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In this document, additional proofs of auxillary lemmas are included.

• Section S.1 includes the data-adaptive tuning parameter selection.

• Section S.2 includes an extension to the case with a divergent number of samples.

• Section S.3 includes the connection to maximum mean discrepancy.

• Section S.4 includes the additional results for simulation studies.

• Section S.5 includes the additional results for real examples.

• Section S.6 includes the proofs for main theorems and lemmas.

S.1 Data-adaptive tuning parameter selection

Smoothing parameter selection plays an important role in nonparametric estimation. Classical

methods such as the generalized cross-validation (GCV) (Craven and Wahba, 1976) and the re-

stricted maximum likelihood (REML) (Wahba, 1985; Wood, 2011) provide data-adaptive estimates

of the smoothing parameter. However, how to select the smoothing parameter in the nonparamet-

ric inference is still an open question. Here, we introduce a data-adaptive method to select the

smoothing parameter in our proposed PLR test.

In practice, how to choose the tuning parameter λ is essential for the proposed test to achieve a

high power. Theorem 3.2 provides a theoretical guidance that the optimal test rate can be achieved

by choosing λ∗ to minimize the distinguishable rate dn defined in (3.14). That is, λ∗ must balance
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the trade-off between the squared bias of the estimator and the standard deviation of the test

statistic. Since dn is related to the spectral decomposition of the population kernel which is usually

unknown, we consider an estimate of dn by plugging in the empirical eigenvalues of the kernel

matrix as

d̂n :=
√
λ+ σ̂λ/n

where σ̂2λ =
∑n

p=1
1

(1+λρ̂⊥p )2
and ρ̂p, p = 1, . . . , n, are the empirical eigenvalues of the kernel matrix

K11 with the ijth entry K11((xi, zi), (xj , zj)). Since σ̂λ is a decreasing function of λ, the λ that

minimizes d̂n is

λ̂∗ = max
{
λ | λ < σ̂λ/n

}
. (S.1)

We call (S.1) as our data-adaptive criterion for choosing λ. Notice that λ̂∗ depends on the eigen-

values of the kernel matrix, especially the first few leading eigenvalues. When the sample size is

large, we can approximate σ̂2λ via the top eigenvalues, see Drineas and Mahoney (2005), Ma and

Belkin (2017) for fast computation of the leading eigenvalues.

S.2 Extension to the case with a divergent number of samples

Most relevant literature is under the classical asymptotic theory framework with a fixed number

of samples. How the number of samples affects the minimax distinguishable rate remains an open

problem. Recently, Kim (2021) proposed a perturbation-based multiple-sample test under distance

metrics relying on the choice of the kernel. In this section, we extend our theory to the case with

a divergent number of samples to establish the new minimax rate under the regular L2 norm.

We first construct the eigensystem of H for a given K. Based on the decomposition in (3.1),

we denote the eigenvalues for HZ1 by π1, . . . , πU−1 where U is the number of samples. By the

definition of tenor product spaces, we have that the eigenvalues for H are ρiπj for i = 1, . . . ,∞
and j = 1, . . . , U − 1. Since U diverges, the decay rate of eigenvalues for H becomes slower. In the

following two corollaries, we generalize the previous null asymptotic and minimax theory to the

divergent U case.

Corollary S.1. Suppose m ≥ 1, U = o(n), and Assumption 1 holds. Let h = U−1λ
d

2m and

nh2m+d = O(1), nh2 →∞ as n→∞. Under H0, we have

2n · PLRn,λ − θλ√
2σλ

d−→ N(0, 1), n→∞,

where θλ =
∑∞

p=1
1

1+λρ⊥p
, σ2λ =

∑∞
p=1

1
(1+λρ⊥p )2

.

Corollary S.1 gives the asymptotic null distribution of our proposed PLR test. Notice that the

θλ and σ2λ are different from the corresponding quantities in Theorem 3.1 since the decay rate of
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ρ⊥p is lower comparing with the fixed U case. The proof of this Corollary is a direct generalization

of Theorem 3.1. We will show in the following two corollaries that the change of the decay rate

will also change the minimax distinguishable rate.

Corollary S.2. Suppose Assumption 1 holds, U = o(n) and let dn be the distinguishable rate

defined in (3.14), m > 3/2, η∗ ∈ H with ‖η∗XZ‖sup = o(1), J(η∗XZ) < ∞, ‖η∗XZ‖2 & dn. For any

ε ∈ (0, 1), there exists a positive Nε such that, for any n ≥ Nε, Pη∗(Φn,λ(α) = 1) ≥ 1 − ε. When

λ � λ∗ ≡ n−4m/(4m+d)U2m/(4m+d), dn is upper bounded by d∗n ≡ n−2m/(4m+d)Um/(4m+d).

Corollary S.3. Suppose η ∈ H and U = o(n). For any ε ∈ (0, 1), the minimax distinguishable

rate for the testing hypotheses (3.2) is d�n(ε) & n−2m/(4m+d)Um/(4m+d).

The proof of Corollary S.2 and Corollary S.3 are shown in Appendix A.4.5. Combining these

two corollaries, we show that the proposed test is still minimax optimal in the case of a divergent

number of samples. Note that the minimax rate increases as the number of sample increases.

Practically, we oberserved that the power decreases as the the number of samples increases; see

Section 7.3 for details.

S.3 Connection to maximum mean discrepancy

We first briefly summarize the maximum mean discrepancy (MMD) proposed in Gretton et al.

(2012). Given the kernel function K〈X〉 on H〈X〉, denote the embedding that maps a probability

distribution fX|Z=z intoH〈X〉 by µz(·) =
∫
X K

〈X〉(x, ·)fX|Z=z(x)dx, then the squared MMD between

fX|Z=0 and fX|Z=1 is defined as the squared distance between the embeddings of these distributions

in reproducing kernel Hilbert spaces (RKHS):

MMD2(H〈X〉; fX|Z=0, fX|Z=1) := ‖µ0 − µ1‖2H〈X〉

=〈µ0, µ0〉H〈X〉 + 〈µ1, µ1〉H〈X〉 − 2〈µ0, µ1〉H〈X〉

=E
X,X̃

[K〈X〉(X, X̃)] + E
X′,X̃′ [K

〈X〉(X ′, X̃ ′)]− 2EX,X′ [K〈X〉(X,X ′)],

where X, X̃ ∼ fX|Z=0, and X ′, X̃ ′ ∼ fX|Z=1. An estimate of the squared MMD is

MMD2
b(H〈X〉; fX|Z=0, fX|Z=1) =

1

n20

∑
{i,j |Zi=Zj=0}

K〈X〉(Xi, Xj)

− 2

n0n1

∑
{i,j |Zi 6=Zj}

K〈X〉(Xi, Xj) +
1

n21

∑
{i,j |Zi=Zj=1}

K〈X〉(Xi, Xj)). (S.1)

We replace each instance of K〈X〉(Xi, Xj) in the sum of (S.1) by the centralized kernel K〈X〉1 (Xi, Xj)

introduced in Lemma S.2, and the MMD2
b remains the same since the mean term is canceled out
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under H0 where µ0 = µ1. Therefore, we have

MMD2
b(H〈X〉; fX|Z=0, fX|Z=1) =

1

n20

∑
{i,j |Zi=Zj=0}

K〈X〉1 (Xi, Xj)

− 2

n0n1

∑
{i,j |Zi 6=Zj}

K〈X〉1 (Xi, Xj) +
1

n21

∑
{i,j |Zi=Zj=1}

K〈X〉1 (Xi, Xj)),

where n0 is the number of observations in group 0 and n1 is the number of observations in group 1.

We next show that the MMD estimate is equivalent to the squared score function based on the

likelihood functional without the penalty. Let `n be the negative likelihood functional defined as

`n(η) = − 1
n

∑n
i=1 η(Yi), and LRn be the likelihood ratio functional defined as

LRn(η) = `n(η)− `n(PH0η) = − 1

n

n∑
i=1

{η(Yi)− PH0η(Yi)}, η ∈ H, (S.2)

where PH0 is the projection operator from H to H0. Using the reproducing property, we rewrite

(S.2) as

LRn(η) = − 1

n

n∑
i=1

{〈KHYi
, η〉H − 〈KH0

Yi
, η〉H}, (S.3)

where KH = K00 + K01 + K10 + K11 is the kernel for H and KH0 = K00 + K01 + K10 is the kernel

for H0. Then the Fréchet derivative of LRn(η) is calculated as

DLRn(η)∆η = 〈 1
n

n∑
i=1

(KHYi
−KH0

Yi
),∆η〉H = 〈 1

n

n∑
i=1

K11
Yi
,∆η〉H,

where K11 is the kernel for H11. We further define a score test statistic as the squared ‖ · ‖H norm

of the score function

S2
n = ‖ 1

n

n∑
i=1

K11
Yi
‖2H =

1

n2

n∑
i=1

n∑
j=1

K11(Yi,Yj), (S.4)

where the second equality holds by the reproducing property. Recall that by Lemma S.1 the kernel

on H〈Z〉1 is K〈Z〉1 (Zi, Zj) = 1{Zi = Zj} − ωZi − ωZj +
∑2

l=1 ω
2
l , and by Lemma S.2, the kernel on

H〈X〉1 is K〈X〉1 (Xi, Xj) = K(Xi, Xj) − EX [K(X,Xj)] − E
X̃

[K(Xi, X̃)] + E
X,X̃
K(X, X̃). Then we

have K11(Yi,Yj) = K〈Z〉1 (Zi, Zj)K〈X〉1 (Xi, Xj) based on Lemma S.3. Let ω0 = n0/(n0 + n1) and

ω1 = n1/(n0 + n1). The score test statistic in (S.4) can be rewritten as

4n0n1
(n0 + n1)2

S2
n =

1

n20

∑
{i,j |Zi=Zj=0}

K〈X〉1 (Xi, Xj)

− 2

n0n1

∑
{i,j |Zi 6=Zj}

K〈X〉1 (Xi, Xj) +
1

n21

∑
{i,j |Zi=Zj=1}

K〈X〉1 (Xi, Xj)). (S.5)
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Note that the right-hand side of (S.5) is also equivalent to independent test between X and Z in

Zhang et al. (2012). Also, by using the definiation of MMD statisitcs in the right-hand side of (S.5),

it is difficult to be generalized to the multi-sample test. We consider performing an MMD test on

each pair of samples, this procedure will involve multiple testing problems. Since the tests are

not independent, it is theoretically difficult to study the property of this multiple-testing problem.

