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The Supplementary Material consists of ten parts (Sections S1–S10). Section S1 provides eight

useful lemmas, Section S2 provides the proof of Theorem 1, Section S3 provides the proof of

Theorem 2, Section S4 provides the proof of Proposition 1, Section S5 provides the proof of

Theorem 3, Section S6 describes the test portfolios, Section S7 presents the empirical evidence

for the time-varying coefficients and sparse alternatives based on real data, Section S8 reports

the simulation results of conditional multi-factor models with latent factors, Section S9 reports

the simulation results of the MAX test proposed by Feng et al. (2022), and Section S10 provides

the simulation results for a student-t distribution error.

S1 Eight Useful Lemmas

We only present the proof of Lemmas 5 and 8. Lemmas 1, 3, and 4 are

borrowed from Ma et al. (2020), Lemma 2 is borrowed from Cai et al.



(2014), Lemma 6 can be obtained directly through Bonferroni inequality

(Wang, 2012), and the Lemma 7 is directly borrowed from Fan and Han

(2017).

Lemma 1. Define ρi0t = αi(t/T ) − γγγ0>i0 B̃(t/T ) and ρijt = βij(t/T ) −

γγγ0>ij B(t/T ) for 1 ≤ j ≤ d and 1 ≤ i ≤ N . Then, under Assumption

(A.1), there exist γγγ0i0 ∈ RL and γγγ0ij ∈ RL such that sup1≤t≤T |ρi0t| =

O(L−r) and sup1≤t≤T |ρijt| = O(L−r) as T →∞.

Lemma 2. (Bonferroni Inequality). Let A =
⋃N
k=1Ak. For any K <

[N/2], we have

2K∑
k=1

(−1)k−1Vk ≤ P (A) ≤
2K−1∑
k=1

(−1)k−1Vk,

where Vk =
∑

1≤i1<···<ik≤N P (Ai1
⋃
· · ·
⋃
Aik).

Lemma 3. Under Assumption (A.3), there exist constants 0 < cz ≤ Cz <

∞ with probability one,

czL
−1 ≤ λmin(Z>Z/T ) ≤ λmax(Z>Z/T ) ≤ CzL

−1,

czL ≤ λmin{(Z>Z/T )−1} ≤ λmax{(Z>Z/T )−1} ≤ CzL,

as T →∞.

Lemma 4. Under Assumption (A.3) (i), there exist constants 0 < cm ≤

Cm ≤ 1 such that cmT ≤ 1>TMZ1T ≤ CmT .
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Lemma 5. Under Assumptions (A.1)-(A.4), we have

P

{
max

1≤i,j≤N
|σ̂ij − σij| > Cσ

(√
L

log(N)

T
+ L−r

)}
→ 0,

for some constant Cσ > 0.

Proof: Under Assumptions (A.2)-(A.4), by the Bernstein inequality, there

exist two finite positive constants C1 and C2 such that the event

A =

{
max
i

∣∣∣∣∣ 1

T

T∑
i=1

εitεjt − σij

∣∣∣∣∣ < C1

√
logN

T
;

1

T

T∑
t=1

‖ft‖2 < C2

}

occurs with the probability approaching one. In addition, there further

exist two finite positive constants C3 and C4 such that the event B ={
maxi,j

1
T
|
∑T

t=1 fjtεit| < C3

√
logN
T

; maxi
1
T

∑T
t=1 ε

2
it < C4

}
occurs with the

probability approaching one. Then, on the event A ∩ B, by the triangular

and Cauchy-Schwarz inequalities, we obtain

max
i,j
|σ̂ij − σij| ≤ C1

√
log(N)

T
+ 2 max

i

√√√√ 1

T

T∑
t=1

(ε̂it − εit)2C4

+ max
i

1

T

T∑
t=1

(εit − ε̂it)2,

where ε̂it is the t-th element of MZ̃Ri.

Denote ρρρit = ρit0+
∑d

j=1 ρijtfjt, ρρρi = (ρρρi1, . . . , ρρρiT )>, PZ̃ = Z̃
(
Z̃>Z̃

)−1Z̃>,



and PZ = Z
(
Z>Z

)−1Z>. Then, we have Ri = αi,ACA1T +Zγγγi +εεεi +ρρρi, and

max
i
T−1

T∑
t=1

(ε̂it − εit)2

= max
i
T−1(−PZ̃εεεi + MZ̃ρρρi)

>(−PZ̃εεεi + MZ̃ρρρi)

≤ max
i

2T−1εεε>i PZ̃εεεi + 2T−1ρρρ>i MZ̃ρρρi

≤ max
i

2T−1εεε>i PZεεεi + 2T−1εεε>i (PZ −PZ̃)εεεi + 2T−1ρρρ>i ρρρi. (S1.1)

We next prove the three parts involved in (S1.1) separately. For the first

part of (S1.1), according to Lemma 3, there exist finite positive constants

C5–C7 such that

max
i
T−1εεε>i PZεεεi

≤ max
i
T−2εεε>i ZZ>εεεiλmax

[
(

1

T
Z>Z)−1

]
≤ max

i
C5LT

−2εεε>i ZZ>εεεi

= max
i
C5LT

−2
[ L∑
l=1

(
∑

t∈{|l(t)−l|≤q−1}

B̃l(t/T )εit)
2 +

d∑
j=1

L∑
l=1

(
∑

t∈{|l(t)−l|≤q−1}

fjtBl(t/T )εit)
2
]

≤ C6L
−1

L∑
l=1

{
max
i

(
L

T

∑
t∈{|l(t)−l|≤q−1}

εit)
2 + max

i,j
(
L

T

∑
t∈{|l(t)−l|≤q−1}

fjtεit)
2
}

≤ C7L
log(N)

T
. (S1.2)

For the second part of (S1.1), we have

max
i
T−1εεε>i (PZ −PZ̃)εεεi = max

i
T−1εεε>i MZ1T (1>TMZ1T )−11>TMZεεεi.
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By Hoeffding inequality, we have

P
[

max
i
T−1εεε>i (PZ −PZ̃)εεεi ≥ C8 log(N)/T

]
≤

N∑
i=1

P
[
T−1/2|(1>TMZ1T )−1/21>TMZεεεi| ≥ C8

√
log(N)/T

]
≤ exp(−C9 log(N)).

For the third part of (S1.1), there exists finite positive constant C8 such

that

max
i
T−1ρρρ>i ρρρi ≤ max

i
T−1(d+ 1)

T∑
t=1

{ρ2it0 +
d∑
j=1

ρ2ijtf
2
jt} < C8L

−2r, (S1.3)

where the last inequality is a result of Lemma 1. Combining the results

in (S1.2) and (S1.3), we have maxi,j |σ̂ij − σij| ≤ Cσ
(√L log(N)

T
+ L−r

)
for

positive constant Cσ with the probability approaching one, which completes

the proof of this lemma.

Lemma 6. Let χi,T be a random variable with a chi-squared distribution

of degree T , then we should have maxi |T−1χi,T − 1| = Op(
√

log(N)/T ) for

any 1 ≤ i ≤ N .

Lemma 7. For any arbitrary symmetric matrices A and B, we have

|λiA − λiB| ≤ ‖A−B‖ and ‖ζζζ iA − ζζζ iB‖ ≤
√

2‖A−B‖
min {|λi−1,A − λiB| , |λi+1,A − λiB|}

,

where λiC ’s and ζζζ iC ’s are the eigenvalues and eigenvectors of any arbitrary

matrix C for i ≥ 1, and ζζζ0 =∞.



Lemma 8. Under Assumptions (A.1), (A.3), (A.5), and (A.6), we further

assume µ̃e−1 − µ̃e ≥ dN for some positive constant dN and for any e =

2, · · · , v. If log(N) = o(L), we can obtain that

max
1≤i≤N

|σ̂εεε,ii − σεεε,ii| = Op(L
−r + L1/2T−1/2).

