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A. IJ via OLS Linear Regression

In what follows, we outline in detail the connection between OLS linear regression and the in-

finitesimal jackknife. In particular, we show how the infinitesimal jackknife estimator of variance

of bagged estimates derived recently by Efron [12] can equivalently be obtained via a straight-

forward linear regression of the bootstrap estimates on their respective sampling weights. We

begin with some general preliminary results for a general resampling setup and then transition

into specific findings for the bootstrap regime.

Remark A.1. Appendix A should be read as a standalone section. In particular, because our

goal is to cast everything in a familiar regression context, the notation used here differs slightly

in some instances from that utilized in the main text and in the remaining appendices.

Suppose we have a sample Z1, ..., Zn ∼ P with realized observations z = (z1, ..., zn)

from which we construct an estimator θ̂ = s(z) for some parameter of interest θ. Let Dn =

[Z1 · · ·Zn]T denote the original data matrix.

Consider a general resampling setup and let z∗1 , ..., z
∗
B denote B resamples of the original



data that are used to construct the corresponding estimates θ̂1, ..., θ̂B . Let wb = (wb,1, ..., wb,n)T

denote the associated resampling weights that count the number of times each observation (row)

in Dn appears in each resample. That is, wb,j = c indicates that the jth sample (row) of Dn

appears exactly c times in the bth resample. Denote the average across these resampled estimates

by

θ̃ =
1

B

B∑
b=1

θ̂b

so that θ̃ corresponds to the standard bagged estimate of θ whenever bootstrapping is the

particular kind of resampling employed. Our primary goal in the following subsection is to

derive a closed form estimate for Var(θ̃) in the bootstrap regime. We begin by deriving some

more general preliminary results.

First note that by the law of total variance, we can write

Var(θ̃) = E
[
Var

(
θ̃
∣∣Dn)]+ Var

[
E
(
θ̃
∣∣Dn)]

B
≈ Var

[
E
(
θ̃
∣∣Dn)]

since Var
(
θ̃|Dn

)
→ 0 as B →∞. Further, we have that

E
(
θ̃
∣∣Dn) =

1

B

B∑
b=1

E
(
θ̂b

∣∣∣Dn)

Let γb = E
(
θ̂b

∣∣∣Dn). Since θ1, . . . , θB are identically distributed conditional on Dn, we have

Var(θ̃) ≈ Var(γb) (A.1)

We close this Section with a final key observation: in this setup, conditional on Dn, for



each resample b = 1, ..., B we can write

θ̂b = g(wb)

for some (unknown) function g. Thus, in order to investigate the properties of the resampled

estimates, we need only understand how g depends on wb.

The Bootstrap Setting

We now narrow our focus to the bootstrap regime where B equally-weighted resamples of size

n are independently taken from the rows of Dn with replacement so that each weight vector

wb is thus distributed as Multinomial(n; 1
n
, ..., 1

n
). Now note that conditional on Dn, for each

resample b = 1, ..., B we can write

θ̂b = g(wb)

so that g(1n) gives the estimate based on all original observations θ̂. Importantly, this means

that in order to investigate the properties of the bootstrap estimates, we need only understand

how g depends on the weights wb. For each bootstrap replicate b, we can write

θ̂b − θ̂ = g(wb)− g(1n).

Now, if we assume that g is differentiable, then a first-order Taylor approximation to θ̂b − θ̂ is

given by

g(1n)T (wb − 1n).



Absent this differentiability assumption, we could alternatively consider modeling the underlying

relationship g linearly via

θ̂b − θ̂ = βT (wb − 1n) + εb for b = 1, ..., B. (A.2)

Taking this approach, the ordinary least squares estimate for β is given by

β̂OLS = β̂ = arg min
β

B∑
b=1

(
θ̂b − θ̂ − βT (wb − 1n)

)2

=

(
1

B − 1
XTX

)−1(
1

B − 1
XTY

)
(A.3)

where Y = (θ̂1 − θ̂, ..., θ̂B − θ̂)T and X = ((w1 − 1n)T , ..., (wB − 1n)T )T correspond to the

(centered) bootstrap estimates and weights, respectively.

Recall from (A.1) that

Var(θ̃) ≈ Var(γb)

where γb = E
(
θ̂b

∣∣∣Dn). The operation of E (·|Dn) serves to smooth θ̂b, as does the linear

approximation in Eq. (A.2). We thus use γ̂b = θ̂+βT (wb−1n) for b = 1, . . . B as approximations

of γb. Now Var(γb) can be estimated by the sample variance of γ̂1, . . . , γ̂B .

Further, note that since w1, ..., wB
iid∼ Multinomial(n; 1

n
, ..., 1

n
), each wb,i ∼ Binomial(n, 1

n
)

so that E(wb,i) = 1 for all b = 1, ..., B and all i = 1, ..., n. Thus, estimating the variance of θ̃

with the sample variance of {γ̂1, ..., γ̂B}, we have

V̂ar(θ̃) ≈ 1

B − 1

B∑
b=1

(
β̂T (wb − 1)

)2

= β̂T
[

1

B − 1

B∑
b=1

(wb − 1)(wb − 1)T
]
β̂.



Looking at the middle term, we have

[
1

B − 1

B∑
b=1

(wb − 1)(wb − 1)T
]
B
≈ E

(
(w1 − 1)(w1 − 1)T

)

= In −
1

n
1n×n

n
≈ In

and thus,

V̂ar(θ̃) ≈ β̂T Inβ̂ =

n∑
j=1

β̂2
j . (A.4)

Thus, in order to produce our estimate for Var(θ̃), it remains only to work out the solution to

β̂ given in (A.3).

Let’s begin by considering the expectation of the inverse of the first term in (A.3). Observe

that for i 6= j

[
E
(

1

B − 1
XTX

)]
i,j

=
1

B − 1
E

(
B∑
k=1

(wk,i − 1)(wk,j − 1)

)

=
1

B − 1

B∑
k=1

E(wk,i − 1)(wk,j − 1)

=
1

B − 1

B∑
k=1

Cov(wk,i, wk,j)

=
B

B − 1
(−n)

(
1

n

)(
1

n

)

=

(
B

B − 1

)
−1

n

where the third equality comes from the fact that each wb,i ∼ Binomial(n, 1
n

) and the fourth and

fifth equalities follow from w1, ..., wB
iid∼ Multinomial(n; 1

n
, ..., 1

n
). For the diagonal elements



(i = j), the covariance terms above become variance terms so that

B

B − 1
Cov(w1,i, w1,j) =

B

B − 1
Var(w1,i) =

(
B

B − 1

)
n− 1

n

and thus, in matrix form, we have

E
(

1

B − 1
XTX

)
= − 1

n
1n×n + In.

Finally, note that (
1

B − 1
XTX

)
B
≈ E

(
1

B − 1
XTX

)
n
≈ In (A.5)

and thus

β̂ =

(
1

B − 1
XTX

)−1(
1

B − 1
XTY

)
≈ I−1

n

(
1

B − 1
XTY

)
=

1

B − 1
XTY.

Now,

1

B − 1
XTY =

1

B − 1

(
(w1 − 1n)T , ..., (wB − 1n)T

)(
(θ̂1 − θ̂), ..., (θ̂B − θ̂)

)T

=

(
1

B − 1

B∑
b=1

(wb,1 − 1)(θ̂b − θ̂), ... ,
1

B − 1

B∑
b=1

(wb,n − 1)(θ̂b − θ̂)
)T

so that element-wise,

β̂j =
1

B − 1

B∑
b=1

(wb,j − 1)(θ̂b − θ̂)

and since E(wb,j) = 1, β̂j is effectively the sample covariance of (w1,j , ..., wB,j) and (θ̂1, ..., θ̂B).

