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S1 Conditional Sampling in Annealed SMC

In annealed SMC, at temperature 1/κk, we need to estimate the proposal

distribution qk,t(xt | xt−1;κk) = p̂k,t(xt | xt−1) with the sample paths from

the previous iteration {x(j)
k−1,T}j=1,...,m. Notice that, the weighted samples

{(x(j)
k−1,T , w

(j)
k−1,T )}j=1,...,m follow the distribution π(xt | yT ;κk−1). There-

fore, estimating the proposal distribution is equivalent to estimating the

conditional distribution from a sample set drawn from the joint distribu-

tion. Here we propose two methods to sample from such a conditional

probability.

Parametric Approach.

For each time t, suppose {Ψt,θ(·)} is a parametric family of distributions

defined on X t+1 and indexed by θ. The joint distribution of xt conditioned

on yT under κk−1 is approximated by one of the distributions in the family.

Specifically, let

θ∗t,k−1 = argmax
θ

m∏
i=1

w
(i)
k−1,T logψt,θ(x

(i)
k−1,t),

where ψt,θ is the corresponding probability density/mass function of Ψt,θ.

Denote the conditional probability induced from Ψt,θ(xt) as ψt,θ(xt | xt−1).

The joint distribution of xt | yT , κk−1 is approximated by ψt,θ∗t,k−1
(xt) and

the proposal distribution qt(xt | xt−1;κk) is estimated by ψt,θ∗t,k−1
(xt | xt−1).
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One common choice for the distribution family is the multivariate Gaussian

distributions. In this case,

ψt,µt,Σ0:t,0:t(xt) = N (µt,Σ0:t,0:t) .

The optimal parameter can be obtained by sample mean and sample vari-

ance such that

µ∗
t,k−1 =

m∑
i=1

w
(i)
k−1,Tx

(i)
k−1,t

/
m∑
i=1

w
(i)
k−1,T ,

Σ∗
0:t,0:t,k−1 =

m∑
i=1

w
(i)
k−1,Tx

(i)
k−1,t

[
x
(i)
k−1,t

]′/ m∑
i=1

w
(i)
k−1,T .

Denote

µ∗
t,k−1 =

(
µ∗

t−1,k−1

µ∗
t,k−1

)
and Σ∗

0:t,0:t,k−1 =

Σ∗
0:t−1,0:t−1,k−1 Σ∗

0:t−1,t,k−1

Σ∗
t,0:t−1,k−1 Σ∗

t,t,k−1

 .
Then the induced conditional probability has the following closed-form:

p(xt | xt−1,yT ;κk−1) = N
(
µt|0:t−1,k−1,Σt|0:t−1,k−1

)
,

where the parameters are

µt|0:t−1,k−1 = µ∗
t,k−1 +Σ∗

t,0:t−1,k−1

[
Σ∗

0:t−1,0:t−1,k−1

]−1
(xt−1 − µ∗

t−1,k−1),

Σt|0:t−1,k−1 = Σ∗
t,t,k−1 −Σ∗

t,0:t−1,k−1

[
Σ∗

0:t−1,0:t−1,k−1

]−1
Σ∗

0:t−1,t,k−1.

The results above for multivariate Gaussian distributions can be easily ex-

tended to mixture Gaussian distributions, which can approximate most
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distributions well.

Nonparametric Approach.

When there is no appropriate distribution family to describe the joint

distribution of xk−1,t, one can sample from the conditional distribution

p(xt | xt−1,yT ;κk−1) of {x(j)
k−1,T}j=1,...,n nonparametrically. Specifically,

suppose Kb1(·) and Kb2(·) are kernel functions for xt−1 and xt, respectively,

and it is easy to sample from Kb2(·). For any given x
(j)
k,t−1, Figure 1 depicts

the nonparametric approach to draw x
(j)
k,t from the conditional distribution

p(xt | xt−1,yT ;κk−1) when the samples {(x(i)
k−1,T , w

(i)
k−1,T )}i=1,...,m properly

weighted to π(xT | yT ;κk−1) are available.