Proof. Recall that Ri = αi,ACA1T + Zγγγi + εεεi + ρρρi, and ε̂εεi = MZRi =

MZ1Tαi,ACA + MZεεεi + MZρρρi. Note that σ̂εεε,ii = T−1ε̂εε>i ε̂εεi with ε̂εε>i = MX̂ε̂εε
>
i .

As a result, we have σ̂εεε,ii = T−1ε̂εε>i MX̂ε̂εεi, which leads to

max
i
|σ̂εεε,ii − σεεε,ii|

=
∣∣∣T−1ε̂εε>i MX̂ε̂εεi − T

−1εεε>i MZεεεi + T−1εεε>i MZεεεi − σεεε,ii
∣∣∣

≤ max
i

∣∣T−1εεε>i MZεεεi − σεεε,ii
∣∣+ max

i

∣∣∣T−1ε̂εε>i MX̂ε̂εεi − T
−1εεε>i MZεεεi

∣∣∣
= Ĩ1 + Ĩ2.

(S1.4)

We first consider Ĩ1. Note that εεεi follows a multivariate normal distribu-

tion with mean zero and covariance matrix σεεε,iiIT . As a result, εεε>i MZεεεi/σεεε,ii

follows a chi-square distribution of degree T−L. Thus, according to Lemma

6, we can obtain that

Ĩ1 = max
i

∣∣T−1εεε>i MZεεεi − σεεε,ii
∣∣

≤ max
i

∣∣T−1εεε>i MZεεεi − (T − L)σεεε,ii/T
∣∣+ Lmax

i
|σεεε,ii| /T

= max
i
σεεε,ii

∣∣T−1χT−L − (T − L)/T
∣∣+ Lmax

i
σεεε,ii/T

= Op(
√

log(N)/T + LT−1).

(S1.5)
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For Ĩ2, under the null hypothesis, we have we have ε̂εεi = MZεεεi + MZρρρi

and εεεi = Xλλλi + εεεi. Then,

Ĩ2 = max
i

{
|T−1ε̂εε>i MX̂ε̂εεi − T

−1εεε>i MZεεεi|
}

= max
i
{|T−1εεε>i MZMX̂MZεεεi − T−1εεε>i MZεεεi|}+ max

i
|T−1λλλ>i X>MZMX̂MZXλλλi|

+ max
i
|T−1ρρρ>i MZMX̂MZρρρi|+ max

i
|2T−1εεε>i MZMX̂MZXλλλi|+ max

i
2|T−1εεε>i MZMX̂MZρρρi|

+ max
i
|2T−1ρρρ>i MZMX̂MZXλλλi|

=J1 + J2 + J3 + J4 + J5 + J6.

Then, we give the order of Ji for i = 1, . . . , 6 in the following four steps.

We consider J1 to J3 in Steps I to III, respectively, and J4 to J6 in Step IV.

Step I. Before we give the order of J1, we first bound the difference PX̂

and PX. We have that

‖PX̂ −PX‖ ≤ ‖PX̂ −PX̃‖+ ‖PX̃ −PX‖.

According to Theorem 2 of Wang (2012), we have

‖PX̃ −PX‖ ≤ tr1/2{(PX̃ −PX)2} = Op(T
−1/2).

Next, we provide the order of ‖PX̂ −PX̃‖ according to Lemma 7. Accord-

ingly, by Cauchy-Schwarz inequality, we have∥∥PX̂ −PX̃

∥∥2
2

= T−2
∥∥∥X̂X̂> − X̃X̃>

∥∥∥2 = T−2
∥∥∥X̂X̂> − X̂X̃> + X̂X̃> − X̃X̃>

∥∥∥2
≤ 2T−2

∥∥∥X̂X̂> − X̂X̃>
∥∥∥2 + 2T−2

∥∥∥X̂X̃> − X̃X̃>
∥∥∥2 = 4T−1‖X̂− X̃‖2.



Accordingly, by Lemma 7, we have

‖T−1/2X̂− T−1/2X̃‖ ≤
√

2v‖(TN)−1Ê Ê> − (TN)−1EE>‖/Kmin,

where Kmin = mine∈{1...,v} {|µ̂e−1 − µ̃e| , |µ̂e+1 − µ̃e|}. Under H0, αααACA = 0,

we obtain∥∥∥(NT )−1Ê Ê> − (NT )−1EE>
∥∥∥ ≤∥∥(NT )−1MZρρρρρρ

>MZ
∥∥+ 2

∥∥(NT )−1MZEρρρ>MZ
∥∥

+
∥∥(NT )−1MZEE>MZ − (NT )−1EE>

∥∥ .
(S1.6)

Moreover, one can easily verify that λmax

(
N−1T−1ρρρρρρ>

)
= Op(L

−2r) using

(S1.3) , where ρρρ = (ρρρ1, · · · , ρρρT )> ∈ RT×N . Then,

∥∥(NT )−1MZρρρρρρ
>MZ

∥∥ ≤ λmax(MZ)
∥∥(NT )−1ρρρρρρ>

∥∥ = Op

(
L−2r

)
.

Moreover, we also can easily verify that λmax

(
N−1T−1EE>

)
= Op(1) by

Assumption (A.6). Then, we can also obtain∥∥(NT )−1MZEρρρ>MZ
∥∥ ≤ λmax(MZ)

∥∥(NT )−1Eρρρ>
∥∥

≤ (NT )−1λ1/2max

(
EE>

)
λ1/2max

(
ρρρρρρ>

)
= Op

(
L−r

)
.

For the third term of (S1.6), we have that

∥∥(NT )−1MZEE>MZ − (NT )−1EE>
∥∥ ≤2(NT )−1‖PZEE>‖+ (NT )−1‖PZEE>PZ‖2

≤2(NT )−1‖PZE‖‖E‖+ (NT )−1‖PZE‖2

Next, we bound the order of ‖PZE‖. According to the definition of PZ, the

eigen-decomposition of PZ can be written as UPU
>
P , where UP is the N ×L
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matrix consisting of the first L eigenvectors of PZ. Then,

‖PZE‖ ≤ ‖U>P E‖ ≤ ‖U>P XΛΛΛ‖+ ‖U>P εεε‖ ≤ ‖U>P X‖‖ΛΛΛ‖+ ‖U>P εεε‖.

Since elements in Xt and εεεi are independent normal random variables, ac-

cording to Tomioka and Suzuki (2014), we have ‖U>P X‖ = Op(
√
L) and

‖U>P εεε‖ = Op(
√
NL). According to Assumption (A.6), ‖ΛΛΛ‖ = O(

√
N).

Thus ∥∥(NT )−1MZEE>MZ − (NT )−1EE>
∥∥ ≤ Op(

√
L/T ).

Accordingly, we can obtain that∥∥∥(NT )−1Ê Ê> − (NT )−1EE>
∥∥∥ = Op(

√
L/T + L−r).

Next, we consider Kmin. Note that

|µ̂e−1 − µ̃e| = |µ̂e−1 − µ̃e−1 + µ̃e−1 − µ̃e| ≥ |µ̃e−1 − µ̃e| − |µ̂e−1 − µ̃e−1| .

By the assumption that |µ̃e−1 − µ̃e| ≥ dN for any e = 2, . . . , v. More-

over, by Lemma 7 again, we have

|µ̂e−1 − µ̃e−1| ≤
∥∥∥(TN)−1Ê Ê> − (TN)−1EE>

∥∥∥ = op(1).

Consequently, with the probability approaching one,

2Kmin ≥ |µ̂e−1 − µ̃e| ≥ dN .