Denoting this by sample covariance by Ĉovj and putting this together with (A.4), we have

V̂ar(θ̃) ≈
n∑
j=1

β̂2
j =

n∑
j=1

Ĉov
2

j (A.6)

which coincides exactly with the infinitesimal jackknife variance estimate given by Efron in [12].



B. Proofs and Calculations for IJB (IJ for Bootstrap)

Proof of Theorem 1:

1. By definition,

E∗[s∗w∗j ] =
∑

w∗
1+···+w∗

n=n

p(w∗1 , . . . , w
∗
n)s(X∗1 , . . . , X

∗
n)w∗j

=
∑
w∗

j≥1

w∗
1+···+w

∗
n=n

(n− 1)!

w∗1 . . . ((w
∗
j − 1)!) · · · (w∗n)!

1

nn−1
s(X∗1 , . . . , X

∗
n)

= E∗[s(X∗1 , . . . , X∗n)|X∗1 = Xj ]

= ej .

2. Conditional on the data, knowing X∗1 , . . . , X
∗
n is equivalent to knowing w∗1 , . . . , w

∗
n.

Therefore, l∗ can be also viewed as the projection of s∗ − E∗[s∗] onto the linear space

spanned by X∗1 , . . . , X
∗
n. Then we have

l∗ =
∑
i

(E∗[s∗|X∗i ]− E∗[s∗])

=
∑
i

∑
j

(E∗[s∗|X∗i = Xj ]− E∗[s∗])1{X∗
i =Xj}

=
∑
i

∑
j

(ej − s0)1{X∗
i =Xj}

=
∑
j

∑
i

(ej − s0)1{X∗
i =Xj}

=
∑
j

w∗j (ej − s0)

as desired.



3. By 1 above, IJB =
∑
j Cov2

∗(s
∗, w∗j ) =

∑
j(E∗[s

∗w∗j ] − E∗[s∗]E∗[w∗j ])2 =
∑
j(ej − s0)2.

By 2, we have Var∗(l
∗) = Var∗(

∑
j(w
∗
j − 1)(ej − s0)) =

∑
j(ej − s0)2. Thus, Var∗(l

∗) =

JK]
B = IJB.

�

Example Calculations:

Example 1: Sample Mean Consider s = s(x1, . . . , xn) = 1
n

∑n
i=1 xi. We have

s∗ =
1

n

n∑
i=1

X∗i and l∗ =

n∑
i=1

n∑
j=1

1X∗
i =Xj

(ej − s0). (B.7)

Then, E∗[s∗] = 1
n

∑n
i=1Xi and Var∗(l

∗) = 1
n2

∑n
i=1(Xi − X̄)2. Therefore,

Var(E∗[s∗]) = σ2/n, E[Var∗(l
∗)] = (n− 1)σ2/n2 (B.8)

and thus, we have E[Var∗(l
∗)]

Var(E∗[s∗])
= n−1

n
→ 1 as n → ∞. In Figures 1 and 2, X1, ..., Xn follow

N (0, σ2) where n = 100 and σ2 = 1. Since we know that Var(E∗[s∗]) = σ2/n , an oracle

estimate would be σ̂2/n, where σ̂2 is the sample variance. The gray dashed line denotes the

true value of Var(E∗[s∗]). We find that ÎJ
mc

B and ÎJ
whe

B are quite close as expected and both

perform well. The original ÎJB seems to overestimate substantially when B = 100.

Example 2: Sample Variance Consider s =
(
n
2

)−1 ∑
i<j

(xi − xj)2. We have

E∗[s∗] =
1

n

n∑
i=1

(Xi − X̄)2 and Var∗(l
∗) =

1

n2

∑
i

[
(Xi − X̄)2 − 1

n

∑
i

(Xi − X̄)2
]2
.
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Figure 1: Performance of the in-

finitesimal jackknife and its bias-

corrected alternatives on estimating

the variance of the bagged sample

mean (B=100).
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Figure 2: Performance of the in-

finitesimal jackknife and its bias-

corrected alternatives on estimating

the variance of the bagged sample

mean (B=1000).

Then we have

Var(E∗[s∗]) =

(
n− 1

n

)2 [
µ4

n
− µ2

2

n

n− 3

n− 1

]

= anµ4 − bnµ2
2,

(B.9)

where µi is the ith central moment of X for i = 2, 4. Let X = (X1, . . . , Xn)T , then E[Var∗(l
∗)]

can be written as 1
n
E[XTAX]2, where A = Σ1 − 1

n

∑
i Σi, Σi = (ei − 1

n
1n)(eTi − 1

n
1Tn ) and



ei = (0, . . . , 0, 1, 0, . . . , 0). After some calculation, we obtain

E[Var∗(l
∗)]

=
(n− 1)

n2

[
E[(X1 − X̄)4]− E[(X1 − X̄)2(X2 − X̄)2]

]
=

(
n− 1

n

)2 [(
n3 − (n− 1)2

n2(n− 1)2
+

n

(n− 1)5

)
µ4 −

(
n2 − 2n+ 3

(n− 1)n2
− 3n2(2n− 3)

(n− 1)5

)
µ2
2

]

= a′nµ4 − b′nµ2
2.

Thus, we have

a′n
an

= 1 +
n2 + n− 1

n(n− 1)2
+

n2

(n− 1)5
= 1 +

1

n
+ o

(
1

n

)
b′n
bn

= 1 +
n+ 3

n(n− 3)
− 3n3(2n− 3)

(n− 1)4(n− 3)
= 1− 5

n
+ o

(
1

n

)
.

Since a′n/an → 1 and b′n/bn → 1 as n → ∞, we have E[Var∗(l
∗)]

Var(E∗[s∗])
→ 1. IJB is therefore

asymptotically unbiased for estimating the variance of the sample variance. Since the sample

variance is close to a linear statistic, the result is not surprising. In Figures 3 and 4, X1, ..., Xn

follow N (0, σ2) where n = 100 and σ2 = 1. Since we know Var(E∗[s∗]) = 2σ4/n, an oracle

estimate would be 2(σ̂2)2/n, where σ̂2 is the sample variance. The gray dashed line denotes

the true value of Var(E∗[s∗]). As in the first example, ÎJ
mc

B and ÎJ
whe

B are both quite close and

perform well. The original ÎJB again seems to suffer from overestimation when B = 100.

Example 3: Sample Maximum Consider s = max{X1, ..., Xn}, where X1, . . . , Xn are uni-

formly distributed in [0, 1]. For the order statistics X(1) ≤ X(2) ≤ · · · ≤ X(n), we have

cov(X(i), X(j)) =
i(n− j + 1)

(n+ 1)2(n+ 2)
and E[X(i)X(j)] =

i(j + 1)

(n+ 1)(n+ 2)
. (B.10)
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Figure 3: Performance of the in-

finitesimal jackknife and its bias-

corrected alternatives on estimating

the variance of the bagged sample

variance (B=100).
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Figure 4: Performance of the in-

finitesimal jackknife and its bias-

corrected alternatives on estimating

the variance of the bagged sample

variance (B=1000).

Note that

E∗[s∗] = s0 =

n∑
i=1

X(i)p
n
i ,

where pni = qni − qni−1 and qni =
(
i
n

)n
for i = 1, . . . , n. Thus,

Var(E∗[s∗]) = vTAv (B.11)

where A = cov(u) =
[

i(n+1−j)
(n+1)2(n+2)

]
ij

and v = (pn1 , · · · , pnn). Let

ẽi =

n∑
j=I+1

X(j)p
n−1
j +X(i)q

n−1
i , where qn−1

i =

(
i

n

)n−1

.