However, the definiation in left-hand side is easy to be generalized to multi-sample test.

Thus, the scaled score test statistic is equivalent to the MMD test statistic, i.e.,

4n0n1
(n0 + n1)2

S2
n = MMD2

b(H〈X〉; fX|Z=0, fX|Z=1) (S.6)

under the null hypothesis. When n0 = n1, i.e. the number of observations are equal in two groups,

we have S2
n = MMD2

b(H〈X〉; fX|Z=0, fX|Z=1).

However, the minimax optimality of the score test statistic S2
n based on the likelihood ratio

is yet unknown, in contrast to the minimax optimality of the PLR test established in Section 2.

Furthermore, MMD also lacks the optimal power performance we have established for the PLR

test. As shown in the proof of Theorem 3.1, the PLR test statistic has an asymptotic expression

PLRn,λ ∼ ‖S0
n,λ(η)− Sn,λ(η)‖2 ∼ 1

n
‖

n∑
i=1

K̃1
Yi
‖2, (S.7)

where Sn,λ and S0
n,λ are the score functions defined in (3.7) based on the penalized likelihood ratio

functional, and K̃1
Yi

(·) = K̃Yi(·) − K̃0
Yi

(·) =
∑∞

p=1
ξ⊥p (Yi)ξ

⊥
p (·)

1+λρ⊥p
. Notice that K̃1 can be viewed as a

scaled version of the product kernel K11 by replacing the eigenvalues {ρ⊥p } with {1 + λρ⊥p }. By

choosing λ = λ∗, trace(K̃1) =
∑∞

p=1
1

1+λ∗ρ⊥p
� n2/(4m+d) matches the lower bound of kB(d�n) with

d�n = n−2m/(4m+d) as the minimax lower bound for the distinguishable rate in Lemma .5In contrast,

the MMD is based on kernel K11 without regularization, and thus the optimality of the power

performance cannot be guaranteed.

S.4 Additional results for simulation studies

S.4.1 Figures for simulations in main text

We attach the Figure S1 (power comparsion) and Figure S2 (size comparsion) for simulation results

of Section 5 in main text for PLR, K-S, MMD, ELT, AD, DSLICE, and KDT.

S.4.2 Beta and Beta mixtures

In this section, we consider the distribution with different shapes. Specifically, we consider the

follow two settings:
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(a) Setting 1: δ1 = 0.2 (b) Setting 1: δ1 = 0.3
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(c) Setting 2: δ2 = 1 (d) Setting 2: δ2 = 1.2
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(e) Setting 3: δ3 = 0.3 (f) Setting 3: δ3 = 0.45
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(g) Setting 4: δ4 = 0.3 (h) Setting 4: δ4 = 0.6

Figure S1: Power vs. sample size in Section 5 for PLR, K-S, MMD, ELT, AD, DSLICE, and KDT.
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Figure S2: Size vs. sample size in Section 5 for K-S, MMD, ELT, AD, DSLICE, KDT and PLR tests.

Results were obtained under δ1 = 0 for Setting 1 and δ2 = 0 for Setting 2.

Setting 5: The simple Beta distributions:

X | Z = z ∼ Beta (2(1 + δ51z=1), 2(1 + δ51z=1))

where δ5 = 0, 0.4, 0.6.

Setting 6: Mixture Beta distributions:

X | Z = z ∼ 0.5Beta (2(1 + δ61z=1), 6(1 + δ61z=1))

+ 0.5Beta (6(1 + δ61z=1), 2(1 + δ61z=1))

where δ6 = 0, 0.3, 0.45. Similar to Section 5, we calculated the size and power based 1000 indepen-

dent trials.

Setting 5 corresponds to a Beta distribution while Setting 6 corresponds to a mixture of Beta

distributions. With δ5 = 0 and δ6 = 0, we intended to examine the size of the test under the H0.

The power of the testing methods were examined with positive δ5’s and δ6’s.

As shown in Figure S3(a), the empirical sizes of Setting 5 were all around 0.05 for the six test

procedures when the density is a unimodal Beta distribution. Whereas, for Setting 6, Figure S3(b)

shows that the empirical sizes of K-S, MMD, ELT, AD, DSLICE, and KDT tests were significantly

lower than 0.05, while the sizes of PLR test were still around 0.05. This demonstrates that our

PLR test is asymptotically correct for both unimodal and bimodal distributions.

Figure S4(a)-(b) examine the powers of the three tests under Setting 5. In Setting 5, when

δ5 = 0.6, the empirical powers of the MMD, AD and PLR test approached 1 as n increased. In

contrast, the powers of the K-S and ELT tests are lower than 0.5 even when the averaged sample

size in each group reaches 1000. DSLICE has power slightly over 0.5 when δ5 = 0.6 when n = 1000.

In Setting 6, as shown in Figure S4(c)-(d) the powers of the K-S, MMD, KDT, and ELT tests were
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Figure S3: Size vs. sample size for K-S, MMD, ELT, AD, DSLICE, KDT and PLR tests. Results were

obtained under δ5 = 0 for Setting 5 and δ6 = 0 for Setting 6.

below 0.2 even when the averaged sample size in each group is 1000. The power of AD and DSLICE

is slightly over 0.5 when n = 1000 and δ6 = 0.45. In contrast, the power of PLR test approaches 1

rapidly when δ6 was 0.30 or 0.45. We conclude that the PLR test is still the most powerful among

the four tests in all the considered settings, even when the data distribution is multimodal and

non-Gaussian.

S.4.3 Multivariate distribution

In this setting, we consider multivariate distributions with varying dimensions. The samples Yi =

(Xi, Zi), i = 1, . . . , n, were generated as follows. We first generated Zi
iid∼ Bernoulli(0.5), with

0/1 representing the control/treatment group. Then Xi’s were independently generated from the

conditional distributions

fX|Z=0(x) = 0.5N(−1d, 0.6Id) + 0.5N(1d, 0.6Id)

fX|Z=1(x) = 0.5N(−1d, 1.4Id) + 0, 5N(1d, 1.4Id)

where 1d is a d-dimensional vector with all entries equal to 1 and Id is the d × d identity matrix.

In each setting, we chose the averaged sample size in each group as 500 and varied d from 2 to 64.

Size and power were calculated as the proportions of rejection based on 1000 independent trials. In

this setting, we only compared with the MMD methods since the other methods in Section 5 and

S.4.2 are limited to multi-sample test on univariate data.

As shown in Figure S5, the empirical size of MMD and PLR are both well controlled at the

predefined level. The power of both methods decreases as the dimension d increases, which is
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(a) Setting 5: δ5 = 0.4 (b) Setting 5: δ6 = 0.6
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Figure S4: Power vs. sample size in Section S.4.2 for PLR, K-S, MMD, ELT, AD, DSLICE, and KDT.

consistent with our theory that the minimax distinguishable rate increases as d increase. Compared

with MMD test, our proposed test shows higher power and decreases more slowly as d increases.

S.4.4 Comparing multiple distributions

In this setting, we test the performance of the proposed test by varying the number of samples. We

first generated Zi
iid∼ from a categorical distribution in (1, . . . , U), with uniform probability. Then

Xi’s were independently generated from the conditional distributions as follows:

fX|Z=u(x) = 0.5N(−12, 0.6I2) + 0.5N(12, 0.6Id) if u ≡ 0 mod 2

fX|Z=u(x) = 0.5N(−1d, 1.4I2) + 0.5N(12, 1.4I2) if u ≡ 1 mod 2.
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Figure S5: Empirical results of power and size in comparing MMD and PLR for the multivariate distribu-

tions with d ranging from 2 to 64.

We set the sample size n as 1000. As the number of samples increases, the number of data

points decreases. We compared our proposed test with the recent work in Kim (2021) which used

permutation test to generalize the MMD test for multi-sample settings. We denote K-MMD as the

testing in Kim (2021). Size and power were calculated as the proportions of rejection based on

1000 independent trials.
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Figure S6: Empirical results of power and size in comparing K-MMD and PLR in multiple distributions

with the number of samples U ranging from 2 to 10.

As shown in Figure S6, the empirical sizes of K-MMD and PLR are both well controlled at the

10



predefined level for U = 2, 4, 6. When U = 8, 10, the empirical size of the PLR test slightly inflates.

The power of both methods decreases as the dimension U increases, which is consistent with the

results in Corollary S.1 and Corollary S.2. Compared with K-MMD test, our proposed test has

higher empirical power under different choices of U .

S.5 Additional results for real examples

S.5.1 Figures for real example

B.

C.

A.

Log-transformed Abundance of Roseburia intestinalis

Log-transformed Abundance of Faecalibacterium praunitzii

Figure S7: (A). A Venn diagram showing the numbers of spiecies identified by PLR, KS and MMD. (B).

Densities of log-transformed abundance for Roseburia intestinalis in case/control status. (C). Densities of log-

transformed abundance for Faecalibacterium praunitzii in case/control status. Both (B) and (C) demonstrate

that the densities of the two species from case and control groups are different.