Figure 1: Sample nonparametrically from a Empirical Conditional Distribution

For given x
(j)
k,t−1,

• draw l from {1, . . . ,m} with probabilities proportional to

P (l = i) ∝ w
(i)
k−1,TKb1

(x
(i)
k−1,t−1 − x

(j)
k,t−1).

• draw ε from the density induced by Kb2(·).

• return x
(j)
k,t = x

(l)
k−1,t + ε.

The parametric approach often requires the state space model to satisfy

certain conditions. For example, when both state equations and observation

equations are approximately linear and Gaussian, the multivariate Gaussian
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distribution family can be used to estimate the conditional distributions.

The nonparametric approach can deal with general state space models.

However, it often costs much more computing power than the parametric

approach.

One issue for both approaches is the high dimensionality. Unless the

system has a short memory, the conditional distribution at time t involves

the high dimensional xt and with potentially increasing dimension of param-

eter needed or the dimensions of spaces the nonparametric approach need

to operate within. One solution for reducing dimension of the sampling

problem is to use a low-dimensional sufficient statistics. Suppose S(xt−1)

is a low-dimensional sufficient statistic such that p(xt | xt−1,yT ;κk−1) =

p(xt | S(xt−1),yT ;κk−1). Both parametric and nonparametric approaches

can therefore be conducted on the joint distribution of (xt, S(xt−1)), which

is of lower dimension. In a Markovian system, S(xt−1) = xt−1 and the

problem reduces to sampling from a much simpler distribution. In an auto-

regressive system with lag δ, S(xt−1) = xt−δ:t−1, which is a δ+1-dimensional

system. Note that since the estimated conditional distribution is used as

a proposal distribution, it is often tolerable to use less accurate estimators

for computational efficiency. Hence various approximation and dimension

reduction tools can be used, including variational Bayes approximations
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(Tzikas et al., 2008).

Another issue in estimating the conditional distribution from sequential

Monte Carlo samples is the sample degeneracy. In SMC, degeneracy refers

to the phenomenon that the number of distinct values for some states such

as X1 can be less than the number of Monte Carlo samples, if resampling

steps are engaged. The degeneracy problem is crucial for both approaches

in sampling from the conditional distribution. Therefore, at κ > κ0, we

suggest to conduct resampling only when all propagation steps are finished

to prevent the samples from trapping into local maximums. When high

degeneracy is persistent, we suggest to use post-MCMC steps (Gilks and

Berzuini, 2001) to regenerate the samples. If the system is reversible and

SMC can be implemented backward in t, alternating forward and backward

sampling through the annealing iterations may also reduce the degeneracy

problem as it starts with more diversified samples in each temperature

iteration.
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S2 Derivation on the Example of Cubic Smoothing

Spline Emulation

Recall the objective function

L(yT ) =
T∑
t=1

(yt −m(t))2 + λ

∫
[m′′(t)]

2
dt. (S2.1)

Following the notation in the main paper, we have the following recursive

relationships:

at+1 = at + bt + ct + dt+1, bt+1 = bt + 2ct + 3dt+1, ct+1 = ct + 3dt+1,

with c1 = cT = 0. Furthermore, by substituting dt+1 with (ct+1 − ct)/3 in

the expressions of at and bt, we have

at+1 = at + bt + (ct+1 + 2ct)/3, bt+1 = bt + ct + ct+1. (S2.2)

We will use the recursive relationships in (S2.2) for the construction of state

space emulation. With this notation, the second term in (S2.1) is

λ

∫
[m′′(t)]

2
dt = λ

T−1∑
t=1

∫ t+1

t

[6(s− t)dt+1 + 2ct]
2 ds =

4

3
λ

T−1∑
t=1

(c2t+ctct+1+c
2
t+1).