We have Var∗(l
∗) =

∑n
i=1(ei − s0)2 =

∑n
i=1(ẽi − s0)2. Thus,

E[Var∗(l
∗)] =

∑
(vi − v)TB(vi − v) (B.12)



where B = E[uuT ] =

[
i(j+1)

(n+1)(n+2)

]
ij

and vi = (· · · , 0, · · · , qn−1
i , · · · , pn−1

j , · · · ). Next, we have

vTAv = =
1

(n+ 1)2(n+ 2)

∑
i

∑
j

pni p
n
j i(n+ 1− j)

=
1

(n+ 1)2(n+ 2)

(∑
i

i · pni

)(∑
j

(n− j + 1)pnj

)

=
1

(n+ 1)2(n+ 2)

(∑
i

i · pni

)(
n+ 1−

∑
i

i · pni

)

=
1

(n+ 1)2(n+ 2)
(n−

∑
j

(
j − 1

n
)n))(1 +

∑
j

(
j − 1

n
)n))

(B.13)

by the fact that

n∑
i=1

i · pni =

n∑
i=1

iqni −
n−1∑
i=0

(i+ 1)qni = n−
n−1∑
i=0

qni . (B.14)

Now, let en = [1, 2, · · · , n]T . Then

(vi − v)TB(vi − v) =
(vi − v)T en · (eTn + 1Tn )V

(n+ 1)(n+ 2)

=
(vi − v)en · eTn (vi − v)

(n+ 1)(n+ 2)

=
1

(n+ 1)(n+ 2)

∑
i

[
(n−

n−1∑
j=I

(
j

n
)n−1)− (n−

n−1∑
j=0

(
j

n
)n)

]2

=
1

(n+ 1)(n+ 2)

∑
i

[
n∑
j=1

(
j − 1

n
)n −

n∑
j=i+1

(
j − 1

n
)n−1

]2
.

(B.15)

In summary, we have

E[Var∗(l
∗)]

Var(E∗[s∗])
=

(n+ 1)
∑
i[
∑n
j=1( j−1

n
)n −

∑n
j=i+1( j−1

n
)n−1]2

(n−
∑
j(
j−1
n

)n)(1 +
∑
j(
j−1
n

)n)

→ c ∈ [0.24, 0.25] as n→∞.

(B.16)

�
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Figure 5: Performance of the in-

finitesimal jackknife and its bias-

corrected alternatives on estimating

the variance of the bagged sample

maximum (B=100).
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Figure 6: Performance of the in-

finitesimal jackknife and its bias-

corrected alternatives on estimating

the variance of the bagged sample

maximum (B=1000).

Here we can see that IJB is underestimating of Var(E∗[s∗]) by a considerable margin. In

this case, E∗[s∗] is not close to a linear statistic, so IJB should not be expected to perform

well. In Figures 5 and 6, X1, . . . , Xn follow Uniform(0, 1) and n = 100 with the dashed line

corresponding to the true value of Var(E∗[s∗]). In this case, there is no obvious oracle estimator

for E∗[s∗]. Unlike the previous two examples, although ÎJ
mc

B and ÎJ
whe

B remain quite similar, all

three estimators suffer from considerable underestimation even when B = 1000.

Proof of Proposition 1: Note that E[Var∗(l
∗)] = (n − 1)E[e21 − e1e2] and Var(E∗[s∗]) =



1
n

Var(e1) + n−1
n
cov(e1, e2). Let ρ = cov(e1, e2)/Var(e1). We have

E[Var∗(l
∗)]/Var(E∗[s∗]) =

(n− 1)[E[e21]− E2[e1] + E[e1]E[e2]− E[e1e2]]
1
n

Var(e1) + n−1
n
cov(e1, e2)

=
(n− 1)[Var(e1)− cov(e1, e2)]

1
n

Var(e1) + n−1
n
cov(e1, e2)

=
(n− 1)(1− ρ)

1/n+ (n− 1)/n · ρ

= n
1− ρ

1/(n− 1) + ρ
.

(B.17)

Let f(ρ) = n(1−ρ)
1/(n−1)+ρ

. It is immediate that f(ρ) → 1 if and only if ρ = 1 − 1
n

+ o
(
1
n

)
. Thus,

IJB is an asymptotically unbiased estimator of Var(E∗[s∗]) if and only if 1−ρ = 1/n+o(1/n). �

C. Proofs and Calculations for IJU and ps-IJU (IJ for U-statistics)

How does U depend on Pn, such that U = f(Pn) for some f? The dependence is abstract so that

the subsampling proceeds according to the probabilities determined by Pn. Following directly

from the original definition of the IJ, we arrive at the following theorem.

Theorem C.1. The IJ estimator of the variance of a U-statistic is given by

IJU =
k2

n2

n∑
j=1

[αej − βs0]2, (C.18)

where ej = E∗[s∗|X∗1 = Xj ], s0 = E∗[s∗] and

α = 1 +
1

n

{
k − 1

2
− 1

k

k−1∑
j=0

j2

(n− j)

}
, β = 1 +

1

k

k−1∑
j=0

j

n− j .



Proof. When subsampling without replacement, according to the weight of each sample, the

probability of (x1, . . . , xk) being selected is
∑
i1,...,ik

Pn(xi1 )

1
× Pn(xi2 )

1−Pn(xi1 )
× · · · × Pn(xik

)

1−
∑k−1

j=1 Pn(xij )
, x1, . . . xk ∈ Dn and are distinct.

0, otherwise.

(C.19)

Note that any subsampling with a general re-weighting scheme can be derived similarly. Con-

sider f((1 − ε)Pn + εδXi) and let δ = 1 − ε. We first provide the probability of obtaining

(x1, . . . , xk). On one hand, if Xi 6∈ (x1, x2, . . . , xk), then

p(x1, x2, . . . , xk) = p0 =

[
δ

n
· δ

(n− δ) · · ·
δ

(n− (k − 1)δ)

]
× k!. (C.20)

On the other hand, if Xi ∈ (x1, . . . , xk), then p(x1, x2, . . . , xk) = p1 =
∑k−1
i=0 qi, where

q0 =

[
(n− (n− 1)δ)

n
· 1

n− 1
· · · 1

n− k + 1

]
× (k − 1)!

q1 =

[
δ

n
· n− (n− 1)δ

n− δ · 1

n− 2
· · · 1

n− k + 1

]
× (k − 1)!

...

qk−1 =

[
δ

n

δ

n− δ · · ·
δ

n− (k − 2)δ
· n− (n− 1)δ

n− (k − 1)δ

]
× (k − 1)!.

(C.21)

Thus,

f((1− ε)Pn + εδXi) =
∑
(n,k)

s(Xi1 , . . . , Xik )(p01i 6∈{i1,...,ik} + p11i∈{i1,...,ik}),

where the sum is taken over all
(
n
k

)
of subsamples of size k. We have

1

p
p′0(δ)|δ=1 = −

[
0

n
+

1

n− 1
+ · · ·+ k − 1

n− (k − 1)

]
− k



and

1

p
p′1 =

1

p

k−1∑
j=0

q′j |δ=1

=
1

k

k−1∑
j=0

[
(n− j − 1)−

[
0

n
+

1

n− 1
+

2

n− 2
+ · · · j

n− j

]]

= − 1

k

[
0 · k
n

+
1 · (k − 1)

n− 1
+ · · ·+ (k − 1) · 1

n− (k − 1)

]
− k + 1

2
+ n.