S.5.2 Gene expression of Chronic Lymphocytic Leukaemia

Chronic lymphocytic leukaemia (CLL), the most common leukaemia among adults in Western

countries, is a heterogeneous disease with variable clinical presentation and evolution. Studies have

shown that CLL patients with a mutated Immunoglobulin Heavy Chain Variable (IGHV) gene have

a much more favorable outcome and low probability of developing a progressive disease. In contrast,

those with the unmutated IGHV gene are much more likely to develop a progressive disease and

have shorter survival. The molecular changes leading to the pathogenesis of the disease are still
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poorly understood. To further investigate the role of the mutation status in IGHV gene, we test

whether the distributions of each gene’s expression are the same between the IGHV mutated and

the IGHV unmutated patients.

This study considered a data set of 225 CLL patients among which 131 were IGHV mutated,

85 were IGHV unmutated, and 9 had the IGHV mutation information missing. The Affymetrix

gene-chip technology was used to measure the gene expressions, and proper quality control and

normalization methods were performed (Maura et al., 2015). The data set is available in NCBI

database with accession number: GSE51527. We used the log2-transformed values extracted from

the CEL files as the measurements of the gene expression levels. For the ith subject, let Xi denote

the expression level and Zi denote the IGHV mutation status. In particular, Zi = 0 denotes the

unmutated status, and Zi = 1 denotes the mutated status. We aimed to test H0 : fX|Z=0(x) =

fX|Z=1(x), i.e. whether the gene expression level’s conditional densities are the same between the

two IGHV mutation status. Rejection of H0 implies that the gene expression level distribution

varies significantly across the mutation status.

We applied the PLR, KS, and MMD tests to the 18863 genes. Considering the overall lower

p-values in this example, we performed the Bonferroni correction on the p-values, i.e., we rejected

H0 at a significance level of 0.05/18863 = 2.65 × 10−6. Such correction was used to reduce the

family-wise error rate. The three methods selected 1071, 275, and 412 genes, respectively. Results

are summarized in a Venn diagram (Figure S8(A)), which demonstrates that the genes selected by

PLR cover those selected by KS and MMD. There were 272 genes selected by all methods and 412

genes selected by both PLR and MMD. For instance, TGFB2 was missed by KS but discovered

by PLR and MMD. In the literature, it has been verified by real-time quantitative PCR (Bomben

et al., 2007) that TGFB2 is down-regulated in IGHV mutated CLL cases compared with IGHV

unmutated cases; see Figure S8(B) for a comparison of the conditional densities from both groups.

There are 597 genes, including DTX1, that are selected only by PLR. DTX1 is a well-established

direct target of NOTCH1, which plays a significant role in a variety of developmental processes as

well as in the pathogenesis of certain human cancers and genetic disorders Yamamoto et al. (2001);

Fabbri et al. (2017); see Figure S8(C) for a comparison of the conditional densities. The proposed

PLR test correctly selected such a gene.

We perform the downstream gene ontology analysis of our select genes using ShinyGO (Ge et al.,

2020). We listed top 5 enriched pathways in Table 1. FDR is calculated based on nominal P-value

from the hypergeometric test (Ge et al., 2020). Fold Enrichment is defined as the percentage of genes

in your list belonging to a pathway, divided by the corresponding percentage in the background.

The top selected pathway is regularization of lymphocyte proliferation which is a hallmark of the

adaptive immune response to pathogens (Heinzel et al., 2018) and plays an important role in CLL
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A.
B.

C.
Log2-transformed Gene Expression Level of TGFB2

Log2-transformed Gene Expression Level of DTX1

Figure S8: (A). A Venn diagram showing the numbers of genes selected by PLR, KS and MMD. (B). Den-

sities of gene expression levels from TGFB2 in mutated/unmutated status. (C). Densities of gene expression

levels from DTX1 in mutated/unmutated status. Both (B) and (C) demonstrate that the densities of the two

expression levels from mutated and unmutated groups are different.

cells cycle (Haselager et al., 2020). Also, there are three pathways related to lymphocyte activation

where includes serveral genes that are therapeutic target in CLL (Shapiro et al., 2017).

S.6 Proofs of the Main Results

This section contains proofs of the main results in Theorem 3.1, 3.2 and 3.3. Proofs of Corollary

3.1.1 Lemma 1-3, and Proposition 1 as well as , are also included. some auxiliary results includes

Lemma
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FDR # of Genes Pathway genes Fold Pathways

2.7E-02 17 293 2.8 Reg. of lymphocyte proliferation

1.8E-02 21 363 2.8 Pos. reg. of lymphocyte activation

9.6E-03 28 541 2.5 Reg. of lymphocyte activation

2.7E-02 21 412 2.5 Reg. of T cell activation

2.5E-02 35 825 2.1 Lymphocyte activation

Table 1: Gene ontology analysis for gene expression of CLL data.

S.6.1 Notation table

We list the notations in the paper in Table 2.
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X d-dimensional continuous covariate

Z discrete random variable for the group membership

Y (X,Z)

η(x, z) log-transformed joint density of X,Z

H tensor product RKHS

〈·, ·〉H, ‖ · ‖H the inner product and norm under H
K(·, ·) kernel function under the norm ‖ · ‖H

H〈X〉 = H〈X〉0 ⊕H〈X〉1 marginal RKHS of X

H〈Z〉 = H〈Z〉0 ⊕H〈Z〉1 marginal RKHS of Z

K〈X〉i kernel function for H〈X〉i , i = 0, 1

K〈Z〉i kernel function for H〈Z〉i , i = 0, 1

Hij RKHS for intercept, main effects, interaction effect

Kij kernel function for Hij
A averaging operator

{µi, φi}∞i=0 eigensystem for H〈X〉

{νi, ψi}∞i=0 eigensystem for H〈Z〉

`n,λ(η) negative penalized likelihood function

η̂0n,λ penalized likelihood estimator of η under H0

η̂n,λ penalized likelihood estimator of η in H
〈·, ·〉, ‖ · ‖ embedded inner product and norm in H
〈·, ·〉0, ‖ · ‖0 embedded inner product and norm in H0 under H0

V (·, ·) L2 inner product

J(·) penalty function

K̃(·, ·) kernel function equipped with ‖ · ‖ in H
K̃0(·, ·) kernel function equipped with ‖ · ‖0 in H0 under H0

PLRn,λ penalized likelihood ratio test statistic

‖ · ‖sup the supremum norm

Wλ self-adjoint operator satisfies 〈Wλη, η̃〉 = λJ(η, η̃)

{ρp, ξp}∞p=1 eigensystem that simultaneously diagonalizes V and J in H
{ρ0p, ξ0p}∞p=1 eigensystem that simultaneously diagonalizes V and J in H0

{ρ⊥p , ξ⊥p }∞p=1 eigensystem generates the orthogonal complement of H0

D`n,λ, D2`n,λ, D3`n,λ first-, second-, third-order Frechét derivatives of `n,λ(η)

Φn,λ(α) decision rule at the significance level α

d�n(ε) minimax distinguishable rate

LRn(η) likelihood ratio function

K̃1(·, ·) K̃(·, ·)− K̃0(·, ·)

Table 2: A table that lists all useful notation and their meanings.
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S.6.2 Proofs of Lemmas in Section 3

S.6.2.1 Some Auxiliary Lemmas

We first state some auxiliary lemmas in Lemma S.1, Lemma S.2, and Lemma S.3 to construct

kernel functions of the RKHS, which lays the foundation to prove results in Section 3. The proof of

Lemma S.1 and S.2 are directly following the definition of our proposed probabilistic decompostion

in Section 3.1. Lemma S.3 is from Gu (2013).

Lemma S.1. For the RKHS H〈Z〉 on the discrete domain {1, . . . , U} with probability measure

P(Z = z) = ωz for z = 0, 1, there corresponds a unique non-negative definite reproducing kernel

K〈Z〉. Based on the tensor sum decomposition H〈Z〉 = H〈Z〉0 ⊕H〈Z〉1 where H〈Z〉0 = {EZ [K〈Z〉Z ]} and

H〈Z〉1 = {f ∈ H : EZ(f(Z)) = 0}, we have that the kernel for H〈Z〉0 is

K〈Z〉0 (z, z̃) = ωz + ωz̃

and the kernel for H〈Z〉1 is

K〈Z〉1 (z, z̃) = 1{z=z̃} − ωz − ωz̃

where 1 is the indicator function.

Lemma S.2. For the RKHS H〈X〉 on a continuous domain X with probability measure P equipped

with inner product 〈·, ·〉H〈X〉, there corresponds a unique nonnegative definite reproducing kernel

K〈X〉. Based on the tensor sum decomposition H〈X〉 = H〈X〉0 ⊕H〈X〉1 where H〈X〉0 = {EXK〈X〉X } and

H〈X〉1 = {f ∈ H : EX(f(X)) = 0}, we have that the kernel for H〈X〉0 is

K〈X〉0 (x, x̃) = EX [K(X, x̃)] + E
X̃

[K(x, X̃)]− E
X,X̃
K(X, X̃), (S.1)

and the kernel for H〈X〉1 is

K〈X〉1 (x, x̃) = 〈K〈X〉x − EXK〈X〉X ,K〈X〉x̃ − E
X̃
K〈X〉
X̃
〉H〈X〉

= K〈X〉(x, x̃)− EX [K〈X〉(X, y)]− E
X̃

[K〈X〉(x, X̃)] + E
X,X̃
K〈X〉(X, X̃).

Lemma S.3. Suppose K〈X〉i is the reproducing kernel of H〈X〉i on X , and K〈Z〉j is the reproducing

kernel of H〈Z〉j on Z for i = 0, 1 and j = 0, 1. Then the reproducing kernels of H〈X〉i ⊗ H〈Z〉j on

Y = X × Z is Kij((x, z), (x̃, z̃)) = K〈X〉i (x, x̃)K〈Z〉j (z, z̃) with x, x̃ ∈ X and z, z̃ ∈ Z.

