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Supplementary Material

S1 Additional Definitions and Algorithms

S1.1 Label Matching

Here, we present two algorithms for matching two sets of labels. Algorithm

S1 searches over all possible permutations of the first set of labels to select

the permutation that has the least number of mismatched nodes with the

second set of labels. Although this algorithm gives the best permutation of

the labels, it is computationly not feasible for large number of communities.

Algorithm S2 computes the number of nodes in each pair of communities

between the two sets of labels. It swaps the communities between the two

sets of labels that have the highest number of nodes between them. Algo-
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rithm S2 is shown to produce the same permutation matrix as Algorithm S1

when one of the community membership matrices can be expressed as a per-

mutation of the other plus some error term that satisfies certain conditions

(Mukherjee et al., 2021).

Algorithm S1 MatchBF

Input Two community membership matrices C1 and C2 with the same number of

communities

Output A permutation matrix P that best aligns C1 with C2

procedure MatchBF(C1, C2)

K ← number of columns of C1

EK ← list of all permutation matrices of order K ×K

initialize a vector mismatch of length K!

i← 1

for E ∈ EK do

mismatch[i]← ∥(C1E − C2)∥0

i← i+ 1

return EK [argmin
i

mismatch[i]]
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Algorithm S2 MatchGreedy

Input Two community membership matrices C1 and C2 with the same number of

communities

Output A permutation matrix P that approximates the best alignment of C1 with

C2

procedure MatchGreedy(C1, C2)

K ← number of columns of C1

P ← 0K×K (null matrix of order K ×K)

M ← CT
1 C2

while there are rows or columns of M left with positive values do

find (i, j) = argmax
i,j

Mij (ties are broken arbitrarily)

Pij ← 1

replace the ith row and the jth column of M by −1

return P

S1.2 Spectral Clustering on SBM

Stochastic Blockmodel A stochastic blockmodel with n nodes and K com-

munities is parameterized by a pair of matrices (C,P ), where C ∈ Cn×K is

a membership matrix, and P ∈ RK×K is a symmetric connectivity matrix.

For each node i, let gi (1 ≤ gi ≤ K) be its community label such that the

ith row of C is 1 in column gi and 0 elsewhere. The entry Pkl in P is the

edge probability between a node in community k and a node in community
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l. Given (C,P ), the adjacency matrix A = (aij)1≤i,j≤n is generated as

aij =


independent Bernoulli(Pgigj), if i < j,

0, if i = j,

aji, if i > j.

(S1.1)

Also, let n1, . . . , nK be the size of each community in the SBM.

Spectral Clustering Spectral clustering is a simple community detection

method that recovers the underlying community structures of a network

using the eigen decomposition of the corresponding adjacency matrix. For

an undirected simple network with adjacency matrix A, spectral clustering

computes the eigenvectors and eigenvalues of A. Then it clusters the K

eigenvectors corresponding to the largest K eigenvalues in terms of their

absolute values. Any clustering algorithm can be used at this step. How-

ever, we consider K-means clustering at this step. Since solving a K-means

clustering problem is NP-hard, we use (1 + δ)-approximate solution to the

K-means problem. Spectral clustering with approximate K-means is sum-

marized in Algorithm S3.
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S1. ADDITIONAL DEFINITIONS AND ALGORITHMS

Algorithm S3 Spectral Clustering with Approximate K-means

Input An adjacency matrix An×n, number of communities K, and an approximating

parameter δ > 0 for K-means clustering.

Output A membership matrix Ĉn×K .

procedure SC(A,K)

1. Calculate Û ∈ Rn×K consisting of the leading K eigenvectors (ordered in

absolute eigenvalue) of A.

2. Let (Ĉ, X̂) ∈ Cn×K × RK×K such that ∥ĈX̂ − Û∥2F ≤ (1 +

δ) min
(C,X)∈Cn×K×RK×K

∥CX − Û∥2F , where ∥·∥F is the Frobenius norm.

