 4.41 93.51

(g) 100 3.21 9715 3.20 96.68 3.66 94.71 4.61 99.31

200 3.37  96.20 3.29 95.13 424 93.34 4.28 99.65

400 3.61 9394 3.11 91.83 5.056 90.61 4.22 99.15

(i) (e) 100 21.21 99.19 2295 96.45 23.97 96.77 8.12 43.61
200 20.57 98.36 24.35 94.93 27.06 95.11 7.78 32.01

400 19.43 96.32 25.77 9140 2843 9093 7.51 22.99

(f) 100 3.81 90.74 3.36 7884 3.64 8383 T7.79 29.60

200 2.15 8729 188 65.06 242 74.01 7.51 20.87

400 0.63 8246 0.59 4184 1.04 56.06 7.15 33.24

(g) 100 3.23 9712 3.17 94.66 3.82 9477 6.76 37.43

200 3.38 96.31  3.25 92,56 435 9341 6.95 28.06

400 3.59 9327 3.16 8.11 5.21 8520 7.28 21.23
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Table S2: Average type-I error (& %) and detection power (3 %) under Cases (e)-(g),
(4)-(47) with n = 100, p = 100, 200, 400, at significance level 0.05 and contamination ratio

0.2.

RICD RMDP BDP PCout

(¢) (e) 100 18.34 98,51 1881 98.91 19.71 96.93 1.91 99.92
200 1772 97.65 2042 98.68 2259 96.70 1.60 99.99

400 16.04 92.71 2095 96.86 22.52 94.99 1.50 100.00

(f) 100 2.87 87.32 250 83.97 246 7507 1.74 100.00

200 1.66 8222 113 7432 136 6534 120 99.86

400 054 7472 0.20 57.09 041 50.76 1.18 100.00

(g) 100 240 96.19 246 95.59 2.72 92779 1.53 99.67

200 255 9485 242 93.78 343 90.76 1.30 99.69

400 2.62 9196 235 89.83 381 86.84 1.29 99.83

(i1) (e) 100 18.32 98.63 18.99 94.25 19.60 94.55 6.52 37.71
200 1763 97.51 20.80 92.14 2299 92.10 6.30 27.43

400 15.65 93.78 21.84 8781 24.13 86.45 6.78 21.34

(f) 100 2.88 88.77 294 7501 294 79.77 6.35 2543

200 1.69 8387 2.00 6047 231 68.13 7.10 17.23

400 0.57 80.15 1.04 41.17 131 5283 733 17.66

(g) 100 239 96.59 249 93.55 2.77 93.83 5.26 35.25

200 256 9513 250 90.23 342 90.24 5.60 26.16

400 258 91.62 245 8265 415 81.63 6.30 20.16
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Table S3: Average type-I error (%) and detection power (%) under Cases (a)-(g), (z)-(44)

with n = 40, p = 400, at significance level 0.05 and contamination ratio 0.1.

Average type-I error Detection power

Case m; RICD RMDP BDP PCout RICD RMDP BDP PCout

(a) (i) 278 1177 1996 564 9275 98.67 96.21 88.95
(i) 245 1156 1991 850  93.53 7572  70.12  39.09
(b) (i) 0.88 1130 1845 635 49.60 9626 92.69 80.83
(i) 0.88 1233 2019 923 5230 7122 6751 30.35
(¢) (9 1.86 1068 1941 523 9437 99.64 97.92 94.68

(i)  1.83 10.92  19.74  8.35 94.32 75.21  71.07  46.38

(i) 248 11.65 1851 885 8359 91.05 86.38 36.23
() (i) 9.82 3511 3853 674 9597 99.83 99.32 90.77
(i) 9.76  33.85 36.94 936 9711 88.06 80.69 45.93
() (i) 008 014 137 787 8751 7266 9354 67.76
(i) 011 028 250 1022 89.08 3384 5552 4175
(g) (i) 134 570 1409 565 9313 99.33 9742 92.43

(1)  1.38 5.59 14.53  8.61 93.25 74.56  70.58  41.07
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Table S4: Average type-I error (%) and detection power (%) under Cases (a)-(g), (z)-(44)

with n = 40, p = 400, at significance level 0.05 and contamination ratio 0.2.

Average type-I error Detection power

Case m; RICD RMDP BDP PCout RICD RMDP BDP PCout

(a) (i) 235 1058 1552 245 8929 9840 94.72 97.12
(i) 207 1114 1851 727 9058 70.37 66.32 37.16
(b) (i) 043 896 1413 268 3804 9347 8617 95.83
(i) 046  10.81 1882 824 4319 67.31 64.73 27.12
(¢) (9 191 1028 1566 1.95 91.35 99.28 9565  99.49

(i)  1.62 9.95 18.13  6.40 91.26 72.09  68.20 39.43

(i) 195 872 1421 756 7980 87.58 8270 31.95
(e) (i) 840  30.80 31.54 276 9258  99.90 97.49  99.02
(i) 750  20.04 3240 817  92.67 8292 7504 39.82
(f) (i) 013 017 120 338 8448 7446 86.71 93.44
(i) 013 118  3.89 974 88.79 37.38 54.63 27.66
(g) (i) 1.23 541 1071 231 9104 99.06 9512  99.01