Combining the above results, we can obtain that

∥∥PX̂ −PX

∥∥ = Op(L
−r +

√
L/T ). (S1.7)



Now we consider J1. We have

J1 = max
i

∣∣T−1εεε>i MZ(IT −MX̂)MZεεεi
∣∣ = max

i

∣∣T−2εεε>i MZX̂X̂
>
MZεεεi

∣∣.
By the definition of X̂, we have MZX̂ = X̂. Thus, we have

J1 = max
i

∣∣T−2εεε>i X̂X̂
>
εεεi
∣∣ ≤ max

i
T−1

∣∣εεε>i (PX̂ −PX)εεεi
∣∣+ max

i
T−1

∣∣εεε>i PXεεεi
∣∣

≤Op(‖PX̂ −PX‖) +Op(
√

log(N)/T ) = Op(L
−r +

√
L/T ).

Step II. Now we consider J2. Recall that tr{X>MX̃X} = Op(1) (Wang,

2012). We obtain

J2 = max
i
T−1‖MX̂MZXλλλi‖2 ≤ 2 max

i
T−1‖MX̂PZXλλλi‖2 + 2 max

i
T−1‖MX̂Xλλλi‖

2

≤ 2 max
i
T−1‖PZXλλλi‖2 + 2 max

i
T−1‖(MX̂ −MX)Xλλλi‖2

= Op(L/T (1 +
√

log(N)/L) + L−2r + L/T ) = Op(L
−2r + L/T ).

Step III. For J3, we have

max
i
T−1ρρρ>i MZMX̂MZρρρi ≤ max

i
T−1ρρρ>i ρρρi = Op(L

−2r).

Step IV. For J4, by Cauchy-Schwarz inequality, we have

J4 ≤ max
i
‖T−1/2εεε>i MZ‖‖T−1/2MX̂MZXλλλi‖ = Op(

√
L/T + L−r),

where the last equality is due to the order of J2 and Lemma 6. Similarly,

we have

J5 ≤ max
i
‖T−1/2εεε>i ‖‖T−1/2MZMX̂MZρρρi‖ = Op(L

−r).
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For J6,

J6 ≤ max
i
‖T−1/2ρρρ>i MZ‖‖T−1/2MX̂MZXλλλi‖ ≤ Op(L

−r
√
L/T + L−2r).

Combining all of these results above, we have Ĩ2 = Op(L
−r +

√
L/T ),

which completes the proof of Lemma 8.

S2 Proof of Theorem 1

Denote θθθ = (1>TMZ1T )−1MZ1T and let θt be the t-th element of θθθ. After

simple calculation, we have

α̂i,ACA = (1>TMZ1T )−11>TMZRi

= αi,ACA + εεε>i θθθ + ρρρ>i θθθ

= αi,ACA +
T∑
t=1

εitθt +
T∑
t=1

ρρρitθt.

Define h = (h1, · · · , hT )> = MZ1T , Vit = εitht/σ
1/2
ii , Uit = Vit + ρρρitht/σ

1/2
ii .

Let V̂it = VitI(|Vit| ≤ τT ) for t = 1, · · · , T and i = 1, · · · , N , where

τT = 2ξ−1t η−1/2
√

log(N + T ). Here, η is the constant defined in Assump-

tion (A.2), and ξt → 0 will be specified later. Further, define Wi =∑T
t=1 Uit/(1

>
TMZ1T )1/2, W̃i =

∑T
t=1 Vit/(1

>
TMZ1T )1/2, and Ŵi =

∑T
t=1 V̂it/(1

>
TMZ1T )1/2.

We next prove the theorem in two steps. In the first step, we prove that



for any x ∈ R, as N →∞,

P

[
max
1≤i≤N

Ŵ 2
i − 2 log (N) + log {log (N)} ≤ x

]
→ exp

{
− 1√

π
exp

(
−x

2

)}
.

In the second step, we show that the difference between Ŵi and Wi is

negligible such that maxi |Wi − Ŵi| = op(1/ log(N)).

Step I. We first prove that for any x ∈ R, as N →∞,

P

[
max
1≤i≤N

Ŵ 2
i − 2 log (N) + log {log (N)} ≤ x

]
→ exp

{
− 1√

π
exp

(
−x

2

)}
.

(S2.1)

Let xN = (2 log (N) − log {log (N)} + x)1/2 and F = (ft, t = 1, · · · , T ). It

follows from Lemma 2 that for any fixed K ≤ [N/2],

2K∑
k=1

(−1)k−1
∑

1≤i1<···<ik≤N

P (|Ŵi1| ≥ xN , · · · , |Ŵik | ≥ xN
∣∣F ) ≤ P ( max

1≤i≤N
|Ŵi| ≥ xN

∣∣F )

≤
2K−1∑
k=1

(−1)k−1
∑

1≤i1<···<ik≤N

P (|Ŵi1| ≥ xN , · · · , |Ŵik | ≥ xN
∣∣F ). (S2.2)

Define |Ŵ|min = min1≤b≤k |Ŵib|. Then, under Assumptions (A.2) and

(A.4), by Theorem 1 in Zaitsev (1987), we have

P (|Ŵ|min ≥ xN
∣∣F ) ≤P

{
|Z|min ≥ xN − ιT log−1/2(N)

}
+ c1k

5/2 exp

{
− T 1/2ιT

c2k3τT log1/2(N)

}
, (S2.3)

where c1 and c2 are finite positive constants, ιT is to be specified later, and

Z = (Zi1 , · · · ,Zik)> is a k-dimensional normal vector with the covariance

matrix ΠZ satisfying cov(Zik ,Zij) = Πikij , where Π is the correlation matrix
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of Et. Because log(N) = o(T 1/9), we can let ιT → 0 sufficiently slowly, such

that

c1k
5/2 exp

{
− T 1/2ιT
c2k3τT log(N)1/2

}
= O(N−ξ), (S2.4)

for any large ξ > 0. It then follows from (S2.2), (S2.3), and (S2.4) that

P ( max
1≤i≤N

|Ŵi| ≥ xN
∣∣F ) ≤

2K−1∑
k=1

(−1)k−1
∑

1≤i1<···<ik≤N

P
{
|Z|min ≥ xN − ιT log(N)−1/2

}
+o(1).

(S2.5)

Similarly, using Theorem 1 in Zaitsev (1987) again, we can obtain

P ( max
1≤i≤N

|Ŵi| ≥ xN
∣∣F ) ≥

2K∑
k=1

(−1)k−1
∑

1≤i1<···<ik≤N

P
{
|Z|min ≥ xN − ιT log(N)−1/2

}
−o(1).

(S2.6)

By (S2.5), (S2.6), and the proof of Theorem 1 in Cai et al. (2014), we

have

P

[
max
1≤i≤N

Ŵ 2
i − 2 log (N) + log {log (N)} ≤ x

∣∣F]→ exp

{
− 1√

π
exp

(
−x

2

)}
,

where the right term is not affected by F . Thus, (S2.1) is proved.

Step II. We next prove that maxi |Wi − Ŵi| = op{1/ log(N)}. Note

that maxi |Wi − Ŵi| ≤ maxi(|W̃i − Ŵi|+ |Wi − W̃i|). We then consider the

two terms maxi |W̃i − Ŵi| and maxi |Wi − W̃i| separately. We first prove



that max1≤i≤N
∣∣W̃i − Ŵi

∣∣ = op{1/ log(N)}. We have that

P

{
max
1≤i≤N

∣∣∣W̃i − Ŵi

∣∣∣ ≥ 1

log(N)

}
≤ P ( max

1≤i≤N
max
1≤t≤T

|Vit| ≥ τT )

≤
∑

1≤i≤N

∑
1≤t≤T

P (|Vit| ≥ τT ).

For any ξt → 0, we obtain

P (|Vit| ≥ τT ) =P (|εit/σ1/2
ii | ≥ |h−1t |τT )

=P (|εit/σ1/2
ii | ≥ |h−1t |τT , |h−1t | ≥ ξt)

+ P (|εit/σ1/2
ii | ≥ |h−1t |τT , |h−1t | < ξt)

≤P (|εit/σ1/2
ii | ≥ ξtτT ) + P (|ht| ≥ ξ−1t ).