3. Output Ĉ.

Theorem S1. (Lei and Rinaldo, 2015) Let A be an adjacency matrix of a

simple undirected network generated from a stochastic blockmodel SBM(Cn×K,

PK×K). Assume that

1. P = αnP0 for some αn ≥ 1
n
log n,

2. P0 has minimum absolute eigenvalue ≥ λ > 0,

3. max
k,l

P0kl = 1,

4. Ĉ is the solution of (1 + δ)-approximate K-means spectral clustering

(Algorithm S3) applied on A with K communities.
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Then there exists an absolute constant c such that if the parameters (n, K,

αn, λ, δ) satisfy

(2 + δ)
K

λ2π2
minnαn

< c, (S1.2)

then with probability at least 1− 1
n
,

δ(Ĉ, C) =
1

n
min
E∈EK

∥ĈE − C∥0 ≤ c−1(2 + δ)
Kπmax

λ2π2
minnαn

. (S1.3)

S1.3 Spherical K-median Spectral Clustering on DCBM

Degree Corrected Blockmodel A degree corrected blockmodel with n nodes

andK communities is parameterized by a triplet (C,P, ψ), where Cn×K and

PK×K are defined similarly as in SBM, and the vector ψ ∈ Rn is included

to model additional variability of the edge probabilities at the node level.

Given (C,P, ψ), the adjacency matrix A = (aij)1≤i,j≤n is generated as

aij =


independent Bernoulli(ψiψjPgigj), if i < j,

0, if i = j,

aji, if i > j.

(S1.4)

We assume max
i∈Gk

ψi = 1 to avoid the problem of identifiability, where Gk is

the set of all nodes in the kth community, 1 ≤ k ≤ K.

Spherical K-median Spectral Clustering Community recovery is difficult

for a DCBM due to the presence of degree heterogeneity. Small values in
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ψ makes it hard to identify the community membership of the correspond-

ing nodes as few edges are observed for those nodes. Spherical K-median

spectral clustering overcomes this issue by row-normalizing the topK eigen-

vector matrix Û and then minimizing the matrix 2, 1 distance between the

points and cluster centers. The results on DCBM discussed in Lei and

Rinaldo (2015) were derived for spherical (1 + δ)-approximate K-median

spectral clustering. The algorithm is presented in Algorithm S4.

Algorithm S4 Spherical K-median Spectral Clustering

Input An adjacency matrix An×n, the number of communities K, and an approxi-

mating parameter δ > 0 for K-median clustering.

Output A membership matrix Ĉn×K .

procedure SSC(A,K)

1. Calculate Û ∈ Rn×K consisting of the leading K eigenvectors (ordered in

absolute eigenvalue) of A.

2. Let I+ =
{
i : ∥Ûi∗∥ > 0

}
and Û+ = (ÛI+∗).

3. Let Û ′ be the row-normalized version of Û+.

4. Let (Ĉ+, X̂) ∈ Cn×K × RK×K such that ∥Ĉ+X̂ − Û ′∥2,1 ≤ (1 +

δ) min
(C,X)∈Cn×K×RK×K

∥CX − Û ′∥2,1.

5. Output Ĉ with Ĉi∗ being the corresponding row in Ĉ+ if i ∈ I+, and Ĉi∗ =

(1, 0, . . . , 0) if i /∈ I+.

Theorem S2. (Lei and Rinaldo, 2015) Let A be an adjacency matrix gen-

erated from a degree corrected blockmodel DCBM(Cn×K , PK×K , ψn×1). As-
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sume that

1. P = αnP0 for some αn ≥ 1
n
log n,

2. P0 has minimum absolute eigenvalue ≥ λ > 0,

3. max
k,l

P0kl = 1,

4. Ĉ is the solution to spectral clustering using spherical (1+δ)-approximate

K-median (Algorithm S4) applied on A with K communities.

Then there exists an absolute constant c such that if

(2.5 + δ)

√
K

λñminπmin
√
nαn

√√√√ n∑
i=1

ψ̃−2
i < c, (S1.5)

then, with probability at least 1− 1
n
,

δ(Ĉ, C) =
1

n
min
E∈EK

∥ĈE − C∥0 ≤ c−1(2.5 + δ)

√
K

λñmin
√
nαn

√√√√ n∑
i=1

ψ̃−2
i .