In this case, the original optimization problem (S2.1) over all second order

differentiable functions becomes minimizing

f(xT ) =
T∑
t=1

(yt − at)
2 +

4

3
λ

T−1∑
t=1

(c2t + ctct+1 + c2t+1), (S2.3)
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where xT = {(at, bt, ct)}t=1,...,T satisfies the recursive relationships (S2.2)

and the boundary condition c1 = cT = 0. Note that xt completely defines

the cubic smoothing spline solution m̂(t).

With a positive inverted temperature κ, an emulated state space model

is one such that whose likelihood of xT conditioned on y1, . . . , yT is π(xT |

yT ) ∝ e−κf(xT ), with f(·) defined in (S2.3). One possible way to decompose

π(xT | yT ) into the likelihood of a state space model is the following.

π(xT | yT ) ∝ exp (−κf(xT ))

= exp

(
−κ

T∑
t=1

(yt − at)
2 − 4λκ

3
(
T−1∑
t=1

(c2t + ctct+1 + c2t+1)

)

=

(
T∏
t=1

e−κ(yt−at)2

) T∏
t=2

e
−

2λκ

3(2−
√
3)

(ct+(2−
√
3)ct−1)2

 , (S2.4)

where κ, the “temperature” parameter, controls the shape of distribution.

The second term of (S2.4) provides a construction of a first order vector

auto-regressive process on {xt = (at, bt, ct)}t=1,...,T as the state equation
at

bt

ct

 =


1 1

√
3/3

0 1
√
3− 1

0 0 −(2−
√
3)




at−1

bt−1

ct−1

+


1/3

1

1

 ηt, (S2.5)

with ηt ∼ N (0, σ2
b ), σ2

b = 3(2 −
√
3)/(4λκ). The first term of (S2.4)

provides the observation equation of yt = at+ϵt, with εt ∼ N (0, σ2
y), σ2

y =

1/(2κ), and the initial values a1 ∼ N (y1, σ
2
y), b1 ∼ 1, and c1 = 0.
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S3 Additional Example of Emulation

S3.1 Regularized Linear Regression

LASSO (Tibshirani, 1996) is a widely-used regularized linear regression

estimation procedure that can perform variable selection and parameter

estimation at the same time.

Consider the regression model

Y =

p∑
j=1

βjZj + η

where Z1, . . . ,Zp ∈ Rn are the p covariates that are used to model the

dependent variable Y ∈ Rn and η ∼ N (0, σ2
yIn). A LASSO estimator of

(β1, . . . , βp) is the minimizer of

f(β1, . . . , βp) = ∥Y − β1Z1 − · · · − βpZp∥22 + λ

p∑
j=1

|βj|. (S3.1)

For a fixed set of (β1, . . . , βp), for t = 1, . . . , p, define the partial residual ϵt

as

ϵt = Y −
t∑

l=1

βlZl (S3.2)

and ϵ0 = Y .

Since

∥ϵt∥22 = ∥ϵt−1 − βtZt∥22 = ∥ϵt−1∥22 + ∥Zt∥22
(
βt −

ϵ′t−1Zt

∥Xt∥22

)2

−
(
ϵ′t−1Xt

)2
∥Zj∥22

,



10 CHENCHENG CAI AND RONG CHEN

we have

f(β1, . . . , βp) = ∥ϵp∥22 + λ

p∑
t=1

|βt|

= ∥Y ∥22 +
p∑

t=1

{
∥Zt∥22

(
βt −

ϵ′t−1Zt

∥Zt∥22

)2

−
(
ϵ′t−1Zt

)2
∥Zt∥22

+ λ|βt|

}
.

(S3.3)

Let xt = βt and xt = (β1, . . . , βt). An emulated state space model can be

designed so that

π(xp) ∝ exp {−κf(xp)} ∝
p∏

t=1

exp

{
−κ∥Zt∥22

(
xt −

ϵ′t−1Zt

∥Zt∥22

)2
}

×
p∏

t=1

exp

{
−κλ|xt|+ κ

(ϵ′t−1Zt)
2

∥Zt∥22

}
. (S3.4)

The first term of (S3.4) leads to the state equation

pt(xt | xt−1) ∝ exp

{
−κ∥Zt∥22

(
xt −

ϵ′t−1Zt

∥Zt∥22

)2
}
, (S3.5)

and the second term leads to the observation equation

gt(wt | xt) ∝ αt exp{−αtwt}, (S3.6)

where

αt = exp

{
−κλ|xt|+ κ

(ϵ′t−1Zt)
2

∥Zt∥22

}
,

with observation wt = 0 for all t.