(1)  1.16 5.39 13.07  7.17 90.82 69.73  66.00 37.93
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Table S5: Average type-I error (%) by the proposed procedure for various p, €, and «

under Cases (c) and (c’).

e=0.1 e=0.2

7 Case p a=00l =005 a=01 a=001 a=005 a=01

(i) (c) 100  1.63 6.06 11.49 1.09 4.84 9.55
200  1.33 6.00 11.73 0.92 4.74 9.81

400 131 5.99 10.87 0.90 4.66 8.60

(¢) 100 157 5.97 10.88 1.16 4.58 8.80
200 1.43 5.88 11.07 1.02 4.60 8.71

400 1.28 5.90 10.64 0.84 4.54 7.86

@) () 100 161 6.08 11.52 1.08 4.84 9.56
200  1.35 6.00 11.73 0.92 47 9.76

400 1.29 5.99 10.76 0.92 4.65 8.40

(¢) 100 157 5.94 10.97 1.15 4.63 8.99
200  1.46 5.73 10.91 1.03 4.68 8.87

400 1.22 5.74 10.42 0.82 4.28 7.49
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Table S6: Detection power (%) by the proposed procedure for various p, €, and « under

Cases (c) and (c).

e=0.1 e=0.2

7 Case p a=00l =005 a=01 a=001 a=005 a=01

(1) (¢) 100 93.04 97.80 98.85 89.23 96.84 98.61
200 87.99 96.61 98.20 85.53 95.67 97.86

400 81.47 93.76 97.13 77.35 92.22 95.67

(¢) 100 92.14 97.69 98.92 89.85 97.02 98.49

200 89.06 96.72 98.38 85.41 95.46 97.77

400 81.55 94.16 96.87 76.27 91.96 95.06

(ii) (¢) 100 92.59 97.66 99.16 89.82 96.79 98.55
200 88.70 96.27 98.20 85.41 94.92 97.64

400 82.79 94.27 96.62 78.43 93.09 95.87

(') 100 92.29 97.63 98.95 90.39 97.08 98.53

200 89.27 96.84 98.51 85.97 95.56 97.86

400 82.54 94.30 97.11 78.43 92.43 95.69
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Table S7: Stock data set: Indices of the outliers detected by the four methods for various

« values.
o RICD RMDP BDP PCout
0.01 2,8,9, 13, 22,23 2, 8,13, 19, 22 2,7, 8,13, 22 NA

0.05 2,7-10,13,19,22,23 2,7,8,13,19,21,22 2,7,8,13, 21,22 NA

0.1 2,7-10,13,19,22,23 2,7,8,13,19,21,22 2,7,8,13,21,22 NA

S2 Example: Stock data

Consider weekly returns of 300 stocks, all constituents of the CSI 300 In-
dex, from May 22, 2017 to December 19, 2017 (25 weeks), which were
actively traded in the Shanghai Stock Exchange (SSE) and the Shenzhen
Stock Exchange (SZSE). The returns are calculated in log-scale by log(P;) —
log(P;_1), where P, is the closing price of the tth week, t = 1,...,25. Thus,
for this data set, n is 25 and p is 300. Note that the data can be downloaded
from the Sina Finance database, which is publicly available.

To demonstrate the performance of the proposed detection procedure,
we consider the original data and the data contaminated in the following
way: When ¢t = 2,8,9,13,22, and 23, the returns of the first stock, Ping
An Bank, are falsely recorded as log(F;), which implies that the data on

these six weeks can be considered as outliers. Figure S1 displays the time
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Return

Return

Figure S1: Time plots of the log weekly returns of all constituents of the CSI 300

Index from May 22, 2017 to December 19, 2017: The original data (left panel) and the

contaminated data (right panel).
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Figure S2: Plots of the modified distances based on the RICD and the RMDP.
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plots of the log weekly returns of all constituents of the CSI 300 Index from
May 22, 2017 to December 19, 2017 with and without contamination. We
apply the aforementioned four methods to the contaminated stock data set
at different significance levels and summarize the results in Table S7. It can
be observed that the outliers 9 and 23 are missed by all methods except
ours. The performance of the RICD at the significance level 0.01 is the
best, with all six outliers detected and no false detection. We remark that
the PCout procedure is not feasible for this contaminated data set.
Moreover, at a significance level of 0.01, the modified distances (in log-
scale) based on the RICD and the RMDP are shown in Figure S2. These two
distances with the corresponding cutoffs can be obtained by (2.16), (10),
and Step 4 of Algorithm 2 in Section 2.4 of Ro et al. (2015), respectively.
As depicted in Figure S2, the dashed horizontal line displays the cutoff
values (in log-scale). “Good” weekly returns are marked by solid squares,
while the outlying weekly returns are shown in solid circles with times and
distances listed beside. This figure clearly demonstrates that the proposed

procedure performs better than the RMDP in this example.
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