(S1.6)

S2 Supporting results and proofs

S2.1 Proof of general bound

The following lemma from Mukherjee et al. (2021, Lemma S.6.3) bounds

the tail probabilities of a hypergeometric random variable. It is used in

the main proofs to obtain upper and lower bounds for the smallest and
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largest community sizes in a random sample of nodes from the main net-

work. Probability mass function of a Hypergeometric(n, d,N) is f(x) =

(dx)(
N−d
n−x)

(Nn)
1 (x ∈ {max(0, n+ d−N), · · · ,min(n, d)}).

Lemma S1 (Bound for Hypergeometric variable (Mukherjee et al., 2021)).

Let D ∼ Hypergeometric(n, d,N). Then for ω > 0, we have

max

{
P

(
D < (1− ω)nd

N

)
, P

(
D > (1 + ω)

nd

N

)}
≤ exp

(
− ω2nd

2N(1 + ω
3
)

)
.

(S2.7)

Further if 0 < ω < 1,

max

{
P

(
D < (1− ω)nd

N

)
, P

(
D > (1 + ω)

nd

N

)}
≤ exp

(
−ω

2nd

4N

)
.

(S2.8)

Lemma S2. Let C be any n×K matrix, and E be any K×K permutation

matrix. Then

∥C∥0 =
∑
i,j

|Cij| = ∥CE∥0. (S2.9)

Proof. Since multiplying with a permutation matrix changes only the posi-

tions of the elements inside a matrix, the lemma follows immediately.

Lemma S3. Let ôl be the size of the lth community in a random subgraph

GS0 of size o, induced by the nodes in S0 ⊂ S selected using SRSWOR from

the n nodes in S. If πl is the proportion of the lth community in the entire
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network G, πmin = min {π1, . . . , πK}, and πmax = max {π1, . . . , πK}, then

we have

ômin = min
l=1,...,K

ôl ≥
oπmin

1 + πmin
, and (S2.10)

ômax = max
l=1,...,K

ôl ≤
oπmax

1− πmax
, (S2.11)

each with probability ≥ 1− ωo, where ωo = K exp (−oπ3
min/(4(1 + πmin)

2)).

Proof. Since GS0 is a random subgraph of size o from G, ôl ∼ Hypergeomet-

ric (o, nl, n), l = 1, 2, . . . , K, where nl is the size of the lth community in the

entire network G. Note that πl = nl/n. Consider the following probability,

P

(
ômin <

oπmin
1 + πmin

)
= P

(
K⋃
l=1

{
ôl <

oπmin
1 + πmin

})

≤
K∑
l=1

P

(
ôl <

oπmin
1 + πmin

)

=
K∑
l=1

P

(
ôl < oπl

{
1−

(
1− πmin

πl(1 + πmin)

)})

≤
K∑
l=1

exp

(
−
(
1− πmin

πl(1 + πmin)

)2
oπl
4

)
[
from (S2.8) as 0 <

πmin
πl(1 + πmin)

< 1

]
≤ K exp

(
−
(
1− 1

1 + πmin

)2
oπmin
4

)

= K exp

(
− π2

min

(1 + πmin)2
oπmin
4

)
= K exp

(
− oπ3

min

4(1 + πmin)2

)
= ωo. (S2.12)
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Now consider the following probability

P

(
ômax >

oπmax
1− πmax

)
= P

(
K⋃
l=1

{
ôl >

oπmax
1− πmax

})

≤
K∑
l=1

P

(
ôl >

oπmax
1− πmax

)

=
K∑
l=1

P

(
ôl > oπl

{
1 +

(
πmax

πl(1− πmax)
− 1

)})

≤
K∑
l=1

exp

−( πmax
πl(1− πmax)

− 1

)2
oπl

2
(
1 + 1

3

(
πmax

πl(1−πmax)
− 1
))