We consider the above two parts separately. We first calculate P (|εit/σ1/2
ii | ≥

ξtτT ). Under Assumption (A.2), by the Markov inequality, we then obtain

P (|εit/σ1/2
ii | ≥ ξtτT ) ≤ K exp(−ηξ2t τ 2T ) = K(N + T )−4. (S2.7)

We next calculate P (|ht| ≥ ξ−1t ). Define κκκ = (Z>Z)−1(Z>1T ) = (Z>Z/T )−1(Z>1T/T ) =

(κ1, · · · , κ(1+d)L)> and κ̃κκ =
{
E(Z>Z)/T

}−1 E(Z>1T/T ). By the defini-

tion of ht, we have P (|ht| ≥ ξ−1t ) = P (|1 −
∑(1+d)L

k=1 κkZtk| ≥ ξ−1t ) ≤

P (|
∑(1+d)L

k=1 κkZtk| ≥ ξ−1t − 1). Under Assumption (A.3) and L = o(T 1/3),

by the result in Ma et al. (2020), we have ‖E(Z>1T/T )‖∞ = O(L−1),

‖
{
E(Z>Z)/T

}−1 ‖∞ = O(L), ‖Z>1T/T−E(Z>1T/T )‖∞ = Op(log T/
√
TL)
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and ‖(Z>Z/T )−1−
{
E(Z>Z)/T

}−1 ‖∞ = Op(L
2 log T/

√
TL). Then, we ob-

tain ‖κ̃κκ‖∞ ≤ ‖
{
E(Z>Z)/T

}−1 ‖∞ ‖E(Z>1T/T )‖∞ = O(1), and

‖κκκ− κ̃κκ‖∞ ≤‖Z>1T/T − E(Z>1T/T )‖∞‖
{
E(Z>Z)/T

}−1 ‖∞
+ ‖(Z>Z/T )−1 −

{
E(Z>Z)/T

}−1 ‖∞‖Z>1T/T‖∞
=Op(L

1/2 log T/T 1/2).

Thus, κκκ
p→ κ̃κκ as T →∞, and κi is bounded by a positive constant Cκ with

the probability tending to one. By the fact that |
∑L

l=1Bl(t/T )| is bounded

by a positive constant C
′

and Assumption (A.3) (ii), we have

P (|ht| ≥ ξ−1t ) ≤ P (|
(1+d)L∑
k=1

κkZtk| ≥ ξ−1t − 1)

≤ P (Cκ

(1+d)L∑
k=1

|Ztk| ≥ ξ−1t − 1)

≤ P

{
CκC

′
(1 +

d∑
j=1

|fjt|) ≥ ξ−1t − 1

}

≤ P

{
CκC

′
(1 + d max

1≤j≤d
|fjt|) ≥ ξ−1t − 1

}
≤ exp

[
−
{
b−11 d−1C−1κ C

′−1(ξ−1t − 1− CκC
′
)
}a1]

.

(S2.8)

Combining the results (S2.7) and (S2.8), we have

P

{
max
1≤i≤N

∣∣∣W̃i − Ŵi

∣∣∣ ≥ 1

log(N)

}
≤ NT

{
P (|εit/σ1/2

ii | ≥ ξtτT ) + P (|ht| ≥ ξ−1t )
}

≤ KNT (T +N)−4 +NT exp
[
−
{
b−11 d−1C−1κ C

′−1(ξ−1t − 1− CκC
′
)
}a1]

→ 0

(S2.9)



by setting ξt = o
[
{log(N) + log(T )}−1/a1

]
.

We next prove that max1≤i≤N
∣∣W̃i −Wi

∣∣ = op(1/ log(N)). Under As-

sumption (A.3), there exist two finite positive constants C̃z and C̆z, such

that

max
i
|Wi − W̃i| =(1>TMZ1T )−1/2 max

i

T∑
t=1

|ρitht|/σ1/2
ii

≤C̃zT−1/2 max
i

T∑
t=1

|(ρit0 +
d∑
j=1

ρijtfjt)(1−
(1+d)L∑
k=1

κkZtk)|

≤C̆zT−1/2L−r
T∑
t=1

(1 +
d∑
j=1

|fjt|)2

=Op(L
−rT 1/2) = op(1/ log(N)).

(S2.10)

Thus, by (S2.9) and (S2.10), we obtain maxi |Wi− Ŵi| ≤ maxi(|W̃i− Ŵi|+

|Wi − W̃i|) = op(1/ log(N)).

Accordingly, we obtain

∣∣∣∣ max
1≤i≤N

W 2
i − max

1≤i≤N
Ŵ 2
i

∣∣∣∣ ≤ 2 max
1≤i≤N

|Wi| max
1≤i≤N

∣∣∣Wi − Ŵi

∣∣∣+ max
1≤i≤N

∣∣∣Wi − Ŵi

∣∣∣2 = op(1),
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which immediately leads to

P

[
max
1≤i≤N

W 2
i − 2 log (N) + log {log (N)} ≤ x

]
= P

[
max
1≤i≤N

Ŵ 2
i − 2 log (N) + log {log (N)} ≤ x+ max

1≤i≤N
Ŵ 2
i − max

1≤i≤N
W 2
i

]
= P

[
max
1≤i≤N

Ŵ 2
i − 2 log (N) + log {log (N)} ≤ x+ op(1)

]
.

(S2.11)

Recall that W 2
i = (1>TMZ1T )(α̂i,ACA − αi,ACA)2/σii. Then, by (S2.1)

and (S2.11), we have

P

[
max
1≤i≤N

(1>TMZ1T )(α̂i,ACA − αi,ACA)2

σii
− 2 log (N) + log {log (N)} ≤ x

]
→ exp

{
− 1√

π
exp

(
−x

2

)}
.

(S2.12)

Accordingly, to prove the theorem, it suffices to show that∣∣∣∣∣ max
1≤i≤N

(α̂i,ACA − αi,ACA)2

(1>TMZ1T )−1σ̂ii
− max

1≤i≤N

(α̂i,ACA − αi,ACA)2

(1>TMZ1T )−1σii

∣∣∣∣∣ = op(1). (S2.13)

By the triangle inequality, (S2.13) follows as∣∣∣∣∣ max
1≤i≤N

(α̂i,ACA − αi,ACA)2

(1>TMZ1T )−1σ̂ii
− max

1≤i≤N

(α̂i,ACA − αi,ACA)2

(1>TMZ1T )−1σii

∣∣∣∣∣
≤ max

1≤i≤N

∣∣∣∣∣(α̂i,ACA − αi,ACA)2

(1>TMZ1T )−1σii

∣∣∣∣∣
∣∣∣∣σiiσ̂ii − 1

∣∣∣∣
≤ max

1≤i≤N

∣∣∣∣∣(α̂i,ACA − αi,ACA)2

(1>TMZ1T )−1σii

∣∣∣∣∣ max
1≤i≤N

∣∣∣∣σiiσ̂ii − 1

∣∣∣∣ .



First, by (S2.12), we have

max
1≤i≤N

∣∣∣∣∣(α̂i,ACA − αi,ACA)2

(1>TMZ1T )−1σii

∣∣∣∣∣ = Op {log(N)} . (S2.14)

In addition, by Lemma 5, we have

max
1≤i≤N

∣∣∣∣σiiσ̂ii − 1

∣∣∣∣ ≤ max
1≤i≤N

1

|σ̂ii|
max
1≤i≤N

|σii − σ̂ii| ≤ C max
1≤i≤N

|σii − σ̂ii|

= Op

{√
L log(N)/T + L−r

}
.