S.6.2.2 The equivalence between the multi-sample test and the interaction test

In the following Proposition S.4, we show that the multi-sample test is equivalent to testing whether

the interaction ηXZ is 0 or not.
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Proposition S.4. Let η be the log-transformed density function of (X,Z) and ηXZ be the inter-

action term defined in (2.2), we have ηXZ = 0 if and only if fX|Z=1(·) = · · · = fX|Z=U (·), where

fX|Z=z(x) is the conditional density of X given Z = z.

Proof. Write the log-transformed joint density as η(x, z) = η0+ηX(x)+ηZ(z)+ηXZ(x, z) according

to (3.3). if ηXZ = 0, then f(x, z) ∝ eηX(x)eηZ(z), and hence, X,Z are independent.

On the other hand, if X and Z are independent, then the joint density f(x, z) = fX(x)fZ(z),

where fX , fZ are the marginal densities of X and Z. Take log-transformations on both sides, i.e.,

η(x, z) = log(f(x, z)) = log(fX(x)) + log(fZ(z)). By the decomposition (3.3), we have AXηXZ = 0

and AZηXZ = 0. If we have ηXZ 6= 0, then f(x, z) can not be factorized. Hence, we have ηXZ = 0

S.6.2.3 Proof of Lemma 1

Proof. We aim to construct the eigensystems on the marginal domain H〈X〉 and H〈Z〉, based on

which the eigensystem on H will be constructed. First, we consider X = [0, 1]d. Recall the Sobolev

norm VX(g1, g2) + JX(g1, g2) on H〈X〉. Let N0 denote the set of non-negative integers. Following

Shang and Cheng (2013), we choose the eigenvalues and eigenfunctions of H〈X〉 as the solution

to the following systems of partial differential equations: for integer k ∈ N0 and α1, . . . , αd ∈ N0

satisfying α1 + · · ·+ αd = m,

(−1)m
∂m

∂α1 · · · ∂αd
φk(x1, . . . , xd) = µkfX(x1, . . . , xd)φk(x1, . . . , xd) (S.2)

with boundary conditions: for any l = m, . . . , 2m−1 and non-negative integers β1, . . . , βd satisfying

β1 + · · ·+ βd = l,

∂m

∂α1 · · · ∂αd
φ(x1, . . . , xd) = 0 for (x1, . . . , xd) ∈ ∂[0, 1]d,

where fX is the marginal density of X, ∂[0, 1]d denotes the boundary of [0, 1]d, µk’s are non-

negative, non-decreasing and normalized so that VX(φk, φk) = 1 for any k ≥ 0. Simple integration

by parts can show that the solutions to (S.2) satisfy VX(φk, φk′) = δkk′ and JX(φk, φk′) = µkδkk′ .

Meanwhile, the null space has dimension M =
(
m+d−1

d

)
, so one has 0 = µ0 = µ1 = · · · = µM−1 ≤

µM ≤ µM+1 ≤ · · · with µk � k2m/d. Furthermore, one can actually choose φ0 ≡ 1. To see this,

note that φ0, . . . , φM−1 are basis of the null space of monomials on [0, 1]d with orders up to m− 1.

For 0 ≤ k ≤ M − 1, there exists t = (t1, . . . , td) ∈ Nd0 satisfying |t| ≡
∑d

l=1 tl < m such that

one can write φk(x) ≡ φt(x) =
∑M

i=1 ai,kx
t1
1 . . . x

td
d . For t, t′ ∈ Nd0 satisfying 0 ≤ |t|, |t′| < m,

define Mtt′ =
∫
[0,1]d x

t1+t′1
1 . . . x

td+t
′
d

d fX(x)dx. Let Ak = (a1,k, . . . , aM,k)
T and M = [Mtt′ ]

m−1
|t|,|t′|=0.

Since VX(φk, φk′) = δkk′ for k, k′ = 1, . . . ,M , we have ATkMAk′ = δkk′ . Purposely choose A1 =
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(1, 0, . . . , 0)T and treat the rest A2, . . . , AM as unknowns to be determined. This leaves us M2−M
unknown coefficients and M2+M

2 −1 equations. Since M2−M ≥ M2+M
2 −1 for any positive integer

M , there always exist Ak’s for k = 2, . . . ,M that satisfy ATkMAk′ = δkk′ . This shows that we can

choose φ0 ≡ 1 while maintaining the simultaneous diagonalization.

The spaceH〈Z〉 is an a-dimensional Euclidean space endowed with Euclidean norm. Let {ψl}U−1l=0

denote the orthonormal eigenvectors. The corresponding eigenvalues are ν0 = · · · = νU−1 = 1. To

see this, note that the reproducing kernel is R(z, z′) = 1(z = z′), hence, 〈Rz, ψl〉Z = ψl(z). On

the other hand, R(z, z′) =
∑U−1

l=0 νlψl(z)ψl(z
′), hence, 〈Rz, ψl〉Z = ψl(z)νl, leading to νl = 1. For

convenience, we choose ψ0 as constant function, i.e., ψ0(z) ≡ 1/
√
U for z = 1, . . . , U .

Let ‖ · ‖H〈X〉⊗H〈Z〉 denote the tensor product norm induced by VX(g1, g2) + JX(g1, g2) on H〈X〉

and the Euclidean norm on H〈Z〉. The marginal basis for H〈X〉 and H〈Z〉 naturally provide a basis

for the tensor space, i.e., {φkψl : k ≥ 0, 0 ≤ l ≤ U − 1}, that satisfy

〈φkψl, φk′ψl′〉H〈X〉⊗H〈Z〉 = (1 + µkνl)δkk′δll′ . (S.3)

The right hand side µkνl of (S.3) is the eigenvalue corresponding to basis φkψl. Indeed, they form

the eigenvalues of the Rayleigh quotient ‖·‖2L2(X)⊗L2(Z)/‖·‖
2
H〈X〉⊗H〈Z〉 since φk and ψl are eigenvalues

of the marginal Rayleigh quotients; see (Lin, 2000, Section 2.3). We arrange the eigenvalues {µkνl}
in an increasing order, and denote them as π1 ≤ π2 ≤ · · · , i.e., πrU+s = µr for r ≥ 0 and 1 ≤ s ≤ U .

Consider the orthogonal decompositionH = H0⊕H1 in (3.4). By Weinberger (1974), we can use

the Rayleigh quotient V/(V + J) to produce ξ0p ∈ H0 and ξ⊥p ∈ H1 with corresponding eigenvalues

ρ0p and ρ⊥p that satisfy: V (ξjp, ξ
j
p′) = δpp′ , J(ξjp, ξ

j
p′) = ρjpδpp′ , for j = 0,⊥. Let {ξp}∞p=1 = {ξ0p , ξ⊥p }∞p=1

and {ρp}∞p=1 = {ρ0p, ρ⊥p }∞p=1, where ρp are arranged in an increasing order. It is easy to verify that

ξp’s are Rayleigh quotient eigenvalues of V/(V +J) over H as defined in (Weinberger, 1974, Section

2). We also have

V (ξp, ξp′) = δpp′ , J(ξp, ξp′) = ρpδpp′ .

By (S.6), the Rayleigh quotients corresponding to (‖ · ‖L2(X)⊗L2(Z), ‖ · ‖H〈X〉⊗H〈Z〉) and (V, V + J)

are equivalent. By the Mapping theorem (Weinberger, 1974, Section 3.3), there exist constants

c1, c2 > 0 s.t.
c1

1 + πp
≤ 1

1 + ρp
≤ c2

1 + πp
, p ≥ 1. (S.4)

Following (S.4) we have ρp � πp � p2m/d. By Fourier expansion, we have η =
∑∞

p=1 V (η, ξp)ξp.

When restricted onH0, the Rayleigh quotients corresponding to (V, V+J) and (‖·‖L2(X)⊗L2(Z), ‖·
‖H〈X〉⊗H〈Z〉) are still equivalent. Similar to (S.4), by Mapping theorem,

c1
1 + π0p

≤ 1

1 + ρ0p
≤ c2

1 + π0p
, p ≥ 1. (S.5)
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where {π0p}∞p=1 = {µk, νl : l = 0, . . . , a−1, k ≥ 0} are eigenvalues (with increasing order) correspond-

ing to {φk, ψl : l = 0, . . . , U − 1, k ≥ 0}. Specifically, π0p = πp for p = 1, . . . , U , and π0U+s = πsU+1

for s ≥ 1. Now remove {π0p}p≥1 from {πp}p≥1 and denote the rest as {π⊥p }p≥1. From (S.4) and

(S.5), we have
c1

1 + π⊥p
≤ 1

1 + ρ⊥p
≤ c2

1 + π⊥p
, p ≥ 1.

Since ν1 = · · · = νa−1 = 1 which leads to π⊥r(a−1)+s = µr+1 for r ≥ 0 and s = 1, . . . , a− 1, we have

ρ⊥p � π⊥p � µbp/(a−1)c � p2m/d.