[
from (S2.7) as

πmax
πl(1− πmax)

> 1

]
≤

K∑
l=1

exp

(
−
(

1

1− πmax
− 1

)2
oπ2

l (1− πmax)
2πmax

)

≤
K∑
l=1

exp

(
− oπmaxπ

2
l

2(1− πmax)

)
≤ K exp

(
− oπ3

min

4(1 + πmin)2

)
= ωo. (S2.13)

Proof of Theorem 1

Proof. Part 1: Note that S0 ⊂ Sq = S0 ∪ S ′
q, which implies

∥Ĉ(q)
S0∗E

∗
q − CS0∗∥0 ≤ ∥Ĉ

(q)
Sq∗E

∗
q − CSq∗∥0 ≤ ϵ(o+m) w.p. ≥ 1− α.

(S2.14)
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Let E ′
q ∈ EK be any permutation matrix such that E ′

q ̸= E∗
q . Then

∥Ĉ(q)
S0∗E

′
q − CS0∗∥0 = ∥(Ĉ

(q)
S0∗E

′
q − Ĉ

(q)
S0∗E

∗
q )− (CS0∗ − Ĉ

(q)
S0∗E

∗
q )∥0

≥ ∥Ĉ(q)
S0∗E

′
q − Ĉ

(q)
S0∗E

∗
q∥0 − ∥CS0∗ − Ĉ

(q)
S0∗E

∗
q∥0

≥ 2ômin − ∥CS0∗ − Ĉ
(q)
S0∗E

∗
q∥0

(since at least a pair of columns are different between Ĉ
(q)
S0∗E

∗
q and Ĉ

(q)
S0∗E

′
q)

≥ 2oπmin
1 + πmin

− ϵ(o+m) w.p. ≥ 1− ωo − α (from Lemma S3 and Condition (3.3))

≥ ϵ(o+m) w.p. ≥ 1− ωo − α. (from Condition (3.4))

(S2.15)

Thus, combining (S2.14) and (S2.15), we have

∥Ĉ(q)
S0∗E

′
q − CS0∗∥0 ≥ ϵ(o+m) ≥ ∥Ĉ(q)

S0∗E
∗
q − CS0∗∥0 w.p. ≥ 1− ωo − 2α for each E ′

q ̸= E∗
q

=⇒ E∗
q = argmin

E∈EK
∥Ĉ(q)

S0∗E − CS0∗∥0 w.p. ≥ 1− ωo − 2α for each E ′
q ̸= E∗

q .

(S2.16)

Part 2: Consider the following quantity

∥Ĉ(q)
S0∗E

∗
qE

∗−1
1 − Ĉ(1)

S0∗∥0 = ∥(Ĉ
(q)
S0∗E

∗
qE

∗−1
1 − CS0∗E

∗−1
1 ) + (CS0∗E

∗−1
1 − Ĉ(1)

S0∗)∥0

≤ ∥Ĉ(q)
S0∗E

∗
qE

∗−1
1 − CS0∗E

∗−1
1 ∥0 + ∥CS0∗E

∗−1
1 − Ĉ(1)

S0∗∥0

= ∥Ĉ(q)
S0∗E

∗
q − CS0∗∥0 + ∥Ĉ

(1)
S0∗E

∗
1 − CS0∗∥0 (from Lemma S2 as E∗

1 ∈ EK)

≤ 2ϵ(o+m) w.p. ≥ 1− 2α. (S2.17)
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Also, for any E ′ ∈ EK such that E ′ ̸= E∗
qE

∗−1
1 , we have

∥Ĉ(q)
S0∗E

′ − Ĉ(1)
S0∗∥0 = ∥(Ĉ

(q)
S0∗E

′ − Ĉ(q)
S0∗E

∗
qE

∗−1
1 )− (Ĉ

(1)
S0∗ − Ĉ

(q)
S0∗E

∗
qE

∗−1
1 )∥0

≥ ∥Ĉ(q)
S0∗E

′ − Ĉ(q)
S0∗E

∗
qE

∗−1
1 ∥0 − ∥Ĉ(1)