(S2.15)

Combining the results in (S2.14) and (S2.15), we have∣∣∣∣∣ max
1≤i≤N

(α̂i,ACA − αi,ACA)2

(1>TMZ1T )−1σ̂ii
− max

1≤i≤N

(α̂i,ACA − αi,ACA)2

(1>TMZ1T )−1σii

∣∣∣∣∣
= Op

[
L1/2 {log(N)}3/2

T 1/2
+ L−r log(N)

]
= op(1).

Thus, (S2.13) is proved. Consequently, we have

P

[
max
1≤i≤N

(1>TMZ1T )(α̂i,ACA − αi,ACA)2

σ̂ii
− 2 log (N) + log {log (N)} ≤ x

]
→ exp

{
− 1√

π
exp

(
−x

2

)}
,

(S2.16)

which completes the proof of Theorem 1.

S3 Proof of Theorem 2

Using the results proved in Theorem 1, we define

MCA = max
1≤i≤N

(1>TMZ1T )α̂2
i,ACA

σ̂ii
and MCA1 = max

1≤i≤N

(1>TMZ1T )(α̂i,ACA − αi,ACA)2

σ̂ii
.
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Then, by the proof of Theorem 1, we have

P [MCA1 − 2 log (N) + log {log (N)} ≤ x]→ exp

{
− 1√

π
exp

(
−x

2

)}
.

This result implies that

P

[
MCA1 ≤ 2 log(N)− 1

2
log {log(N)}

]
→ 1,

by setting x = 1
2

log {log(N)}. Note that max1≤i≤N |αi,ACA/σ1/2
ii | ≥

√
8 log(N)/(cmT )

by the definition of U(2
√

2/
√
cm). Consequently, by the triangle inequality,

we have

MCA ≥ max
1≤i≤N

(1>TMZ1T )α2
i,ACA

2σ̂ii
−MCA1

≥ max
1≤i≤N

(1>TMZ1T )α2
i,ACA

2σii
−MCA1 − max

1≤i≤N

(1>TMZ1T )α2
i,ACA

2σii

|σ̂ii − σii|
σii

.

According to Lemma 5, we have maxi |σ̂ii − σii| = Op(L
−r +

√
L/T ) =

Op(
√
L/T ) since L−r

√
T log(N) = op(1). If maxi (1

>
TMZ1T )α2

i,ACA/2σii =

op(
√
T/L), then we have

MCA ≥ max
1≤i≤N

(1>TMZ1T )α2
i,ACA

2σii
−MCA1 − op(1)

≥ 4 log(N)− 2 log(N) +
1

2
log {log(N)}

≥ 2 log(N)− log {log(N)}+ qλ,

which implies

P (Ψλ = 1) = P
{

MCA ≥ 2 log(N)− log
(

log(N)
)

+ qλ

}
→ 1.



as N, T → ∞. If (1>TMZ1T )α2
i,ACA/2σii ≥ Cα(

√
T/L), for some constants

Cα, then

MCA ≥Cα
√
T/L− 2 log(N) +

1

2
log log(N)− Cα

√
T/Lop(1)

≥Cα/2
√
T/L ≥ 2 log(N)− log {log(N)}+ qλ

which completes the proof of Theorem 2.

S4 Proof of Proposition 1

One can easily verify that S (kN , $) ⊆ U(2
√

2/
√
cm). Then, by the results

of Theorem 2, the power of MCA converges to one for this case. Accordingly,

it suffices to show that P
(
TH > z1−λ

)
→ λ.

Under the proposition assumptions, one can also verify that assump-

tions (A1)–(A3) and conditions (C.1)–(C.2) used in Ma et al. (2020) are

valid. Then, by the results of Theorem 2 in Ma et al. (2020), we have

σ̂−1NT = Op(N
1/2), and the HDA test statistic TH follows the asymptotic

normal distribution with mean γ0 and variance one under the alternative

hypotheses, where γ0 = lim(N,T )→∞ σ̂
−1
NTN

−1T−1
∑N

i=1 α
2
i,ACA(1>TMZ1T )2.

Accordingly, as min(N, T )→∞,

P
(
TH > z1−λ

)
→ Φ

(
γ0 − z1−λ

)
,

where Φ(·) denotes the cumulative distribution of a standard normal distri-
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bution. Therefore, to prove the theorem, it suffices to show γ0 → 0 when

αααACA ∈ S
(
kN , $

)
with the probability approaching one.

According to Lemma 4, we have

γ0 ≤ lim
(N,T )→∞

σ̂−1NTN
−1T−1(CmT )2

N∑
i=1

α2
i,ACA

≤ lim
(N,T )→∞

σ̂−1NTN
−1C2

mTN
p {8N$/(cmT )} max

1≤i≤N
σii

≤ lim
(N,T )→∞

8C2
mc
−1
m (Np+$−1/2) max

1≤i≤N
σii = 0.

Combining the results above, we have P
(
TH > z1−λ

)
→ λ, which completes

the entire proof.

S5 Proof of Theorem 3

Define W ∗
i = σ

−1/2
εεε,ii (1>TMZ1T )1/2(α̂i,ACA − (1>TMZ1T )−11>TMZX̂λ̂λλi). We

prove Theorem 3 in two steps. In Step I, we provide the distribution of

maxiW
∗2
i . In Step II, we provide the distribution of M̃CA.

Step I. After a simple calculation, we have

W ∗
i = θ̃θθ

>
Ri − θ̃θθ

>
X̂λ̂λλi − θ̃θθ

>
X>(X>X)−1Xεεεt + θ̃θθ

>
X>(X>X)−1Xεεεi

= θ̃θθ
>

(IT −PX)εεεi + θ̃θθ
>
ρρρi + θ̃θθ

>
(Xλλλi − X̂λ̂λλi) + θ̃θθ

>
X>(X>X)−1Xεεεi,

where θ̃θθ = (σεεε,ii1
>
TMZ1T )−1/2MZ1T .

Similarly to in the proof of Theorem 1, we define h∗ = MXMZ1T ,

V ∗it = εith
∗
t/σ

1/2
εεε,ii . Let V̂ ∗it = V ∗itI(|V ∗it | ≤ τT ) for t = 1, · · · , T and i =



1, · · · , N , where τT = 2ξ−1t
√

log(N + T ), where ξt → 0 is the same as

that in Theorem 1. Further, define W̃ ∗
i =

∑T
t=1 V

∗
it/(1

>
TMZ1T )1/2, W̄ ∗

i =∑T
t=1 V

∗
it/(1

>
TMZMXMZ1T )1/2, and Ŵ ∗

i =
∑T

t=1 V̂
∗
it/(1

>
TMZMXMZ1T )1/2.

To prove that maxiW
∗2
i converges to the type I extreme value distribution,

we first prove that Ŵ ∗2
i converges to the type I extreme value distribution.

Then we prove max1≤i≤N |W ∗
i − Ŵ ∗

i | = op(1/ log(N)).

Using the same techniques as those in the proof of Theorem 1, we can

prove that

P

[
max
1≤i≤N

Ŵ ∗2
i − 2 log (N) + log {log (N)} ≤ x

]
→ exp

{
− 1√

π
exp

(
−x

2

)}
.

For conciseness, we omit the details here.

Next, we prove that maxi |W ∗
i − Ŵ ∗

i | = op(1/ log(N)). Note that

maxi |W ∗
i − Ŵ ∗

i | ≤ maxi(|W ∗
i − W̃ ∗

i |+ |W̃ ∗
i − W̄ ∗

i |+ |W̄ ∗
i − Ŵ ∗

i |). Then, we

consider the three terms separately.