Putting all together, we have

Di = lim
δ→1

f(δPn + (1− δ)δXi)− f(Pn)

1− δ

=
∑
(n,k)

(p′01w∗
i =0 + p′11w∗

i =1)s(Xi1 , . . . , Xik )

=
∑
(n,k)

p

[
p′0
p

+ (
p′1
p
− p0

p

′
)w∗i

]
s(Xi1 , . . . , Xik )

=
k

n
(
p′1
p
− p′0

p
)ei +

p′0
p
s0,

(C.22)

where p =
(
n
k

)−1
, ei = E∗[s∗|X∗1 = Xi] and s0 = E∗[s∗]. And ∗ refers to the procedure of

subsampling without replacement. Then the infinitesimal jackknife estimate for U-statistic is

IJU =
1

n2

n∑
j=1

[
k

n
(
p′1
p
− p′0

p
)ej +

p′0
p
s0

]2

=
k2

n2

n∑
j=1

[
p′1 − p′0
np

ej +
p′0
kp
s0

]2

=
k2

n2

n∑
j=1

[αej − βs0]2

(C.23)

where

α = (p′1 − p′0)/(np) = 1 +
1

n

{
k − 1

2
− 1

k

k−1∑
j=0

j2

(n− j)

}
, (C.24)

and

β = −p′0/(kp) = 1 +
1

k

k−1∑
j=0

j

n− j .
(C.25)



To understand the bias of IJU, we will use H-decomposition, setting it up by introducing

following notation for kernels s1, . . . , sk of degrees 1, . . . , k. These kernels are defined recursively

as follows

s1(x1) = s1(x1) (C.26)

and

sc(x1, . . . , xc) = sc(x1, x2, ..., xc)−
c∑
j=1

∑
i1,...,ij∈{1,...,c}

sj(xi1 , . . . , xij ) (C.27)

where sc(x1, . . . , xc) = E[s(x1, . . . , xc, Xc+1, . . . , Xk)]− E[s]. Let Vj = Var(sj) for j = 1, . . . , k.

Then E[IJU] can be written as a linear combination of those Vj . In particular, we have the

following theorem.

Theorem C.2. Let θ = E[s] and IJU be as defined in Eq. (C.18). Then

E[IJU] =

k∑
j=1

rj

(
k

j

)2(
n

j

)−1

Vj +
k2

n
(α− β)2θ2, (C.28)

where

rj =
(n− k)2

n2

[
j

1− j/nα
2

]
+
k2

n
(α− β)2, for j = 1, . . . , k. (C.29)

Remark C.1. Note that Var(U) =
∑k
j=1

(
k
j

)2(n
j

)−1
Vj . If k is held fixed, then α, β → 1 and

thus rj → j for j = 1, . . . , k. Since in such case both Var(U) and E[IJu] will be dominated by

the V1 term, IJU is asymptotically unbiased.



Proof of Theorem C.2: By definition,

(αe1 − βs0) = −β

(
n

k

)−1∑
s(Xi1 , . . . , Xik ; 6 ∃1)

+

(
α · (k − 1)!

(n− 1) . . . (n− k + 1)
− β · (k − 1)!k

n · · · (n− k + 1)

)∑
s(Xi1 , . . . , Xik ; ∃1)

= −(1− k

n
)β

(
n− 1

k

)−1∑
s(Xi1 , . . . , Xik ; 6 ∃1)

+ (α− k

n
β)

(
n− 1

k − 1

)−1∑
s(Xi1 , . . . , Xik ; ∃1).

(C.30)

Note that according to H-decomposition,

s(x1, . . . , xk) = E[s] +

k∑
j=1

∑
i1,...,ij∈{1,...,j}

sj(xi1 , . . . , xij ).

Then

(αe1 − βs0) = (α− β)θ − (1− k

n
)β

k∑
j=1

(
k

j

)(
n− 1

j

)−1∑
sj(Xi1 , . . . , Xij ; 6 ∃1)

+ (α− k

n
β)

k−1∑
j=1

(
k − 1

j

)(
n− 1

j

)−1∑
sj(Xi1 , . . . , Xij ; 6 ∃1)

+ (α− k

n
β)

k∑
j=1

(
k − 1

j − 1

)(
n− 1

j − 1

)−1∑
sj(Xi1 , . . . , Xij ; ∃1)

:= (α− β)θ +An +Bn,

(C.31)

where

An =

k∑
j=1

[
(α− k

n
β)

(
k − 1

j

)(
n− 1

j

)−1

− (1− k

n
)β

(
k

j

)(
n− 1

j

)−1]∑
sj(Xi1 , . . . , Xij ; 6 ∃1)

and

Bn = (α− k

n
β)

k∑
j=1

(
k − 1

j − 1

)(
n− 1

j − 1

)−1∑
s(j)(Xi1 , . . . , Xij ;∃1).



Thus, we have

E[A2
n] =

k∑
j=1

[
(
k

j
− 1)α+ (

k

n
− k

j
)β

]2(
k − 1

j − 1

)2(
n− 1

j

)−1

Vj

E[B2
n] = (α− k

n
β)2

k∑
j=1

(
k − 1

j − 1

)2(
n− 1

j − 1

)−1

Vj ,

(C.32)

where Vj = Var(sj). Since An and Bn are uncorrelated and have mean zero, we have

E
[
(αe1 − βs0)2

]
= E[A2

n] + E[B2
n] + (α− β)2θ2

= (α− β)2θ2 +

k∑
j=1

(
k − 1

j − 1

)2

Λ(j)Vj ,

where Λ(j) =

[[
( k
j
− 1)α+ ( k

n
− k

j
)β
]2 (

n−1
j

)−1
+ (α− k

n
β)2
(
n−1
j−1

)−1
]
, for j = 1, · · · , k. There-

fore,

E[IJU] =
k2

n2

∑
E[(αej − βs0)2]

=
k2

n

k∑
j=1

(
k − 1

j − 1

)2

Λ(j)Vj +
k2

n
(α− β)2θ2.

(C.33)

Recall that

Var(U) =

k∑
j=1

(
k

j

)2(
n

j

)−1

Vj . (C.34)

We consider the ratio of the coefficient of Vj in E[IJU] and that in Var(U) and obtain

rj =
k2

n
Λ(j)

(
k − 1

j − 1

)2(
k

j

)−2(
n

j

)

=
k2

n

j2

k2
Λ(j)

(
n

j

)

=
(n− k)2

n2

[
j

1− j/nα
2

]
+
k2

n
(α− β)2

(C.35)

for j = 1, . . . , k. �



Proof of Theorem 2: The result is immediate by substituting α with 1 and β with 1 respec-

tively in Theorem C.2. �

Proof of Proposition 2: By definition,

Cov∗(s
∗, w∗j ) =

∑
w∗

1+···+w∗
n=k

p(w∗1 , . . . , w
∗
n)[s∗ − s0]w∗j

=
∑

w∗
1+···+w∗

n=k

p(w∗1 , . . . , w
∗
n)s∗w∗j −

k

n
s0

=
k

n

∑
w∗

j =1,w∗
1+···+w∗

n=k

(k − 1)!

(n− 1) · · · (n− k + 1)
s∗ − k

n
s0

=
k

n
[E∗[s(X∗1 , . . . , X∗k)|X∗1 = Xj ]− s0]

=
k

n
(ej − s0).

(C.36)

It follows that ps-IJ =
∑

Cov2
∗(s
∗, w∗j ) = k2

n2

∑
(ej − s0)2. �

To prove Theorems 3 and 4, we need to establish the following lemma.