Note that ϵt−1 is a function of xt−1 as defined in (S3.2) and is available

at time t. The observation equation gt and the observation value wt = 0

are imposed to incorporate αt in π(xp). The emulation for LASSO can
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be extended to other penalized regression with different penalty terms by

changing αt accordingly.

S3.2 L1 Trend Filtering

L1 trend filtering (Kim et al., 2009) is a variation of Hodrick-Prescott fil-

tering (Hodrick and Prescott, 1997). An ℓ1 trend filtering on y1, . . . , yT is

defined to be the minimizer of the objective function

f(x1, . . . , xT ) =
T∑
t=1

(Yt − xt)
2 + λ

T−1∑
t=2

|xt−1 − 2xt + xt+1|. (S3.7)

Minimizing (S3.7) tends to produce a piece-wise linear function due to the

ℓ1 penalty on second-order difference. An emulated state space model is

designed to have the following Boltzmann likelihood function.

π(xT ) ∝ e−κf(xT )/2 =
T∏
t=1

exp
{
−κ
2
(yt − xt)

2
} T∏

t=3

exp
{
− κ

2λ
|xt − (2xt−1 − xt−2)|

}
.

(S3.8)

The first term of (S3.8) leads to the observation equation

yt = xt + ϵt, (S3.9)

where ϵt ∼ N (0, σ2
y) with σ

2
y = 1/κ. The second term of (S3.8) leads to the

following second order auto-regressive process on the states

xt = 2xt−1 − xt−2 + ηt, (S3.10)

where ηt ∼ Laplace(0, λx) with λx = 2/(λκ).
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S4 Additional Simulation Results

S4.1 LASSO Regression

In this simulation study, we consider the LASSO regression problem as dis-

cussed in Section S3.1. We set n = 40 observations, p = 20 covariates

and σy = 0.3. The covariates (Z1, . . . , Zp) are generated from a multi-

variate normal distribution N (0,Σ) where all diagonal elements of Σ is 1

and all off-diagonal elements are 0.4. β’s are generated i.i.d. according to

Bernoulli(0.2). λ is set to 5 in the objective function (S3.1).

We start from the initial emulated model with the temperature pa-

rameter κ = κ0 = 0.05. m = 5000 samples are drawn from the standard

SMC algorithm under the target distribution (S3.4) with κ0 = 0.05. The

state equation (S3.5) is used as the proposal distribution and the weight

is from the observation equation (S3.6) as a consequence. Resampling is

done when the effective sample size is below 0.3m. The sampled state

paths are plotted in Figure 2. The estimated path for solving the original

LASSO problem (S3.1) using the scikit-learn python package (Pedregosa

et al., 2011) is treated as the benchmark.

In the subsequent annealing procedure, we use m = 2000 samples and

set κk = 1.5kκ0 for k = 1, . . . , 30. The proposal distribution used in the an-
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Figure 2: Sample paths at κ0 = 0.05

nealing procedure is estimated with a multivariate normal approximation of

the joint distribution of (βk−1,t, . . . , . . . , βk−1,1). Resampling is done only at

the end of each iteration and 10 steps of post-MCMC runs are applied. The

post-MCMC runs use the Gibbs sampling approach with the Metropolis-

Hasting transition kernel (Metropolis et al., 1953; Hastings, 1970), where

for t = 1, . . . , T and for i = 1, . . . ,m, a new value for βt is proposed such

that β̃
(i)
t = β

(i)
t + N (0, τ 2), where τ 2 ∝ 1/κ, and the proposed move is

accepted with the probability min(1, π(x̃t
(i) | yT ;κ)/π(x

(i)
T | yT ;κ)) with

x̃
(i)
t = (x

(i)
t−1, x̃

(i)
t , x

(i)
t+1, . . . , x

(i)
T ). Figure 3 plots the sample paths at four dif-

ferent levels of κ’s. Again, it is seen that the procedure is able to gradually

move the sample paths towards the optimal solution. Figure 4 shows the

convergence of the values of the objective function in (S3.1) evaluated at
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the weighted average of the sample paths.