For maxi |W ∗
i − W̃ ∗

i |, we have

max
i
|W ∗

i − W̃ ∗
i | = max

i
|θ̃θθ
>
ρρρi + θ̃θθ

>
(Xλλλi − X̂λ̂λλi) + θ̃θθ

>
X>(X>X)−1Xεεεi|

= max
i
|θ̃θθ
>(

Xλλλi −PX̂Xλλλi + (PX −PX̂)εεεi + MX̂ρρρi
)
|

= max
i
|θ̃θθ
>

(PX −PX̂)Xλλλi|+ max
i
|θ̃θθ
>

(PX −PX̂)εεεi|

+ max
i
|θ̃θθ
>

(PX −PX̂)ρρρi|

=I(1) + I(2) + I(3).
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For I(1), according to Assumption (A.7), we have that

I(1) = max
i
‖PX −PX̂‖‖θ̃θθ

>
Xλλλi‖

≤max
i
‖λλλi‖‖PX −PX̂‖‖θ̃θθ

>
X‖.

According to the normal assumption, we have that ‖θ̃θθ
>
X‖ = Op(1). Recall

that ‖PX−PX̂‖ = Op(
√
L/T +L−r) = Op(

√
L/T ) since L−r

√
T log(N) =

o(1). Under Assumptions (A.6) and (A.7), we have I(1) = op(1/ log(N)).

Similarly, we have I(2) = op(1/ log(N)). And I(3) = op(1/ log(N)) can be

obtained as the same as that in the proof of Theorem 1.

For maxi |W̄ ∗
i − Ŵ ∗

i |, we have that

P

{
max
1≤i≤N

∣∣∣W̄ ∗
i − Ŵ ∗

i

∣∣∣ ≥ 1

log(N)

}
≤ P ( max

1≤i≤N
max
1≤t≤T

|V ∗it | ≥ τT )

≤
∑

1≤i≤N

∑
1≤t≤T

P (|V ∗it | ≥ τT ).

For any ξt → 0, we obtain

P (|V ∗it | ≥ τT ) =P (|εit/σ1/2
εεε,ii | ≥ |h∗−1t |τT )

=P (|εit/σ1/2
εεε,ii | ≥ |h∗−1t |τT , |h∗−1t | ≥ ξt)

+ P (|εit/σ1/2
εεε,ii | ≥ |h∗−1t |τT , |h∗−1t | < ξt)

≤P (|εit/σ1/2
εεε,ii | ≥ ξtτT ) + P (|h∗t | ≥ ξ−1t ).

We consider the above two parts separately. First, we calculate P (|εit/σ1/2
εεε,ii | ≥



ξtτT ). According to the normal assumption, we have

P (|εit/σ1/2
ii | ≥ ξtτT ) ≤ K(N + T )−4. (S5.1)

Next, we calculate P (|h∗t | ≥ ξ−1t ). Recall that κκκ = (Z>Z)−1(Z>1T ) =

(Z>Z/T )−1(Z>1T/T ) = (κ1, · · · , κ(1+d)L)> and κ̃κκ =
{
E(Z>Z)/T

}−1 E(Z>1T/T ).

According to the proof of Theorem 1, we have that κκκ→ κ̃κκ with probability

tending to 1, and κi is bounded. Following the definition of h∗t , we have

P (|h∗t | ≥ ξ−1t ) = P (|1−
(1+d)L∑
k=1

κkZtk −X>t (X>X)−1X>MZ1T | ≥ ξ−1t )

≤P (|
(1+d)L∑
k=1

κkZtk| ≥ (ξ−1t − 1)/2) + P (|X>t (X>X)−1X>MZ1T | ≥ (ξ−1t − 1)/2).

(S5.2)

The first term of (S5.2) is less than exp(−C∗1(ξ−1t −1−C∗2)a1), for some con-

stants C∗1 and C∗2 , which is proved in the proof of Theorem 1. For the second

term of (S5.2), according to Assumption (A.5), we have that E(T−1X>X) =

Iv, Var(T−1/2X>MZ1T ) = T−1E(Var(X>MZ1T |Z)) ≤ T−1E(1>TMZ1T )Iv.

Denote $1 = T−1/2(T−1X>X)−1X>MZ1T . Thus, the elements in $1 are

bounded in probability. Under the normal assumption of Xt, via ’Hoeffding
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inequality’, we have

P (|X>t (X>X)−1X>MZ1T | ≥ (ξ−1t − 1)/2)

≤P (|
v∑
k=1

T−1/2Xtv$t| ≥ (ξ−1t − 1)/2)

≤P (|
v∑
k=1

T−1/2XtvC
∗
3 | ≥ (ξ−1t − 1)/2)

≤ exp(−C∗4T (ξ−1t − 1)2),

for some constants C∗3 and C∗4 .

Then, we have

P

{
max
1≤i≤N

∣∣∣W̄ ∗
i − Ŵ ∗

i

∣∣∣ ≥ 1

log(N)

}
≤ NT

{
P (|εit/σ1/2

εεε,ii | ≥ ξtτT ) + P (|h∗t | ≥ ξ−1t )
}

≤ KNT (T +N)−4 +NT exp(−C∗1(ξ−1t − 1− C∗2)a1) +NT exp(−C∗4T (ξ−1t − 1)2)→ 0.

For maxi |W̃ ∗
i − W̄ ∗

i |, we have

max
i
|W̃ ∗

i − W̄ ∗
i | = max

i
|W̄ ∗

i ||
1>TMZMXMZ1T

1>TMZ1T
− 1| ≤ 3 log(N)|1

>
TMZPXMZ1T

1>TMZ1T
|.

As 1
T
X>X

p→ Iv, and Var(X>MZ1T/
√
1>TMZ1T ) is bounded, we have that

1>
T MZPXMZ1T

1>
T MZ1T

= Op(1/T ). Then maxi |W̃ ∗
i − W̄ ∗

i | = op(1/ log(N)).

Accordingly, we obtain

∣∣∣∣ max
1≤i≤N

W ∗2
i − max

1≤i≤N
Ŵ ∗2
i

∣∣∣∣ ≤ 2 max
1≤i≤N

|W ∗
i | max

1≤i≤N

∣∣∣W ∗
i − Ŵ ∗

i

∣∣∣+ max
1≤i≤N

∣∣∣W ∗
i − Ŵ ∗

i

∣∣∣2 = op(1),



which immediately leads to

P

[
max
1≤i≤N

W ∗2
i − 2 log (N) + log {log (N)} ≤ x

]
= P

[
max
1≤i≤N

Ŵ ∗2
i − 2 log (N) + log {log (N)} ≤ x+ max

1≤i≤N
Ŵ ∗2
i − max

1≤i≤N
W ∗2
i

]
= P

[
max
1≤i≤N

Ŵ ∗2
i − 2 log (N) + log {log (N)} ≤ x+ op(1)

]
.

(S5.3)

Step II. Recall that

M̃CA = W ∗2
i σεεε,ii/σ̂εεε,ii.

Thus to prove Theorem 3, we only need maxi |σεεε,ii/σ̂εεε,ii−1| = op(1/ log(N)),

which can be proven using Lemma (8).

S6 Test portfolios

We use a total of 334 bivariate-sorted portfolios from model factors and

prominent return anomalies as test assets in the empirical analyses. We

start from a set of 100 portfolios: 25 5×5 portfolios sorted by size and book-

to-market ratio, 25 5×5 portfolios sorted by size and operating profitability,

25 5 × 5 portfolios sorted by size and investment, and 25 5 × 5 portfolios

sorted by size 5 × 5 and momentum. We then add to these 100 portfolios

234 additional portfolios obtained from anomalies. In particular, we try

to include several prominent return anomalies, and they are as follows: (i)
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accruals (see Sloan, 1996), hereafter AC; (ii) market β (see Black et al.,

1972; Fama and MacBeth, 1973), hereafter β; (iii) net share issues (see

Ikenberry et al., 1995; Loughran and Ritter, 1995), hereafter NSI; (iv) daily

variance (see Ang et al., 2006), hereafter Var; (v) daily residual variance

(see Ang et al., 2006, Fu, 2009), hereafter RVar; (vi) short-term reversal (see

Jegadeesh, 1990; Lehmann, 1990), hereafter STR; (vii) long-term reversal

(see De Bondt and Thaler, 1985), hereafter LTR. Specifically, the sets of

234 additional portfolios include: 25 5× 5 size-AC portfolios, 25 5× 5 size-

β portfolios, 35 5 × 7 size-NSI portfolios, 25 5 × 5 size-Var portfolios, 25

5× 5 size-RVar portfolios, 25 5× 5 size-STR portfolios, 25 5× 5 size-LTR

portfolios, and 49 industry portfolios employed by Ahmed et al. (2019).