Lemma C.1. Suppose that
∑
X2
i
p−→ 1,

∑
E[X2

i ]→ 1, and
∑n
i=1 E[Y 2

i ]→ 0, then

∑
[Xi + Yi]

2 p−→ 1 and
∑

E
[
(Xi + Yi)

2]→ 1. (C.37)

Proof. Note that

∑
(Xi + Yi)

2 =
∑

X2
i +

∑
Y 2
i + 2

∑
XiYi. (C.38)

Since
∑

E[Y 2
i ] → 0, we have

∑
Y 2
i

l1−→ 0, which implies that
∑
Y 2
i

p−→ 0. By Cauchy–Schwarz



inequality, we have

E
[
|
∑

XiYi|
]
≤
∑√

E[X2
i ]
√

E[Y 2
i ]

≤
√∑

E[X2
i ]
√∑

E[Y 2
i ]

→ 0.

(C.39)

Thus,
∑
XiYi

l1−→ 0, which implies that
∑
XiYi

p−→ 0. Therefore,
∑

(Xi+Yi)
2 p−→ 1 by Slutsky’s

lemma. Furthermore, since E[
∑
XiYi]→ 0, we have

∑
E[Xi + Yi]

2 → 1.

Proof of Theorem 3: For simplicity, we first ignore the extra randomness ω. According to

the H-decomposition of s(x1, . . . , xk), we have

1

n

∑
[ei − s0]2

=
1

n

(n− k)2

n2

n∑
i=1

[
k∑
j=1

−

(
k − 1

j − 1

)(
n− 1

j

)−1∑
sj(Xi1 , . . . , Xij ; 6 ∃i)

+

(
k − 1

j − 1

)(
n− 1

j − 1

)−1∑
sj(Xi1 , . . . , Xij ;∃i)

]2

=
1

n

(n− k)2

n2

n∑
i=1

− 1

n− 1

n∑
j 6=i

s1(Xi) + s1(Xi) +

k∑
j=2

−

(
k − 1

j − 1

)(
n− 1

j

)−1∑
sj(Xi1 , . . . , Xij ; 6 ∃i) +

(
k − 1

j − 1

)(
n− 1

j − 1

)−1∑
s(j)(Xi1 , . . . , Xij ; ∃i)

]2

=
1

n

(n− k)2

n2

n∑
i=1

[
s1(Xi) + Ti

]2
.

(C.40)

s1(Xi) and Ti are uncorrelated and have mean 0. After some calculation, we find that

E[(s1(Xi))
2] = V1



and

E[T2
i ] =

1

n− 1
V1 +

k∑
j=2

(
k − 1

j − 1

)2 [(
n− 1

j

)−1

+

(
n− 1

j − 1

)−1]
Vj

=
1

n− 1
V1 +

n

k2

k∑
j=2

j

1− j/n

(
k
j

)2(
n
j

) Vj .
Then

E[T2
i ] =

[
1

n− 1
V1 +

k∑
j=2

(
k − 1

j − 1

)2(
n− 1

j − 1

)−1

Vj

]
(1 + o(1))

=

[
1

n− 1
V1 +

k∑
j=2

j

k

(
k − 1

j − 1

)(
n− 1

j − 1

)−1 [(
k

j

)
Vj

]]
(1 + o(1))

≤

[
1

n− 1
V1 +

2

n

k∑
j=2

(
k

j

)
Vj

]
(1 + o(1))

=

[
1

n− 1
ζ1 +

2

n
(ζk − kζ1)

]
(1 + o(1)),

(C.41)

where ζk = Var(s) =
∑k
j=1

(
k
j

)
Vj and ζ1 = Var(E[s|X1]) = V1. Let L = E[(s1(Xi))

2] and

R = E[T2
i ]. Since k

n
( ζk
kζ1
− 1)→ 0, we have

R/L ≤
[

2/n(ζk − kζ1)

ζ1
+

1

n− 1

]
(1 + o(1))→ 0. (C.42)

Therefore, (s1(Xi))
2 dominates T2

i and thus by Lemma C.1,

1

n

∑
[ei − s0]2/V1

p−→ 1

n

(n− k)2

n2

n∑
i=1

[s(1)(Xi)]
2/V1

p−→ (n− k)2

n2
E[s(1)(Xi)]

2/V1

→ 1.

(C.43)



So, ps-IJU/
k2

n
V1 = 1

n

∑
[ei − s0]2/V1

p−→ 1. Observe that

1 ≤ Var(Un,k)/
k2

n
V1 =

(
k2

n
V1

)−1 k∑
j=1

(
k

j

)2(
n

j

)−1

Vj

≤ 1 +

(
k2

n
V1

)−1
k2

n2

k∑
j=2

(
k

j

)
Vj

≤ 1 +
k

n
(
ζk
kζ1
− 1)

→ 1.

(C.44)

Therefore, Var(Un,k)/ k
2

n
V1 → 1 and thus ps-IJU/Var(Un,k)

p−→ 1.

For s = s(x1, . . . , xk;ω), we define an extended H-decomposition by letting

s1(x1) = s1(x1), (C.45)

sc(x1, . . . , xc) = sc(x1, . . . , xc)−
c∑
j=1

∑
i1,...,ij∈{1,...,j}

sj(xi1 , . . . , xij ) (C.46)

for c = 1, . . . , k − 1 and

sk(x1, . . . , xk) = s(x1, . . . , xk;ω)−
k−1∑
j=1

∑
i1,...,ij∈{1,...,j}

sj(xi1 , . . . , xij ) (C.47)

where sc(x) = E[s(x1, . . . , xc, Xc+1, Xk;ω)]−E[s]. Then s(x1, . . . , xk;ω) = E[s]+
∑k
j=1

∑
i1,...,ij∈{1,...,j} s

j(xi1 , . . . , xij )

and thus for

ps-IJωU =
k2

n2

∑
[eωi − sω0 ]2, (C.48)

it can be decomposed the same way as Eq. (C.40). Thus, we have ps-IJωU/
k2

n
ζ1,ω

p−→ 1. �



Proof of Theorem 4: As above, let us first ignore the extra randomness ω for simplicity.

Letting p = N
(
n
k

)−1
, we have

êi − ŝ0 =
n

Nk

∑
s(Xi1 , . . . , Xik ; ∃i)− 1

N

∑
s(Xi1 , . . . , Xik )

=
n

Nk

∑
(s(Xi1 , . . . , Xik ; ∃i)− θ)− 1

N

∑
(s(Xi1 , . . . , Xik )− θ) +

(
N̂i
Ni
− N̂

N

)
θ

=

(
n− 1

k − 1

)−1∑ ρ

p
(s(Xi1 , . . . , Xik ; ∃i)− θ)−

(
n

k

)−1∑ ρ

p
(s(Xi1 , . . . , Xik )− θ) + ri

, e†i − s
†
0 + ri.

(C.49)

where Ni = Nk/n, N̂ =
∑
ρ and N̂i =

∑
ρ1i∈{i1,...,ik}.