S.6.2.4 Proof of Lemma 2

Proof. Following Gu (2013), J(·) is the roughness penalty, hence it is standard in the sense of

Lin (2000). Following Lin (2000), the norm based on
∫
Y η(x, z)2dxdz + J(η) is equivalent to

‖ · ‖H〈X〉⊗H〈Z〉 , where ‖ · ‖H〈X〉⊗H〈Z〉 is the tensor product norm induced by the Sobolev norm

VX(g1, g2) + JX(g1, g2) on H〈X〉 and the Euclidean norm on H〈Z〉. Since f(x, z) is bounded away

from zero and infinity, there exist constants 0 < c1 ≤ c2 <∞ such that, for any η ∈ H,

c1

∫
Y
η(x, z)2dxdz ≤ V (η, η) ≤ c2

∫
Y
η(x, z)2dxdz. (S.6)

Therefore, ‖ · ‖ and ‖ · ‖H〈X〉⊗H〈Z〉 are equivalent norms. Since H endowed with ‖ · ‖H〈X〉⊗H〈Z〉 is an

RKHS, (H, 〈·, ·〉) is an RKHS. Since H0 is a closed subset of H, and 〈·, ·〉0 is inherited from 〈·, ·〉,
we have that (H0, 〈·, ·〉0) is also an RKHS.

S.6.2.5 Proof of Proposition 1

Proof. The proof of ‖η‖2 =
∑∞

p=1 |V (η, ξp)|2(1 +λρp) follows by (3.4) and the Fourier expansion of

η: η =
∑∞

p=1 V (η, ξp)ξp. For any p′ ≥ 1,

〈η, ξp′〉 = 〈
∞∑
p=1

V (η, ξp)ξp, ξp′〉 = V (η, ξp′)(1 + λρp′). (S.7)

By (S.7), V (K̃y, ξp) =
〈K̃y,ξp〉
1+λρp

=
ξp(y)
1+λρp

. Hence K̃y(·) =
∑∞

p=1
ξp(y)
1+λρp

ξp(·) follows. Meanwhile, (S.7)

implies that V (Wλξp, ξp′) =
〈Wλξp,ξp′ 〉
1+λρp′

=
λρpδp,p′
1+λρp

. Thus we have Wλξp(·) =
λρp

1+λρp
ξp(·).

By Lemma 1, any η ∈ H0 satisfies η =
∑∞

p=1 V (η, ξ0p)ξ0p . Therefore, V (K̃0
y, ξ

0
p) = 〈K̃0

y, ξ
0
p〉0/(1 +

λρ0p). Hence, K̃0
y(·) =

∑∞
p=1

ξ0p(y)

1+λρ0p
ξ0p(·), and likewise, Wλξ

0
p(·) =

λρ0p
1+λρ0p

ξ0p(·).
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S.6.2.6 Proof of Lemma 3

We first state and prove several preliminary lemmas. Define

h−1 =
∞∑
p=1

1

(1 + λρp)2
, h−10 =

∞∑
p=1

1

(1 + λρ0p)
2
. (S.8)

From Lemma 1, we have ρp � p2m/d and ρ0p � p2m/d. The following lemma provides an relation

between h (or h0) and λ.

Lemma S.5. h � λd/2m and h0 � λd/2m.

The following Lemma presents a relationship between the two norms ‖ · ‖sup and ‖ · ‖.

Lemma S.6. There exists an absolute constant cm > 0 s.t. ‖η‖sup ≤ cmh−1/2‖η‖.

Proofs of Lemmas S.5 and S.6 can be executed similar to Shang and Cheng (2013).

The following two lemmas characterize the convergence rates of η̂n,λ and η̂0n,λ under H0.

Lemma S.7. Assume λ→ 0 and H0. Then ‖η̂0n,λ−η∗‖0 = OP ((nh0)
−1/2+λ1/2) and ‖η̂n,λ−η∗‖ =

OP ((nh)−1/2 + λ1/2).

Lemma S.7 can be proved based on a quadratic approximation method proposed by Gu (2013),

i.e., apply (Gu, 2013, Section 9.2.2) to both (η̂n,λ,H) and (η̂0n,λ,H0). The optimal rates for both

estimators achieve at h � n−1/(2m+d), h0 � n−1/(2m+d). Notice that ‖ · ‖ and ‖ · ‖0 are equivalent

under the null hypothesis for any η ∈ H0. Thus, in what follows, we will not distinguish the two

norms for notation convenience. We also do not distinguish h and h0 since they have the same

order for achieving optimality.

Next, we prove Lemma 3 as follows.

Proof. Let g = η̂n,λ − η∗. By Taylor’s expansion we have

Sn,λ(η̂n,λ) = Sn,λ(η∗) +DSn,λ(η∗)g +

∫ 1

0

∫ 1

0
sD2Sn,λ(η∗ + ss′g)ggdsds′.

By (A.16) and (6), one can check that 〈DSn,λ(η∗)g1, g2〉 = 〈g1, g2〉, and thus, DSn,λ = id is an

identity operator. By the fact Sn,λ(η̂n,λ) = 0, we have

‖η̂n,λ − η∗ − Sn,λ(η∗)‖ = ‖
∫ 1

0

∫ 1

0
sD2Sn,λ(η∗ + ss′g)ggdsds′‖. (S.9)

By (A.17) we have D2Sn,λ(η∗ + ss′g)gg =
∫
Y g(y)2K̃ye

η∗(y)+ss′g(y)dy. By Proposition A.1 and

Lemma A.3, we have

sup
y∈Y
|g(y)|2 ≤ cmh−1‖g‖2 = cmh

−1OP ((nh)−1 + h2m),

20



where h−1 is defined in (S.29). By (S.30), we have ‖Eη∗{K̃Y}‖ ≤ c
1/2
m h−1/2. Thus, we have

‖D2Sn,λ(η∗ + ss′g)gg‖ = O(h−3/2((nh)−1 + h2m)). (S.10)

Plugging (S.10) into (S.9), we finish the proof.

S.6.3 Proof of Theorem 3.1, Corollary 3.1.1, and Theorem 3.2

S.6.3.1 Proof of Theorem 3.1

By Lemma 3, n1/2‖η̂0n,λ − η̂n,λ − S0
n,λ(η∗) + Sn,λ(η∗)‖ = oP (1). So we have the following

n1/2‖η̂n,λ − η̂0n,λ‖ = n1/2‖S0
n,λ(η∗)− Sn,λ(η∗)‖+ oP (1).

Thus we only focus on n1/2‖S0
n,λ(η∗) − Sn,λ(η∗)‖. Moreover, the following expressions of S0

n,λ(η∗)

and Sn,λ(η∗) are reserved for future use:

Sn,λ(η∗) = − 1

n

n∑
i=1

K̃Yi + Eη∗K̃Y +Wλη
∗, (S.11)

S0
n,λ(η∗) = − 1

n

n∑
i=1

K̃0
Yi

+ Eη∗K̃0
Y +W 0

λη
∗. (S.12)

Proof of Theorem 3.1. Let us first analyze I1. Let g̃ = η̂n,λ + ss′g − η∗, for any 0 ≤ s, s′ ≤ 1. By

Lemma S.7, we have ‖g̃‖ = OP ((nh)−1/2 + hm/d) = oP (1). Notice that

D2`n,λ(η̂n,λ + ss′g)gg = D2`n,λ(g̃ + η∗)gg =

∫
Y
g2(y)eg̃(y)+η

∗(y)dy + λJ(g, g), (S.13)

and

D2`n,λ(η∗)gg =

∫
Y
g2(y)eη

∗(y)dy + λJ(g, g). (S.14)

Combining (S.13) and (S.14), we have

|D2`n,λ(η̂n,λ + ss′g)gg −D2`n,λ(η∗)gg| ≤
∫
Y
g2(y)eη

∗(y)|eg̃(y) − 1|dy.

By Taylor expansion of eg̃(y)+η
∗(y) at η∗(y) for any y ∈ Y, it trivially holds that eη

∗(y)|eg̃(y) − 1| =
eη
∗(y)O(|g̃(y)|). Since supy∈Y |g̃(y)| ≤ cmh−1/2‖g̃‖ (Lemma S.6), and h−1/2((nh)−1 + λ)1/2 = o(1),

we have

|I1| = OP (h−1/2(‖η̂n,λ − η∗‖+ ‖g‖) · ‖g‖2) = oP (‖g‖2). (S.15)

Let us then analyze I2. From (3.8) we have D2`n,λ(η∗)gg = ‖g‖2 = ‖η̂n,λ − η̂0n,λ‖2, which

dominates I1, since h−1/2(‖η̂n,λ − η∗‖ + ‖g‖) = oP (1). Next let us analyze ‖η̂n,λ − η̂0n,λ‖2. By

Lemma 3, we have

n1/2‖η̂0n,λ − η̂n,λ − S0
n,λ(η∗) + Sn,λ(η∗)‖ = OP (n1/2h−3/2((nh)−1 + h2m/d)) = oP (1).
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Thus we only need to focus on n1/2‖S0
n,λ(η∗) − Sn,λ(η∗)‖. Recall Sn,λ(η̂n,λ) = 0 and Sn,λ(η∗),

S0
n,λ(η∗) have expressions (S.11), (S.12). For any y ∈ Y, define K̃1

y = K̃y−K̃0
y and W 1

λ = Wλ−W 0
λ ,

then S0
n,λ(η∗)− Sn,λ(η∗) = − 1

n

∑n
i=1 K̃1

Yi
+ EK̃1

Y +W 1
λη
∗.

By Proposition 1, K̃1
y can be expressed as a series of ξ⊥p (y). Since ξ⊥p ∈ H1 and φ0 ≡ 1 ∈ H0,

we have

Eη∗{ξ⊥p (y)} = Eη∗{ξ⊥p (y)φ0(X)} = V (ξ⊥p , φ0) = 0.

And so Eη∗{K̃1
Y} = 0. Therefore, S0

n,λ(η∗)− Sn,λ(η∗) = − 1
n

∑n
i=1 K̃1

Yi
+W 1

λη
∗. Then

n‖S0
n,λ(η∗)− Sn,λ(η∗)‖2 =n−1‖

n∑
i=1

K̃1
Yi
‖2 − 2

n∑
i=1

〈K̃1
Yi
,W 1

λη
∗〉+ n‖W 1

λη
∗‖2

≡W1 − 2W2 +W3.