The data of the 334 test portfolios and the descriptions of the portfolio

construction are available from Kenneth French’s website.

S7 Real Data Application

We now apply the MCA test to assess the efficiency hypothesis in U.S.’s

stock markets, and compare it with the HDA test from Ma et al. (2020) to

illustrate the superiority of the MCA test in dealing with sparse alternatives.



S7.1 Data description

Consider the three-factor model proposed by Fama and French (1993),

Rit −Rft = αit + βi1t(MKTt −Rft) + βi2tSMBt + βi3tHMLt + εit,

for i = 1, · · · , N and t = 1, · · · , T , where Rit is the return for test asset i,

Rft is the risk-free rate, MKTt, SMBt, and HMLt are constituted market,

size, and value factors at month t, respectively. A total of 334 bivariate-

sorted portfolios are investigated, which have been commonly used in the

financial literature (e.g., Fama and French (2015, 2016, 2018, 2020); Kozak

et al. (2018); Ahmed et al. (2019); Feng et al. (2020)). A more detailed de-

scription of the portfolios is provided in Section S6 in the supplementary ma-

terial. The time series of factors and portfolios are from Kenneth French’s

website for the period January 1981 to December 2020 (480 months).

S7.2 Are alphas and betas time-varying?

Before testing the Fama-French three-factor model, it is necessary to check

whether the values of alphas and betas are indeed time-varying. Here we

first divide the 40 years into four 10 year sub-periods. Then we examine

the constancy of the alphas and betas over the full period and four sub-

periods based on the constant coefficient (CC) test proposed by Ma et al.

(2020). The results are provided in Table S.1, which contains the rejection
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Table S.1: The rejection rates of the CC test based on the Fama-French three-factor

model over the full period and four sub-periods at the three significance levels λ =

0.1, 0.05, 0.01.

Time period λ = 0.1 λ = 0.05 λ = 0.01

1/1981–12/2020 0.940 0.934 0.919

1/1981–12/1990 0.488 0.407 0.338

1/1991–12/2000 0.862 0.805 0.757

1/2001–12/2010 0.823 0.707 0.650

1/2011–12/2020 0.497 0.392 0.329

Figure 1: The rejection rates of the CC test based on the Fama-French three-factor

model using 120-month rolling windows with a significance level of 5%.



ratios of the CC test at the three significant levels λ = 0.1, 0.05, 0.01. For

the full period, the CC test indicates a decisive rejection of alphas and

betas homogeneity in time series, and the rejection rates are close to 1

at all significance levels. Similar results have been found in the four sub-

periods, especially the subperiods 1/1991-12/2000 and 1/2001-12/2010. To

further corroborate the conclusion, CC test is also conducted over the 120

month rolling windows. The results are provided in Figure 1. As shown in

Figure 1, the rejection rates are always large, which supports that alphas

and betas are time-varying. These evidences indicate that the conditional

time-varying multi-factor model is more suitable than the traditional time-

invariant multi-factor model.

S7.3 Empirical Results

We employ the MCA and HDA tests to assess the market efficiency of the

U.S.’s stock market. We also report the results for our proposed M̃CA test

from Section 3 (MCA1 hereafter). We first assess the market efficiency

over the full 40-year period and each 10-year sub-period. Then, we study

the changes in the market efficiency over time through the 120 month rolling

windows. Here, the order of B-splines is set at 3 for all estimation windows,

and the number of interior knots n is determined via BIC, as discussed
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in Section 2.2. The results are provided in Table S.2 and Figure 2. The

number of significant nonzero elements in α̂ααACA, |S|, is defined as |S| =

#
∣∣∣α̂i,ACA/σ̂1/2

ii

∣∣∣ ≥√4 log(N)/T , i = 1, · · · , 334.

For the full 40-year period and the 1/1981-12/1990 sub-period, the

number of significant nonzero components in α̂ααACA is sufficiently large, 17

and 38, respectively, which indicates that α̂ααACA is medium dense. Both the

MCA and HDA tests reject the market efficiency assumption at a significant

level of 0.01. By contrast, in the 1/2001-12/2010 sub-period, only one

portfolio with a significant nonzero α̂i,ACA value is detected, which indicates

the strong sparsity of α̂ααACA. In this sub-period, the p-values of the MCA

and HDA tests are 0.000 and 0.189, respectively. The MCA test can reject

the null hypothesis at a significant level of 0.01, while the HDA test cannot.

The MCA test is more powerful. Furthermore, we find that MCA1 is highly

powerful and rejects the null hypothesis in any cases.

The p-values of the MCA, MCA1, and HDA tests and the |S| sequences

over time are shown in Figure 2. The time interval can be divided into two

parts: 1991-1999 and 1999-2020. In the initial time interval 1991-1999,

the number of significant nonzero components is sufficiently large, between

10 and 38, which indicates that α̂ααACA is medium dense. In this case, the

proportion of non-zero alphas is between 3.0% and 11.4%, which is similar



Table S.2: The mean-variance efficiency tests are based on the Fama-French three-factor

model. The values of test statistics for the MCA, MCA1, and HDA are denoted as MCA,

MCA1, and HDA, respectively. The p values of the MCA, MCA1, and HDA tests are

denoted as p(MCA), p(MCA1), and p(HDA), respectively.

Time period MCA p(MCA) MCA1 p(MCA1) HDA p(HDA) |S|

1/1981–12/2020 47.358 0.000 171.973 0.000 11.475 0.000 17

1/1981–12/1990 114.830 0.000 124.732 0.000 8.546 0.000 38

1/1991–12/2000 34.485 0.000 35.755 0.000 3.142 0.002 6

1/2001–12/2010 21.980 0.001 24.465 0.000 1.314 0.189 1

1/2011–12/2020 29.490 0.000 53.380 0.000 3.911 0.000 4

to the 8.3% obtained in the simulation study (for N = 500, and p = 0.6). All

three tests tend to reject the null hypothesis. A large number of anomaly

portfolio excess returns decline or even disappear starting in the mid 1990s,

especially after 2000 (e.g., Jones and Pomorski (2017); Fama and French

(2021)). In the next time interval 1999-2020, the number of significant

nonzero components becomes small, which indicates that αααACA tends to be

sparse. In this case, the proportion of non-zero alphas is 3.0%, close to the

2.4% obtained in the simulation study (for N = 500, and p = 0.4). The

MCA and MCA1 tests tend to reject the null hypothesis, while the HDA

tends to accept it. Based on these results, we conclude that the proposed

MCA test is more inclined to reject the null hypothesis than the HDA test.
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Figure 2: Dynamic movement of the mean-variance efficiency by testing the Fama-

French three-factor model using a 120-month rolling window. The blue horizontal line

corresponds to the significance level λ = 0.05. (a) Time variation in p-values of the

MCA, MCA1, and HDA tests; (b) Number of significant nonzero components in α̂ααACA .