Comparing the H-decomposition of s†(x1, . . . , xk; ρ) = ρ
p
s(x1, . . . , xk) and s(x1, . . . , xk),

we have V †j = Vj for j = 1, . . . , k − 1 and V †k = Vk + 1−p
p
ζk. Similar to Eq. (C.40), we have

1

n

n∑
i=1

[e†i − s
†
0]2 =

1

n

(n− k)2

n2

n∑
i=1

[
s1(Xi) + T†i

]2
, (C.50)

where s1(x) = E[s(x,X2, . . . , Xk)]. Note that E[(s1(X1))2] = V †1 = V1 and

E[(T†i )
2] =

1

n− 1
V †1 +

n

k2

k∑
j=2

j

1− j/n

(
k
j

)2(
n
j

) V †j
=

1

n− 1
V1 +

n

k2

k∑
j=2

j

1− j/n

(
k
j

)2(
n
j

) Vj +
n

k2
k

1− k/n
1

N
(1− p)ζk

:= R + M

(C.51)

where M = 1
1−k/n

n
Nk

(1− p)ζk. Let L = E[(s1(Xi))
2]. Since k

n
( ζk
kζ1
− 1)→ 0, we have R/L→ 0



by Eq. (C.42). Next, we have

M/L =

1
1−k/n

n
Nk

(1− p)ζk
ζ1

≤ 1

1− k/n ×
n

N

ζk
kζ1

=

[
n

N

ζk
kζ1

]
·O(1)→ 0

(C.52)

for ζk is bounded and n
Nkζ1

→ 0. Thus, 1
n

∑n
i=1[e†i − s

†
0]2/V1

p−→ 0 by Lemma C.1. Note that

E[r2i ] = E

[(
N̂i
Ni
− 1

)
−

(
N̂

N
− 1

)]2
θ2

≤ 2θ2
[

1

Ni

(
1− N(

n
k

))+
1

N

(
1− N(

n
k

))]

≤ 4θ2/Ni.

(C.53)

Thus, 1
n

∑
E[
∑
r2i ]/V1 ≤ 4θ2 n

N
1
kV1
→ 0 according to the conditions. By Lemma C.1 again, we

have 1
n

∑
i(êi − ŝ0)2/V1

p−→ 1 and it follows that p̂s-IJU/
k2

n
V1

p−→ 1.

Again, the extra randomness only results in an extended version of H-decomposition. Ev-

erything above can be directly applied to s(x1, . . . , xk;ω). �

D. Higher Order Pseudo Infinitesimal Jackknife

Recall that in the context of U-statistics, Var(U) =
∑k
j=1

(
k
j

)2(n
j

)−1
Vj . In the final discussion

provided in the main text, we noted that the preceding results largely assumed that the U-

statistic was close to linear statistic so that the variance of U-statistic is dominated by its

first order term k2/nV1 and so the problem of providing a good estimate for Var(U) can be



reduced to providing a good estimate for V1. But what if the statistic is not close to linear and

the remaining terms in Var(U) are not negligible? Can we obtain an improved estimator by

proposing further estimates of Vj for j = 2, . . . , k? We now address these questions.

We begin by considering the second term V2 and extend those results to all j, 3 ≤ j ≤ k.

Since V2 = Var(E[s|X1, X2]−E[s|X1]−E[s|X2] +E[s]), a natural estimate for the second order

term
(
k
2

)2(n
2

)−1
V2 would be

((
k

2

)
/

(
n

2

))2∑
i,j

[eij − ei − ej + s0]2 (D.54)

where eij = E∗[s∗|X∗1 = Xi, X
∗
2 = Xj ]. Before analyzing the properties of this estimate, we

first point out its connection to the ps-IJU.

Proposition D.1. Let D∗n = (X∗1 , . . . , X
∗
k) be a subsample of Dn and w∗ij = 1Xi,Xj∈D∗

n
−

k
n
1Xi∈D∗

n
− k

n
1Xj∈D∗

n
+ k(k−1)

n(n−1)
. Then

Cov∗(s
∗, w∗ij) =

(
k

2

)
/

(
n

2

)
(eij − ei − ej + s0) (D.55)

where ∗ refers the procedure of subsampling without replacement and eij = E∗[s∗|X∗1 = Xi, X
∗
2 =

Xj ]. We call Eq. (D.54) the second order pseudo-IJ estimator of U-statistics:

ps-IJU(2) =
∑
i,j

Cov2
∗(s
∗, w∗ij)

=

(
k

2

)2

/

(
n

2

)2∑
i,j

[eij − ei − ej + s0]2.

(D.56)



Proof. We have

(e12 − e1 − e2 + s0)

=
∑

w∗
1=1,w∗

2=1,w∗
1+···+w∗

n=k

(k − 2)!

(n− 2) · · · (n− k)
s∗ −

∑
w∗

1=1,w∗
1+···+w∗

n=k

(k − 1)!

(n− 1) · · · (n− k)
s∗−

∑
w∗

2=1,w∗
1+···+w∗

n=k

(k − 1)!

(n− 2) · · · (n− k)
s∗ +

∑
w∗

1+···+w∗
n=k

k!

n · · · (n− k)
s∗

=
∑

w∗
1+···+w∗

n=k

n(n− 1)

k(k − 1)

(
n

k

)−1

(w∗1)(w∗2)s∗ −
∑

w∗
1+···+w∗

n=k

n

k

(
n

k

)−1

(w∗1)s∗−

∑
w∗

1+···+w∗
n=k

n

k

(
n

k

)−1

(w∗2)s∗ +
∑

w∗
1+···+w∗

n=k

(
n

k

)−1

s∗

=
∑(

n

k

)−1(
n(n− 1)

k(k − 1)
w∗1w

∗
2 −

n

k
w∗1 −

n

k
w∗2 + 1

)
s∗

=
n(n− 1)

k(k − 1)

∑(
n

k

)−1(
w∗1w

∗
2 −

k − 1

n− 1
w∗1 −

k − 1

n− 1
w∗2 +

k(k − 1)

n(n− 1)

)
s∗.

(D.57)

Thus,

∑
i,j

Cov2
∗(s
∗, w∗ij) =

((
k
2

)(
n
2

))2∑
i,j

(e1,2 − e1 − e2 + s0)2. (D.58)

Note that the first-order ps-IJU involves the covariance of s∗ and w∗j – the counts of

how many times each original observation appears in a subsample, whereas ps-IJU(2) involves

covariance the of s∗ and w∗ij – the count of how often each pair of observations appears in a

subsample. In this sense then, ps-IJU(2) is a natural extension of ps-IJU and for notational

convenience, we can also write ps-IJU as ps-IJU(1). Similarly, we can extend this idea to derive

a general dth order estimator ps-IJU(d) for d = 1, . . . , k.



Corollary D.1. For d = 1, . . . , k, define

ps-IJU(d) =
∑
(n,d)

Cov2
∗(s
∗, w∗i1,...,id)

=

(
k

d

)2

/

(
n

d

)2 ∑
(n,d)

 d∑
j=0

(−1)d−j
∑
(d,j)

ei1,...,ij

2
(D.59)

where w∗i1,...,id =
∑d
j=0(−1)d−j

(n−d+j
k−d+j)
(nk)

[∑
(d,j)

∏
w∗ij

]
. The expression for w∗i1,...,id is somewhat

involved because we are considering subsampling without replacement. If instead we perform

subsampling with replacement, then w∗i1,...,id =
∏

(w∗ij − 1).

Like E[ps-IJU], E[ps-IJU(d)] is a linear combination of the Vj . Let ai =
(
n−i
k−i

)−1
for

i = 0, 1, . . . , d and define bi for i = 0, 1, . . . , d by

b0 = a0

b1 = a1 − a0 = a1 − b0

...

bd = ad −

(
d

1

)
ad−1 +

(
d

2

)
ad−2 − . . . a0 = ad −

(
d

1

)
bd−1 −

(
d

2

)
bd−2 − · · · − b0.