Since η∗ ∈ H0, it follows by Lemma 1 that η∗ is expanded by a series of ξ0p . By Proposition

1, Wλξ
0
p ∝ ξ0p which implies Wλη

∗ = W 0
λη
∗. And hence, W 1

λη
∗ = Wλη

∗ − W 0
λη
∗ = 0 which

yields that W2 = W3 = 0. Write W1 = n−1‖
∑n

i=1 K̃1
Yi
‖2 = n−1

∑n
i=1 ‖K̃1

Yi
‖2 + n−1W (n), where

W (n) =
∑

i 6=j K̃1(Yi,Yj).

Next let us consider the term
∑n

i=1 K̃1(Yi,Yi). Let E denote Eη∗ unless otherwise indi-

cated. Let θ(n) = E{K̃1(Yi,Yi)}. By Lemma S.6 we have E{|
∑n

i=1{K̃1(Yi,Yi) − θ(n)}|2} ≤
nE{K̃1(Yi,Yi)

2} = O(nh−2), so

n∑
i=1

[K̃(Yi,Yi)− θ(n)] = Op(n
1/2h−1). (S.16)

Next, we derive the asymptotic distribution of W (n). Define Wij = 2K̃1(Yi,Yj), then W (n) =∑
1≤i<j≤nWij . Let σ(n)2 = Var(W (n)) and

GI =
∑
i<j

E{W 4
ij},

GII =
∑
i<j<k

(E{W 2
ijW

2
ik}+ E{W 2

jiW
2
jk}+ E{W 2

kiW
2
kj}), and

GIV =
∑

i<j<k<l

(E{WijWikWljWlk}+ E{WijWilWkjWkl}+ E{WikWilWjkWjl}).

By E{K̃1
Y} = 0 and direct examinations we have

σ2(n) = Var(W (n)) =
∑

1≤i<j≤n
E{(K̃1(Yi,Yj)− E[K̃1(Yi,Yj)])

2}

=
∑

1≤i<j≤n
E{K̃1(Yi,Yj)

2} � n2h−1.
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Since E{W 4
ij} = 16E{K̃1(Yi,Yj)

4} = O(h−4), we have GI = O(n2h−4). Obviously, E{W 2
ijW

2
ik} ≤

E{W 4
ij} = O(h−4), implying GII = O(n3h−4). For pairwise different i, j, k, l, we have

E{WijWikWljWlk} = 16E{K̃1(Yi,Yj)K̃1(Yi,Yk)K̃1(Yl,Yj)K̃1(Yl,Yk)}

=

∞∑
p=1

1

(1 + λρ⊥p )4
= O(h−1),

which leads to GIV = O(n4h−1).

It follows by h = o(1) and (nh2)−1 = o(1) that GI , GII and GIV are of lower order than σ(n)4.

By Proposition 3.2 of de Jong (1987) we get that

W (n)

σ(n)

d→ N(0, 1). (S.17)

From (S.16) and (S.17), we get 1
n

∑n
i=1 K̃1(Yi,Yi)

2 = θ(n) + oP (1), which implies n‖S0
n,λ(η∗)−

Sn,λ(η∗)‖2 = OP (h−1 +nλ+h−1/2) = OP (h−1), and hence n1/2‖S0
n,λ(η∗)−Sn,λ(η∗)‖ = OP (h−1/2).

Thus,

2n · PLRn,λ = n‖η̂n,λ − η∗‖2 + oP (h−1/2)

=
(
n1/2‖S0

n,λ(η∗)− Sn,λ(η∗)‖+ oP (1)
)2

+ oP (h−1/2)

=n‖S0
n,λ(η∗)− Sn,λ(η∗)‖2 + 2n1/2‖S0

n,λ(η∗)− Sn,λ(η∗)‖ · oP (1) + oP (h−1/2)

=n−1‖
n∑
i=1

K̃1
Yi
‖2 + oP (h−1/2). (S.18)

By (S.17), (S.18) and Slutsky’s theorem,
2n·PLRn,λ−θ(n)

σ(n)/n

d→ N(0, 1). Since θλ =
∑∞

p=1
1

1+λρ⊥p
,

σ2λ =
∑∞

p=1
1

(1+λρ⊥p )2
, we have θ(n) = θλ and σ(n)

n =
√(

n
2

)
E(W 2

ij)/n =
√

2σλ.

S.6.3.2 Proof of Corollary 3.1.1

Proof. First, we need to qualify the following quantity

ĥ =

n∑
p=0

1

(1 + λρ̂p)2
=

n∑
p=0

µ̂2p
(µ̂p + λ)2

where ρ̂p := µ̂ and µ̂p, p = 1, . . . , n are the eigenvalues of H†. ĥ can be seen as an empirical version

of h defined in (S.29). Similarly, we separeate the sumation into two parts, i.e.,

n∑
p=0

µ̂2p
(µ̂p + λ)2

= (
∑
p<ŝλ

+
∑
p>ŝλ

)
µ̂2p

(µ̂p + λ)2

23



where ŝλ = argmin{p : µ̂p ≤ λ} − 1. By Lemma 3.1, i.e., local Rademacher complexity theory, for

any λ� 1/nwe have
∑

p>ŝλ
µ̂p ≤ Csλµsλ where sλ = argmin{p : µi ≤ λ}−1 where µp, p = 1, . . . ,∞

are eigenvalues of H. Thus, we have

∑
p>ŝλ

µ̂2p
(µ̂p + λ)2

= O(sλ) = O(λ−1/2m) (S.19)

Also, by accurate error bounds for eigenvalues of the kernel matrix in Theorem 3, for λ� 1/n

and p < sλ, we have µp � µ̂p, i.e., sλ � ŝλ. Then we have

∑
p<ŝλ

µ̂2p
(µ̂p + λ)2

= O(sλ) = O(λ−1/2m) (S.20)

Combining (S.19) and (S.20), we have ĥ � h = O(λ−1/2m). We define

ĥ0 =
n∑
p=0

1

(1 + λρ̂0p)
2

=
n∑
p=0

(µ̂0p)
2

(µ̂0p + λ)2

where µ̂0p, p = 1, . . . , n are eigenvalues of H0†. Simililarly, we have ĥ0 � h. By replecing H and H0

by H† and H0† correspondingly, we follow the proof the Theorem 3.1 to have

2n · PLR†n,λ − θλ√
2σλ

d−→ N(0, 1), n→∞,

where θλ =
∑∞

p=1
1

1+λρ⊥p
, σ2λ =

∑∞
p=1

1
(1+λρ⊥p )2

.

S.6.3.3 Proof of Theorem 3.2

Before proving Theorem 3.2, we provide some preliminary lemmas. For η∗ ∈ H, consider decom-

position η∗ = η∗0 + η∗XZ where η∗0 is the projection of η∗ on H0. The following lemma says that,

for general η∗ ∈ H, the restricted penalized likelihood estimator η̂0n,λ converges to η∗0 with rate of

convergence provided.

Lemma S.8. Suppose that Assumption 1 is satisfied. We have ‖η̂0n,λ−η∗0‖0 = OP ((nh)−1/2+λ1/2).

Parallel to Lemma 3, when η∗ ∈ H, we have the following result characterizing the higher order

expansion of η̂0n,λ.

Lemma S.9. Suppose that nh2 →∞. We have

‖η̂0n,λ − η∗0 − S0
n,λ(η∗0)‖0 = OP (h−3/2((nh)−1 + h2m/d)).
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Proof of Theorem 3.2. Let g = η̂0n,λ − η̂n,λ. Recall the Taylor expansion (3.10):

PLRn,λ =`n,λ(η̂0n,λ)− `n,λ(η̂n,λ)

=

∫ 1

0

∫ 1

0
s{D2f(η̂n,λ + ss′g)gg −D2f(η∗)gg}dsds′ + 1

2
D2f(η∗)gg

=OP ((‖η̂n,λ − η∗‖sup + ‖g‖sup) · ‖g‖2) +
1

2
‖g‖2,

where the OP term in the last equation follows from (S.15). By Lemmas S.6 and S.7, ‖η̂n,λ −
η∗‖sup = oP (1). By assumption ‖η∗XZ‖sup ≤ (log n)−1 = o(1) and Lemma S.8, we have ‖g‖sup =

‖η̂0n,λ− η∗0 + η∗− η̂n,λ− η∗XZ‖sup = oP (1). Hence, the OP term in (S.21) is dominated by 1
2‖g‖

2, for

which we only focus on the latter. Combining the results of Lemmas 3 and S.9, we have

‖η̂n,λ − η∗ − Sn,λ(η∗)‖ = OP (h−2((nh)−1 + h2m/d)),

‖η̂0n,λ − η∗0 − S0
n,λ(η∗0)‖0 = OP (h−2((nh)−1 + h2m/d)).

Recalling η∗ − η∗0 = η∗XZ , we have ‖g‖ = ‖η∗XZ + Sn,λ(η∗)− S0
n,λ(η∗0)‖+OP (h−2((nh)−1 + h2m/d)).