After around 17 iterations, the weighted mean of the samples generated

from the annealed SMC converges. Due to Monte Carlo variations, the

sample paths and the average path cannot shrink the coefficients to exactly

zero. It is tempting to run the Viterbi algorithm to refine the estimate, with

zeros added to the set of allowed values of the state variables. Unfortunately

the state space model designed for the LASSO problem is not Markovian

hence Viterbi algorithm cannot be used. However, we used an additional

refinement step by iteratively and greedily comparing each estimated state

x̂t (using the average sample path) with zero under the original objective

function. The refinement step (with additional 0.063ms in computing time)

moved some of the states to zero, and improved the value of the objective

function from 21.90356 to 21.899657. The minimum achieved by the Scikit

solver is 21.899645. However, such a refinement is based on the knowledge

that the solution of Lasso has exactly zero coefficients, and may not be used

in other optimization problems. Note that, the emulation system can be

easily generalized to other types of regularization on parameters by changing

the penalty term in (S3.6) without much efforts and can be adapted much

more complex penalty structures.
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Figure 3: Sample paths at different κ’s

Figure 4: Value of the objective function against the number of iterations
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S4.2 L1 Trend Filtering

In this simulation study, we consider the ℓ1 trend filtering problem in Section

S3.2. We set T = 60, λ = 10 and

yt =



t− 1

20
+N (0, 0.01), 1 ⩽ t ⩽ 20

40− t

20
+N (0, 0.01), 21 ⩽ t ⩽ 40

t− 41

20
+N (0, 0.01), 41 ⩽ t ⩽ 60.

At κ = κ0 = 10,m = 5000 SMC paths are sampled using the state dynamics

(S3.10) as the proposal distribution. A resampling step is conducted when

the effective sample size drops below 0.1m. The approximate MLE marked

as dashed line is the solution obtained by Scipy nonlinear solver. The

solution shows a piece-wise linear behavior as the ℓ1 type of penalty appears

in the objective function.

We use the following designed annealing sequence κk = 1.3kκ0 for k =

1, . . . , 40 and use m = 2000 samples for annealing. In each annealing iter-

ation, the proposal distribution used is Laplace(Ê[xt | xt−1, xt−2;κk], V̂ [xt |

xt−1, xt−2;κk]
1/2/

√
2) where Ê and V̂ are estimated from the samples from

the last iteration {(x(j)k−1,t, x
(j)
k−1,t−1, x

(j)
k−1,t−2)}j=1,...,m. The Laplace distribu-

tion has a heavier tail than the normal distribution with the same variance.

We found it more efficient to sample from the Laplace distribution to re-
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Figure 5: Sample paths at different κ’s

Figure 6: Value of the objective function against the number of iterations
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duce sample degeneracy in this problem. The resampling step is conducted

at the end of each iteration and is followed by 10 steps of post-MCMC

moves. The post-MCMC steps follow the standard Gibbs sampling as in

the LASSO example. Sample paths at four different κ’s are displayed in

Figure 5. Note that when κ ≈ 1462, the sample paths are different from the

nonlinear solver’s solution at t ∈ [38, 42]. The value of the objective func-

tion at the sample average path shown in Figure 6 show that annealed SMC

can obtained a smaller objective function value than the Scipy optimizer.

The Scipy nonlinear optimizer takes 155ms while annealed SMC costs 22

ms for SMC sampling from the initial emulated model and costs around

160 ms for each subsequent annealing iteration including the post-MCMC

runs.
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