Additionally, let ci = bi
(
n−d
k−i

)
and mi = cd−i for i = 0, . . . , d. Then for j = 1, . . . , k, the



coefficient of Vj in E[ps-IJU(d)] is
(
k
d

)2
/
(
n
d

)
λj(d), where

λj(d) =

(
d

0

)(
n− d
j − d

)−1(
m0

(
n− d
j − d

))2

+

(
d

1

)(
n− d

j − d+ 1)

)−1 [
m1

(
k − d+ 1

j − d+ 1

)
−m0

(
k − d

j − d+ 1

)]2
+

(
d

2

)(
n− d

j − d+ 2

)−1 [
m2

(
k − d+ 2

j − d+ 2

)
−

(
2

1

)
m1

(
k − d+ 1

j − d+ 2

)
+m0

(
k − d

j − d+ 2)

)]2
+

...(
d

d

)(
n− d
j

)−1 [
md

(
k

j

)
−

(
d

d− 1

)
md−1

(
k − 1

j

)

+

(
d

d− 2

)
md−2

(
k − 2

j

)
− . . .

(
d

1

)
m0

(
k − d
j

)]2
.

Putting this all together, we have the follow result.

Proposition D.2. Writing the Var(U) and E[ps-IJU(d)] in terms of V1, . . . , Vk, the ratio of the

coefficient of Vj in E[ps-IJU(d)] to that in Var(U) is given by rj(d), where

rj(d) =
λj(d)

(
k
d

)2(n
d

)−1(
k
j

)2(n
j

)−1
, j = 1, . . . , k. (D.60)

Furthermore, rj(d) is monotone increasing with respect to j.

Proof. We derive E[ps-IJU(2)] in work that follows. Expressions for d ≥ 3 can be derived in the



same spirit. Consider eij = E∗[s∗|X∗1 = X1, X
∗
2 = X2]. We have

(e12 − e1 − e2 + s0) =

(
n

k

)−1∑
s(Xi1 , . . . , Xik ; 6 ∃1, 6 ∃2)+

((
n− 2

k − 2

)−1

− 2

(
n− 1

k − 1

)−1

+

(
n

k

)−1)∑
s(Xi1 , . . . , Xik ; ∃1, ∃2)−

((
n− 1

k − 1

)
−

(
n

k

)−1)∑
s(Xi1 , . . . , Xik ;∃1, 6 ∃2)−

((
n− 1

k − 1

)
−

(
n

k

)−1)∑
s(Xi1 , . . . , Xik ; 6 ∃1∃2)

:= I + II + III + IV.

Looking at each term individually, by H-decomposition we have

I =

(
n

k

)−1(
n− 2

k

)(
n− 2

k

)−1∑
s(Xi1 , . . . , Xik ; 6 ∃1, 6 ∃2)

=

(
n

k

)−1(
n− 2

k

)
k∑
j=1

(
k

j

)(
n− 2

j

)−1∑
sj(Xi1 , . . . , Xij ; 6 ∃1, 6 ∃2)
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II = −

((
n− 1

k − 1

)−1

−

(
n

k

)−1)∑
s(Xi1 , . . . , Xik ; ∃1, 6 ∃2)

= −

((
n− 1

k − 1

)−1

−

(
n

k

)−1)(
n− 2

k − 1

)(
n− 2

k − 1

)−1∑
s(Xi1 , . . . , Xik ; ∃1, 6 ∃2)

= −

((
n− 1

k − 1

)−1

−

(
n

k

)−1)(
n− 2

k − 1

)[
k−1∑
j=1

(
k − 1

j

)(
n− 2

j

)−1∑
sj(Xi1 , . . . , Xij ; 6 ∃1, 6 ∃2) +

k∑
j=1

(
k − 1

j − 1

)(
n− 2

j − 1

)−1∑
sj(Xi1 , . . . , Xij ;∃1, 6 ∃2)

]



III = −

((
n− 1

k − 1

)−1

−

(
n

k

)−1)∑
s(Xi1 , . . . , Xik ; 6 ∃1,∃2)

= −

((
n− 1

k − 1

)−1

−

(
n

k

)−1)(
n− 2

k − 1

)(
n− 2

k − 1

)−1∑
s(Xi1 , . . . , Xik ; 6 ∃1,∃2)

= −

((
n− 1

k − 1

)−1

−

(
n

k

)−1)(
n− 2

k − 1

)[
k−1∑
j=1

(
k − 1

j

)(
n− 2

j

)−1∑
sj(Xi1 , . . . , Xij ; 6 ∃1, 6 ∃2) +

k∑
j=1

(
k − 1

j − 1

)(
n− 2

j − 1

)−1∑
sj(Xi1 , . . . , Xij ; 6 ∃1,∃2)

]

IV =

((
n− 2

k − 2

)−1

− 2

(
n− 1

k − 1

)−1

+

(
n

k

)−1)∑
s(Xi1 , . . . , Xik ; ∃1, ∃2)

=

((
n− 2

k − 2

)−1

− 2

(
n− 1

k − 1

)−1

+

(
n

k

)−1)(
n− 2

k − 2

)[
k−2∑
j=1

(
k − 2

j

)(
n− 2

j

)−1

×

∑
sj(Xi1 , . . . , Xij ; 6 ∃1, 6 ∃2)+

k−1∑
j=1

(
k − 2

j − 1

)(
n− 2

j − 1

)−1

×
∑

sj(Xi1 , . . . , Xij ;∃1, 6 ∃2) +

k−1∑
j=1

(
k − 2

j − 1

)(
n− 2

j − 1

)−1

×
∑

sj(Xi1 , . . . , Xij ; 6 ∃1,∃2) +

k∑
j=2

(
k − 2

j − 2

)(
n− 2

j − 2

)−1

×
∑

sj(Xi1 , . . . , Xij ; ∃1, ∃2)

]
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In conclusion, we have I + II + III + IV = A + B + C + D, where A,B,C,D are uncorrelated

and given by

A =

((
n− 2

k − 2

)−1

− 2

(
n− 1

k − 1

)−1

+

(
n

k

)−1)(
n− 2

k − 2

)
×

k∑
j=2

(
k − 2

j − 2

)(
n− 2

j − 2

)−1∑
sj(Xi1 , . . . , Xij ; ∃1, ∃2)



B = −

((
n− 1

k − 1

)
−

(
n

k

)−1)(
n− 2

k − 1

)[
k∑
j=1

(
k − 1

j − 1

)(
n− 2

j − 1

)−1∑
sj(Xi1 , . . . , Xij ;∃1, 6 ∃2)

]
+

((
n− 2

k − 2

)−1

− 2

(
n− 1

k − 1

)−1

+

(
n

k

)−1)(
n− 2

k − 2

)
×

k−1∑
j=1

(
k − 2

j − 1

)(
n− 2

j − 1

)−1∑
sj(Xi1 , . . . , Xij ; ∃1, 6 ∃2)

C = −

((
n− 1

k − 1

)
−

(
n

k

)−1)(
n− 2

k − 1

)[
k∑
j=1

(
k − 1

j − 1

)(
n− 2

j − 1

)−1∑
sj(Xi1 , . . . , Xij ; 6 ∃1, ∃2)

]
+

((
n− 2

k − 2

)−1

− 2

(
n− 1

k − 1

)−1

+

(
n

k

)−1)(
n− 2

k − 2

)
×

k−1∑
j=1

(
k − 2

j − 1

)(
n− 2

j − 1

)−1∑
sj(Xi1 , . . . , Xij ; 6 ∃1,∃2)

D =

(
n

k

)−1(
n− 2

k

)
k∑
j=1

(
k

j

)(
n− 2

j

)−1∑
sj(Xi1 , . . . , Xij ; 6 ∃1, 6 ∃2)−

((
n− 1

k − 1

)
−

(
n

k

)−1)(
n− 2

k − 1

)[
k−1∑
j=1

(
k − 1

j

)(
n− 2

j

)−1∑
s(Xi1 , . . . , Xij ; 6 ∃1, 6 ∃2)

]
−

((
n− 1

k − 1

)
−

(
n

k

)−1)(
n− 2

k − 1

)[
k−1∑
j=1

(
k − 1

j

)(
n− 2

j

)−1∑
sj(Xi1 , . . . , Xij ; 6 ∃1, 6 ∃2)

]
+

((
n− 2

k − 2

)−1

− 2

(
n− 1

k − 1

)−1

+

(
n

k

)−1)(
n− 2

k − 2

)
×

k−2∑
j=1

(
k − 2

j

)(
n− 2

j

)−1∑
sj(Xi1 , . . . , Xij ; 6 ∃1, 6 ∃2).