In what follows, we focus on ‖η∗XZ + Sn,λ(η∗) − S0
n,λ(η∗)‖. By definition of Sn,λ(η∗), S0

n,λ(η∗0) (see

(3.7)) and direct calculations, it can be shown that

‖η∗XZ + Sn,λ(η∗)− S0
n,λ(η∗0)‖2

=‖ 1

n

n∑
i=1

K̃1
Yi
‖2 + ‖η∗XZ‖2 + ‖EK̃Y − EK̃0

Y‖2 + ‖W 1
λη
∗
XZ‖2

− 2

n

n∑
i=1

η∗XZ(Yi) + 2Eη∗XZ(Y) + 2〈W 1
λη
∗
XZ , η

∗
XZ〉 −

2

n

n∑
i=1

EK̃1(Yi,Y)

− 2

n
(W 1

λη
∗
XZ)(Yi) + 2E(W 1

λη
∗
XZ)(Y),

where E denotes Eη∗ . Since E{K̃Y − K̃0
Y} = EK̃1

Y = 0, we have

‖η∗XZ + Sn,λ(η∗)− S0
n,λ(η∗0)‖2

≥‖ 1

n

n∑
i=1

K̃1
Yi
‖2 + ‖η∗XZ‖2 + [− 2

n

n∑
i=1

η∗XZ(Yi) + 2Eη∗η∗XZ(Y)] + 2〈W 1
λη
∗
XZ , η

∗
XZ〉

+ [−
n∑
i=1

2

n
(W 1

λη
∗
XZ)(Yi) + 2Eη∗(W 1

λη
∗
XZ)(Y)] ≡ V1 + V2 + V3 + V4 + V5.

Since Var(V3) ≤ 4
nE(η∗XZ(Y))2 ≤ 4

n‖η
∗
XZ‖2,

V3 = OP (n−1/2)‖η∗XZ‖. (S.21)

By assumption J(η∗XZ , η
∗
XZ) ≤ C, we have

V4 = λJ(η∗XZ , η
∗
XZ) ≤ Cλ. (S.22)
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Since Var(V5) ≤ E|(Wλη
∗
XZ)|2 = V (Wλη

∗
XZ ,Wλη

∗
XZ). By Proposition 1, we have

V (Wλη
∗
XZ ,Wλη

∗
XZ) =

∞∑
p=1

|V (η∗XZ , ξp)|2
(

λρp
1 + λρp

)2

= o(λ),

where the last equality follows by
∑∞

p=1 |V (η∗XZ , ξp)|2ρp < ∞ and the dominated convergence

theorem. Thus we have

V5 = op(n
−1/2λ1/2) (S.23)

Combining (S.21), (S.22) and (S.23) we have

2n · PLRn,λ − θ(n)

σ(n)

≥2n · V1 − θ(n)

σ(n)
+

2n · (V2 + V3 + V4 + V5)

σ(n)

≥OP (1) + 2nσ−1(n)(‖η∗XZ‖2 +OP (n−1/2‖η∗XZ‖) +O(λ) + oP (n−1/2λ1/2)).

For Cε > 0 sufficiently large, let η∗XZ satisfy ‖η∗XZ‖2 ≥ Cεn−1/2‖η∗XZ‖, ‖η∗XZ‖2 ≥ Cελ, nh1/2‖η∗XZ‖2 ≥
Cε, n‖η∗XZ‖2/σ(n) ≥ Cε, which implies that with probability greater than 1− ε, |2n·PLRn,λ−θ(n)σ(n) | ≥
cα (i.e., Φn,λ(α) = 1), where cα is the 1 − α percentile of standard normal distribution. It can be

seen that the above conditions on η∗XZ are satisfied if ‖η∗XZ‖2 ≥ Cε(λ + (nh1/2)−1). The result

follows immediately by the fact ‖η∗XZ‖2 ≤ ‖η∗XZ‖. Proof is completed.

S.6.4 Proofs of the Minimax Lower Bound in Section 4

S.6.4.1 Preliminaries for the minimax lower bound

Lemma S.10. Let P0 be the probability measure under the null, and P1 be the probability with

density in {η | ‖ηXZ‖H < dn}. We have

inf
φn

Err(φn, dn) ≥ 1− δ(
√
δ + 4− δ),

where δ2 = EP0(dP1/dP0 − 1)2.

Proof. The test is bounded below by 1−‖P0− P1‖TV , where ‖ · ‖TV is the total variation distance

between P0 and P1. By the theorem in Ingster (1987), we have

1

2
‖P0 − P1‖TV ≤ δ(1−

1

2
|P0 − P1‖TV )1/2,

which directly implies the result.
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S.6.4.2 Proof of Lemma 4

Proof. As show in Lemma S.10, we have

inf
φn

Err(φn, dn) ≥ 1− δ(
√
δ + 4− δ). (S.24)

Next we show that if d2n ≤
√
kB(dn)

4n , we have that the last term in (S.24) is larger than 1/2. For

simplicity, denote k = kB(dn). For any b = (b1, . . . , bk) ∈ {−1, 1}k, let θb = dn√
k

∑k
i=1 biei ∈

RN , where ei is the standard basis vector with ith coordinate as one. We assume b is uniformly

distributed over {−1, 1}k so that θb is uniformly distributed over Q := {θb : b ∈ {−1, 1}k}. Since

EP0e
η
θb
XZ − 1 = 0, we have eη

θb
XZ − 1 ∈ H11. Define

exp(ηθbXZ)− 1 =
dn√
k

k∑
l=1

blψlφ1, (S.25)

where {ψlφ1}kl=1 are basis function for H11. We denote P(n)
1 and P(n)

0 as the empirical meaures

under the alternative and null respectively. The ratio of densities of P(n)
1 and P(n)

0 is

dP(n)
1

dP(n)
0

= Eθb
n∏
i=1

exp(ηθbXZ(Yi)).

Then, we denote the empirical version of δ as δn which can be written as

δ2n = EP(n)
0

(dP(n)
1 /dP(n)

0 − 1)2

= EP(n)
0

[Eθb
n∏
i=1

exp(ηθbXZ(Yi))]
2 − 1

= EP(n)
0

[Eθb
n∏
i=1

exp(ηθbXZ(Yi))][Eθb′
n∏
i=1

exp(η
θb′
XZ(Yi))]− 1

= Eθb,θb′
n∏
i=1

EP0 exp(ηθbXZ(Yi)) exp(η
θb′
XZ(Yi))− 1

= Eθb,θb′ [EP0 exp(ηθbXZ(Y)) exp(η
θb′
XZ(Y))]n − 1.
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Plugging (S.25) in, we have

δn + 1 = EθbEθ′b [EP0(1 +
dn√
k

k∑
l=1

blψlφ1)(1 +
dn√
k

k∑
l=1

b′lψlφ1)]
n

=
1

2k

∑
b,b′

(1 +
d2n
k
bT b′)n

≤ 1

2k

∑
b

exp{nd
2
nb
T 1k
k

}

=
1

2k

k∑
i=0

(
k

i

)
exp{n(k − 2i)d2n

k
}

=
1

2k
(

exp{nd
2
n

k
}+ exp{−nd

2
n

k
}
)k

(i)

≤ (1 +
n2d4n
k2

)k

(ii)

≤ exp{n
2d4n
k
},

where (i) is due to the fact that 1
2(exp(x) + exp(−x)) ≤ 1 + x2 for |x| ≤ 1/2 and (ii) is due to the

fact 1 + x ≤ ex. Thus for any d4n ≤ k
16n2 , we have

inf
φn

Err(φn, dn) ≥ 1− δn(
√
δn + 4− δn) ≥ 1− e1/16(

√
e1/16 + 4) ≥ 1/2.

For dn . k1/4/
√
n, we have

| exp{ηθbXZ} − 1| = dn√
k
|
k∑
l=1

blψlφ1| .
k3/4√
n
.

Thus, there exsits c1, c2 > 0 such that

c1|ηθbXZ(y)| < | exp{ηθbXZ} − 1| < c2|ηθbXZ(y)|, (S.26)

which indicates that ‖ exp{ηθbXZ}−1‖2 � ‖ηθbXZ‖2. By the definition of rB(δ∗), we have Err(φn, dn) >

1/2 for all dn ≤ rB(δ∗) .

S.6.4.3 Proof of Lemma 5

Proof. We show that bk,2(E11) is bounded below by
√
γk+1. It is sufficient to show that E11 contains

a l2 ball centered at ηXZ = 0 with radius
√
γk+1. For any v ∈ E11 with ‖v‖2 ≤

√
γk+1, we have

b2,k
(i)

≤
k+1∑
i=1

v2i
γi

(ii)

≤ 1

γk+1

k+1∑
i=1

v2i
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where the inequality (i) holds by set the (k + 1)-dimensional subspace spaned by the eigenvectors

corresponding to the first (k + 1) largest eigenvalues; the inequality (ii) holds by the decreasing

order of the eigenvalues, i.e., γ1 ≥ γ2 ≥ . . . γk+1.

Recall that the definition of the Bernstein lower critical dimension is kB(δ) = argmaxk{b2k−1,2(E11) ≥
δ2}, we have

kB(δ) ≥ argmax
k
{√γk ≥ δ}.

S.6.4.4 Proof of Theorem 4.1

Proof. By Lemme 4, we have

dn ≤ sup{δ : kB(δ) ≥ 16n2δ4}.

Then we plug in the lower bound of kB in Lemma 5 and we have

dn ≤ sup{δ : argmax
k
{√γk ≥ δ} ≥ 16n2δ4} (S.27)

The eigenvalues have polynomial decay rate i.e., γk � k−2m/d, and consequently, argmaxk{
√
γk ≥

δ} � δ−d/m. Plugging this into (S.27), it is easy to see that the supremum on the right hand side

has an order n−
2m

4m+d . Proof is thus completed.

S.6.4.5 Proof of the minimax rate for divergent number of samples

Proof of Corollary S.2

Proof. We construct the eigenvalue of H for any given U . Based on the the decomposition in

(3.1), we denote the eigenvalues for HZ1 as π1, . . . , πU−1 where U is the number of samples. By the

definition of tenor product space, we have that the eigenvalues for H are ρi1πi2 for i1 = 1, . . . ,∞
and i2 = 1, . . . , U − 1. Then we qualify h as

h−1 =
∞∑
p=0

U−1∑
u=1

1

(1 + λρpπu)2
� O(Uλ−d/2m)

Following the same proof of Theorem 3.6, we have the lowerbound of the distinguishable rate

achieves at λ � (nh1/2)−1 which is equivalent to

dn > d∗n ≡ O(n−2m/(4m+d)Um/(4m+d)).