S8 Simulation Results for Maximum Conditional Al-

pha Test with Latent Factors

We conduct Monte Carlo experiments to illustrate the finite sample per-

formance of the proposed test under conditional multi-factor models with

latent factors. Specifically, we simulate the random error εit from a latent

factor model, that is,

εit = λλλ>i Xt + εit,

for i = 1, · · · , N , t = 1, · · · , T , where εεεt = (ε1t, · · · , εNt)> ∈ RN , λλλi =

(λi1, · · · , λiv)> ∈ Rv, and Xt = (X1t, · · · , Xvt)
> ∈ Rv is the low dimension

of v unknown latent factors. Here, Xt and λλλi are independently drawn

from a standard normal distribution. We consider two different numbers

of latent factors (v = 1, 3), that is, the latent factor models include one

factor or three factors. The experimental results are summarized in Table

S.3, which show that the empirical size and power performances of the

proposed factor-adjusted MCA test are stable.

S9 Simulation Results of the MAX Test

To assess the performance of the MAX test (Feng et al., 2022) in testing

alpha coefficients under sparse alternatives, simulation studies were con-
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ducted for Examples 1 and 2. The simulations considered three different

sample sizes, three different numbers of test assets, and four different error

distributions. The summarized results are presented in Table S.4, and they

reveal significant size distortions in the MAX test. This outcome is ex-

pected since the MAX test is specifically designed for time-invariant factor

loadings, while Examples 1 and 2 involve time-varying factor loadings.

S10 Simulation Results for Student-tDistribution Er-

rors

The sizes and powers of the MCA and HDA tests with student-t distri-

bution errors are summarized in Table S.5. We consider the standardized

t5 distribution: ẽit ∼ t(5)/
√

5/3. We find that the simulation results are

quantitatively similar to the results for normal, exponential, and mixture

distribution errors.
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Table S.3: Size and Power of the proposed MCA test under conditional multi-factor

models with latent factors for Example 1 with normal distribution errors.

size power

T N p=1 p=0.8 p=0.6 p=0.4 p=0.2

v = 1

120 50 0.052 0.552 0.746 0.864 0.926 0.954

100 0.056 0.608 0.796 0.908 0.928 0.966

200 0.048 0.708 0.872 0.944 0.966 0.97

500 0.04 0.778 0.944 0.978 0.972 0.978

240 50 0.048 0.606 0.734 0.898 0.958 0.988

100 0.054 0.782 0.868 0.958 0.976 0.996

200 0.048 0.866 0.95 0.996 0.99 0.996

500 0.056 0.962 0.992 0.992 0.998 0.998

360 50 0.048 0.66 0.77 0.918 0.982 0.998

100 0.06 0.836 0.886 0.984 0.996 0.998

200 0.05 0.942 0.978 1 0.998 1

500 0.044 0.984 0.998 1 0.996 1

v = 3

120 50 0.046 0.466 0.708 0.828 0.906 0.956

100 0.06 0.574 0.794 0.904 0.93 0.984

200 0.062 0.662 0.854 0.944 0.954 0.978

500 0.06 0.774 0.936 0.968 0.97 0.952

240 50 0.058 0.582 0.768 0.878 0.96 0.986

100 0.056 0.792 0.846 0.958 0.982 0.998

200 0.044 0.884 0.948 0.974 0.984 0.996

500 0.056 0.974 0.988 0.998 0.996 1

360 50 0.054 0.654 0.776 0.914 0.976 0.994

100 0.046 0.834 0.886 0.986 0.99 0.998

200 0.052 0.928 0.968 0.992 0.992 0.998

500 0.05 0.98 0.994 0.998 0.996 1



BIBLIOGRAPHY

Table S.4: The empirical sizes of the MAX test for testing conditional alphas with a

nominal level of 5%, where Normal, Exponential, Mixture and t distributions refer to

the distribution from which the error term is generated.

Example 1 Example 2

T N Normal Exp Mix t Normal Exp Mix t

120 50 0.19 0.23 0.172 0.198 0.246 0.346 0.28 0.278

100 0.276 0.278 0.23 0.26 0.312 0.406 0.36 0.358

200 0.392 0.38 0.336 0.308 0.398 0.528 0.476 0.47

500 0.44 0.436 0.442 0.41 0.58 0.624 0.582 0.578

240 50 0.174 0.204 0.194 0.196 0.228 0.286 0.242 0.246

100 0.252 0.242 0.222 0.242 0.316 0.326 0.346 0.306

200 0.278 0.304 0.246 0.306 0.38 0.432 0.376 0.39

500 0.402 0.428 0.388 0.334 0.494 0.524 0.494 0.5

360 50 0.194 0.182 0.188 0.18 0.242 0.276 0.254 0.216

100 0.236 0.26 0.236 0.22 0.326 0.29 0.272 0.3

200 0.282 0.332 0.24 0.288 0.378 0.42 0.39 0.356

500 0.384 0.346 0.336 0.35 0.496 0.51 0.552 0.514



Table S.5: Size and power of MCA and HDA tests from Examples 1 and 2 with t

distribution errors.
size power(dense) power(medium dense) power(sparse)

p=1 p=0.8 p=0.6 p=0.4 p=0.2

T N MCA HDA MCA HDA MCA HDA MCA HDA MCA HDA MCA HDA

Example 1

120 50 0.046 0.058 0.762 0.894 0.732 0.828 0.712 0.674 0.802 0.616 0.848 0.458

100 0.052 0.058 0.84 0.928 0.81 0.872 0.808 0.726 0.77 0.42 0.918 0.484

200 0.05 0.062 0.904 0.954 0.828 0.868 0.852 0.71 0.888 0.39 0.9 0.23

500 0.049 0.054 0.898 0.946 0.894 0.898 0.88 0.644 0.87 0.24 0.918 0.138

240 50 0.046 0.05 0.758 0.892 0.748 0.852 0.752 0.624 0.826 0.526 0.95 0.446

100 0.053 0.044 0.81 0.932 0.814 0.874 0.864 0.684 0.848 0.334 0.936 0.386

200 0.046 0.038 0.898 0.956 0.854 0.894 0.836 0.58 0.906 0.274 0.966 0.16

500 0.052 0.042 0.934 0.982 0.928 0.91 0.898 0.544 0.922 0.152 0.966 0.08

360 50 0.042 0.05 0.76 0.892 0.742 0.83 0.738 0.596 0.842 0.452 0.94 0.32

100 0.038 0.036 0.83 0.94 0.848 0.896 0.852 0.68 0.886 0.33 0.964 0.3

200 0.046 0.048 0.89 0.948 0.864 0.882 0.868 0.542 0.91 0.196 0.982 0.124

500 0.052 0.04 0.94 0.986 0.918 0.92 0.924 0.484 0.954 0.126 0.982 0.074

Example 2

120 50 0.04 0.056 0.742 0.886 0.678 0.826 0.644 0.648 0.672 0.542 0.802 0.47

100 0.038 0.051 0.82 0.924 0.78 0.856 0.76 0.718 0.73 0.452 0.86 0.454

200 0.052 0.045 0.868 0.948 0.808 0.862 0.77 0.624 0.786 0.342 0.874 0.246

500 0.056 0.037 0.908 0.954 0.876 0.884 0.806 0.512 0.83 0.238 0.866 0.136

240 50 0.036 0.044 0.728 0.89 0.698 0.822 0.666 0.642 0.724 0.496 0.832 0.382

100 0.052 0.038 0.774 0.924 0.818 0.888 0.772 0.66 0.762 0.326 0.906 0.344

200 0.042 0.044 0.888 0.954 0.824 0.89 0.854 0.628 0.826 0.226 0.944 0.14

500 0.046 0.04 0.914 0.964 0.906 0.904 0.88 0.488 0.892 0.14 0.944 0.07

360 50 0.048 0.052 0.702 0.886 0.716 0.848 0.69 0.608 0.718 0.42 0.852 0.332

100 0.052 0.044 0.824 0.926 0.808 0.892 0.76 0.646 0.764 0.276 0.942 0.296

200 0.048 0.048 0.878 0.96 0.86 0.91 0.826 0.564 0.834 0.194 0.948 0.124

500 0.062 0.038 0.94 0.982 0.904 0.916 0.89 0.444 0.906 0.098 0.95 0.064
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