Let C2 =
((
n−2
k−2

)−1 − 2
(
n−1
k−1

)−1
+
(
n
k

)−1
) (

n−2
k−2

)
, C1 =

((
n−1
k−1

)−1 −
(
n
k

)−1
) (

n−2
k−1

)
and C0 =

(
n
k

)−1(n−2
k

)
. Then we have

Var(A) =
k∑
j=2

(
n− 2

j − 2

)−1(
C2

(
k − 2

j − 2

))2

Vj

=
k∑
j=2

(
n− 2

j − 2

)−1(
C2

(
k − 2

j − 2

))2

Vj
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Var(B) =

k−1∑
j=1

(
n− 2

j − 1

)(
−C1

(
k − 1

j − 1

)(
n− 2

j − 1

)−1

+ C2

(
k − 2

j − 1

)(
n− 2

j − 1

)−1)2

Vj+

(
n− 2

k − 1

)−1(
−C1

(
k − 1

k − 1

))2

Vk

=

k∑
j=1

(
n− 2

j − 1

)−1(
−C1

(
k − 1

j − 1

)
+ C2

(
k − 2

j − 1

))2

Vj
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Var(B) = Var(C) (D.65)

Var(D) =

k−2∑
j=1

(
n− 2

j

)−1(
C0

(
k

j

)
− 2C1

(
k − 1

j

)
+ C2

(
k − 2

j

))
+

(
n− 2

k − 1

)−1(
C0

(
k

k − 1

)
− 2C1

(
k − 1

k − 1

))
+

(
n− 2

k

)
C0

(
k

k

)
Vk

=

k∑
j=1

(
n− 2

j

)−1(
C0

(
k

j

)
− 2C1

(
k − 1

j

)
+ C2

(
k − 2

j

))
Vj .
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Therefore E[ps-IJU(2)] =
(
k
2

)2
/
(
n
2

)∑k
j=1 λj(2)Vj , where

λj(2) =

(
n− 2

j − 2

)−1(
C2

(
k − 2

j − 2

))2

+

2

(
n− 2

j − 1

)−1(
−C1

(
k − 1

j − 1

)
+ C2

(
k − 2

j − 1

))2

+

(
n− 2

j

)−1(
C0

(
k

j

)
− 2C1

(
k − 1

j

)
+ C2

(
k − 2

j

))2

.
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As a simple example, we can take n = 20 and k = 10 and plot the curve of rj(d) to get

some insight into how it behaves. In the interest of consistency, we want for rj/r1 to be close
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Figure 7: A plot of {rj(d)}kj=1, where n=20 and k=10

to 1, at least for small j, because Var(U) should be dominated by the first several terms. From

Figure 7 , it appears that ps-IJU(1) still perform better than the other higher-order estimates.

It is possible that combining ps-IJU(d) for d = 1, . . . , k in some way could yield an estimator

that outperforms ps-IJU(1); this is a potentially interesting topic for future research.

E. Simulations Comparing the Variance Estimates

We now present a very brief initial simulation study to compare the estimates obtained from

the three different methods laid out above as well as the Jackknife-After-Bootstrap (JAB). We



consider estimating the variance of a random forest modeling the regression function

f(x) = sin(πx1x2) + 0.2(x3 − 0.5)2 + 0.5x4 + 0.1x5.

The covariates are sampled from a multivariate normal distribution with µ = (0.2, 0.3, 0.2, 0.7, 0.4),

Σ(i,i) = 1 and Σ(i,j) = 0.2 for 1 ≤ i, j ≤ 5. The responses are assigned as yi = f(xi) + εi, for

i = 1, . . . , 50, with εi sampled from N (0, 0.1). The random forest consists of B fully grown

decision trees, built on bootstrap samples of size n = 50 with the mtry parameter set to 5 so

that all variables are available as split candidates at each node. Under this setup, we let s be the

prediction of a decision tree at x0, i.e., Tree(X1, . . . , Xn;x0), where x0 = (0.2, 0.3, 0.2, 0.7, 0.4)

and the goal is to estimate the variance of the forest’s prediction at x0.

Like ei, t(Dn[i]) must be approximated via Monte Carlo. We approximate t(Dn[i]) by ̂t(Dn[i]),

the average of all s∗b where Xi is not included in the collection of X∗b1, ..., X
∗
bn, which can be

easily obtained by rearranging the original bootstrap replications with no further computation

required for resampling. We repeat the process 400 times to obtain the boxplots, where the

dashed line denotes the sample variance of the 400 forests. It is clear from Figure 8 that the

three methods proposed above appear to perform quite similarly, while the JAB appears a bit

more likely to overestimate.

F. Additional Simulations

We now provide a brief simulation using the same data and regression setup as laid out in

Appendix E but with the random forests constructed a bit differently. Here we consider a



JAB IJ JK OLS JAB IJ JK OLS
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 8: Performance of JAB, σ̂2
IJ,σ̂

2
JK, and σ̂2

OLS in estimating the variance

of a random forest that consists of B decision trees with B = 500 (White)

or B = 1000 (Grey). The dotted line indicates the sample variance of the

forest.

sample size of n = 50, subsample size k = 20, and ensemble sizes N of 500, 1000 or 2000. (Note

that N here denotes the ensemble size, or number of trees, which was denoted as B in earlier

simulations.) We first generate a random variable N̂ ∼ Binomial(
(
n
k

)
, N/

(
n
k

)
), then build N̂

fully-grown decision trees with mtry = 2. As before, let s denote the prediction of a decision

tree at x0 = (0.2, 0.3, 0.2, 0.7, 0.4); our goal is to estimate the variance of the random forest’s

prediction at x0. The entire process is repeated 400 times to obtain the boxplots and sample
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Figure 9: Performance of p̂s-IJω
U (White) and

∑
i Ĉov

2
(s∗, w∗

i ) (Grey) as a

function of N , in estimating the variance of a random forest that consists

of N̂ decision trees with N̂ ∼ Binomial(
(
n
k

)
, N/

(
n
k

)
), where the dotted line

indicates the sample variance of the random forest.

variance of the random forest. Since n
n−k = 1.67 in our setting, which is not negligible, we apply

the adjustment n2

(n−k)2 and compare n2

(n−k)2 p̂s-IJωU and n2

(n−k)2
∑
i Ĉov(s∗, ω∗). As can be seen

from the plots, the two estimates are fairly close to each other and both tend to overestimate

the variance as implied by Theorem 2, due to the fact that k is not small enough relative to

n so that the effect of the overestimation rates r2, . . . , rk can not be neglected. The estimate

n2

(n−k)2
∑
i Ĉov(s∗, ω∗) also appears to be slightly more stable.
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