Proof of Corollary S.3
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Proof. Recall that the definition of the Bernstein lower critical dimension is kB(δ) = argmaxk{b2k−1,2(E11) ≥
δ2}, we have

kB(δ) ≥ argmax
k
{√γk ≥ δ}.

we plug in the lower bound of kB in Lemma 5 and we have

dn ≤ sup{δ : argmax
k
{√γk ≥ δ} ≥ 16n2δ4} (S.28)

The eigenvalues have polynomial decay rate i.e., γk � (k/U)−2m/d, and consequently argmaxk{
√
γk ≥

δ} � Uδ−d/m. Plugging this into (S.28), it is easy to see that the supremum on the right hand side

has an order n−
2m

4m+dUm/(4m+d). Proof is thus completed.

S.6.5 Proof of supplimentary Lemmas

S.6.5.1 Proof of Lemma S.5

Since ρp � p2m/d, we have

h−1 =
∞∑
p=0

1

(1 + λρp)2
= (

∑
p<λ−d/2m

) +
∑

p>λ−d/2m

)
1

(1 + λρp)2
dx (S.29)

= O(λ−d/2m) +

∫ ∞
λ−d/2m

1

(1 + λx2m/d)2
dx = O(λ−d/2m)

Thus we have h � λd/2m. Similarly, h0 � λd/2m.

S.6.5.2 Proof of Lemma S.6

For any y ∈ Y and η ∈ H, we have |η(y)| = |〈K̃y, η〉| ≤ ‖K̃y‖ · ‖η‖. So it is sufficient to find the

upper bound for ‖K̃y‖. By Proposition A.1 and the boundedness of ξp’s, we have

‖K̃y‖2 = K̃(y,y) =

∞∑
p=1

|ξp(y)|2

1 + λρp
≤ cmh−1 (S.30)

where cm > 0 is a constant free of y and η.

S.6.5.3 Proof of Lemma S.7

The proof is rooted in Gu (2013). Consider the quadratic approximation of the integral
∫
Y e

η(y)dy:∫
Y
eη(y)dy ≈

∫
Y
eη
∗(y)dy +

∫
Y

(η − η∗)eη∗(y)dy +
1

2
V (η − η∗, η − η∗). (S.31)
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Dropping the terms that do not involve η, and plugging (S.31) into (4), `n,λ(η) has a quadratic

approximation qn,λ(η):

qn,λ(η) = − 1

n

n∑
i=1

η(Yi) +

∫
Y
ηeη

∗
dy +

1

2
V (η − η∗, η − η∗) +

1

2
J(η, η). (S.32)

Consider the Fourier expansions of η and η∗:

η(x, z) =
∞∑
k=1

a∑
l=1

βklφk(x)ψl(z), η∗(x, z) =
∞∑
k=1

a∑
l=1

β∗klφk(x)ψl(z).

Then, we have

qn,λ(η) =
∞∑
k=1

a∑
l=1

{
−βkl(

1

n

n∑
i=1

φk(xi)ψl(zi)− E{φk(X)ψl(Z)}

+
1

2
(βkl − β∗kl)2 +

λ

2
µkνlβ

2
kl

}
. (S.33)

Write γkl = n−1
∑n

i=1 φk(Xi)ψl(Zi)− E{φk(X)ψl(Z)}. Minimizing (S.33) with respect to βkl’s, we

get the optimizer:

β̃kl = (γkl + β∗kl)/(1 + λµkνl), k ≥ 1, l = 1, . . . , a.

Then η̃ =
∑∞

k=1

∑a
l=1 β̃klφkψl becomes a linear approximation of η̂n,λ. By direct calculations we

get that

V (η̃ − η∗) =

∞∑
k=1

a∑
l=1

(βkl − β∗kl)2, λJ(η̃ − η∗) =

∞∑
i=1

a∑
j=1

λµkνl(βkl − β∗kl)2.

Since Eγkl = 0 and Eγ2kl = 1/n, we have

E{V (η̃ − η∗)} =
∞∑
i=1

a∑
j=1

1

(1 + λµkνl)2
+ λ

∞∑
i=1

a∑
j=1

λµkνl
(1 + λµkνl)2

µkνlβ
∗
klβ
∗
kl

E{λJ(η̃ − η∗)} =

∞∑
i=1

a∑
j=1

1

(1 + λµkνl)2
+ λ

∞∑
i=1

a∑
j=1

(λµkνl)
2

(1 + λµkνl)2
µkνlβ

∗
klβ
∗
kl

(S.34)

By similar derivations in Lemma A.2, it can be verified that

∞∑
i=1

a∑
j=1

1

(1 + λµkνl)2
= O(λ−1/2m),

∞∑
i=1

a∑
j=1

λµkνl
(1 + λµkνl)2

= O(λ−1/2m),

∞∑
i=1

a∑
j=1

1

(1 + λµkνl)
= O(λ−1/2m)
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Plugging into (S.34), we obtain that

‖η̃ − η∗‖2 = (V + λJ)(η̃ − η∗) = Op(n
−1λ−1/2m + λ). (S.35)

We now turn to the approximation error η̂ − η̃. We calculate the Fréchet derivative of the

quadratic approximation in (S.32) as

Dqn,λ(η)∆η = − 1

n

n∑
i=1

∆η(Yi) +

∫
Y

∆ηeη
∗
dy + λV (η − η∗,∆η) + λJ(η,∆η). (S.36)

Since Dqn,λ(η̃) = 0, setting ∆η = η̂n,λ − η̃, (S.36) is equal to

− 1

n

n∑
i=1

(η̂n,λ − η̃)(Yi) +

∫
Y

(η̂n,λ − η̃)(y)eη
∗(y)dy + V (η̃ − η∗, η̂n,λ − η̃) + λJ(η̃, η̂n,λ − η̃) (S.37)

Since D`n,λ(η̂n,λ) = 0, setting ∆η = η̂n,λ − η̃ yields

D`n,λ(η)∆η = − 1

n

n∑
i=1

(η̂n,λ − η̃)(Yi) +

∫
Y

(η̂n,λ − η̃)(y)eη̂n,λ(y)dy + λJ(η̂n,λ, η̂n,λ − η̃).

Combining (S.37) and (S.38), we have∫
(η̂n,λ − η̃)(y)eη̂n,λ(y)dy −

∫
Y

(η̂n,λ − η̃)(y)eη̃(y)dy + λJ(η̂n,λ − η̃)

= V (η̃ − η∗, η̂n,λ − η̃) +

∫
Y

(η̂n,λ − η̃)(y)eη
∗(y)dy −

∫
Y

(η̂n,λ − η̃)(y)eη̃(y)dy.

By Taylor expansion,∫
(η̂n,λ − η̃)(y)eη̃(y)dy −

∫
Y

(η̂n,λ − η̃)(y)eη
∗(y)dy = V (η̂n,λ − η̃, η̃ − η∗)(1 + op(1)),

where the oP term holds as λ→ 0 and nλ1/2m →∞. Define

D(α) =

∫
Y

(η̂n,λ − η̃)(y)eη̂n,λ(y)+α(η̂n,λ−η̃)(y)dy.

It can be shown that Ḋ(α) = Vη̃+α(η̂n,λ−η̃(η̂n,λ − η̃). By the mean value theorem,∫
Y

(η̂n,λ − η̃)(y)eη̂n,λ(y)dy −
∫
Y

(η̂n,λ − η̃)(y)eη̃(y)dy

=D(1)−D(0) = Ḋ(α) = Vη̃+α(η̂n,λ−η̃(η̂n,λ − η̃),

for some α ∈ [0, 1]. Then by Assumption 1, we have

c1V (η̂n,λ − η̃) + λJ(η̂n,λ − η̃) ≤ op(V (η̃ − η∗, η̂ − η̃)) = op({V (η̂n,λ − η̃)V (η̃ − η∗)}1/2)

Combine with the estimation error (S.35), we have

‖η̂n,λ − η∗‖2 = V (η̂n,λ − η∗) + λJ(η̂n,λ − η∗) = Op(n
−1λ1/2m + λ).
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S.6.5.4 Proof of Lemma S.8

Suppose the η∗0 is the projection of η∗ on H0. Define an index set I0 = {(k, l)|k = 1 or l = 1}
corresponding to the basis, {φkψl|k = 1 or l = 1}, of H0. When restricted to H0, the Fourier

expansion of η∗ is

η∗0(x, z) =
∑

(k,l)∈I0

β0klφk(x)ψl(z).

Substituting the above η∗0 as well as its Fourier expansion into the proof of Lemma A.4, all results

remain valid, provided the following truth:

E{ 1

n

n∑
i=1

φk(Xi)ψl(Zi)− Eη∗(φkψl)}2 =
1

n

E{ 1

n

n∑
i=1

φk(Xi)ψl(Zi)φk′(Xi)ψl′(Zi)− Eη∗(φkψlφk′ψl′)}2 ≤
c

n
,

where c is a positive constant. The existence of such c is guaranteed by the uniform boundedness

of φk(x)’s as proved by Shang and Cheng (2013). Let η∗0 be the projection of η∗ on the subspace

H0 and g = η̂0n,λ − η∗0. Substituting η∗0 and η̂0n,λ into the proof of Lemma S.7, the results would

follow.

S.6.5.5 Proof of Lemma S.9

Let η∗0 be the projection of η∗ on the subspace H0 and g = η̂0n,λ− η∗0. Substituting η∗0 and η̂0n,λ into

the proof of Lemma 3.4, one can show the desired results.
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