S0∗ − Ĉ
(q)
S0∗E

∗
qE

∗−1
1 ∥0

≥ 2ômin − 2ϵ(o+m) w.p. ≥ 1− 2α

≥ 2oπmin
1 + πmin

− 2ϵ(o+m) w.p. ≥ 1− ωo − 2α

≥ 2ϵ(o+m) w.p. ≥ 1− ωo − 2α. (S2.18)

Thus, combining (S2.17) and (S2.18), we have

∥Ĉ(q)
S0∗E

′ − Ĉ(1)
S0∗∥0 ≥ 2ϵ(o+m) ≥ ∥Ĉ(q)

S0∗E
∗
qE

∗−1
1 − Ĉ(1)

S0∗∥0

w.p. ≥ 1− ωo − 4α for each E ′ ̸= E∗
qE

∗−1
1

=⇒ E∗
qE

∗−1
1 = argmin

E∈EK
∥Ĉ(q)

S0∗E − Ĉ
(1)
S0∗∥0 w.p. ≥ 1− ωo − 4α for each E ′ ̸= E∗

qE
∗−1
1 .

(S2.19)

Proof of Theorem 2
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Proof. Consider the following quantity

M(Ĉ, C) = min
E∈EK

∥ĈE − C∥0

≤ ∥ĈE∗
1 − C∥0

= ∥Ĉ(1)
S1∗E

∗
1 − CS1∗∥0 + ∥Ĉ

(2)

S′
2∗
E2E

∗
1 − CS′

2∗∥0 + · · ·+ ∥Ĉ
(s)
S′
s∗EsE

∗
1 − CS′

s∗∥0

≤ ∥Ĉ(1)
S1∗E

∗
1 − CS1∗∥0 + ∥Ĉ

(2)

S′
2∗
E∗

2E
∗−1
1 E∗

1 − CS′
2∗∥0 + · · ·+ ∥Ĉ

(s)
S′
s∗E

∗
sE

∗−1
1 E∗

1 − CS′
s∗∥0

w.p. ≥ 1− (s− 1)(ωo + 4α) (from (3.6))

= ∥Ĉ(1)
S1∗E

∗
1 − CS1∗∥0 + ∥Ĉ

(2)

S′
2∗
E∗

2 − CS′
2∗∥0 + · · ·+ ∥Ĉ

(s)
S′
s∗E

∗
s − CS′

s∗∥0

w.p. ≥ 1− (s− 1)(ωo + 4α)

≤ ∥Ĉ(1)
S1∗E

∗
1 − CS1∗∥0 + ∥Ĉ

(2)
S2∗E

∗
2 − CS2∗∥0 + · · ·+ ∥Ĉ

(s)
Ss∗E

∗
s − CSs∗∥0

w.p. ≥ 1− (s− 1)(ωo + 4α)

=M(Ĉ
(1)
S1∗, CS1∗) +M(Ĉ

(2)
S2∗, CS2∗) + · · ·+M(Ĉ

(s)
Ss∗, CSs∗)

w.p. ≥ 1− (s− 1)(ωo + 4α)

≤ sϵ(o+m) from Condition (3.3)

w.p. ≥ 1− (s− 1)(ωo + 4α)− sα.

(S2.20)

Hence the result follows.

14



S2. SUPPORTING RESULTS AND PROOFS

S2.2 Detailed Results and Proofs on Data Usage Proportion

We present a result on the expected proportion of node pairs used in SONNET

and conduct simulations to establish the effect of repetition in increasing

the data usage. For the results in this section, we assume that the network

adjacency matrix is not symmetric, i.e., the node pairs (i, j) and (j, i) are

different, and self-loops are allowed, i.e., the node pairs (i, i) may be non-

zero.

It is easier to obtain the proportion of unused node pairs in SONNET

with s subgraphs, overlapping size o and r repetitions. Borrowing notations

from Algorithm 1, the set of node pairs not used in the base step (r = 0)

of SONNET is W0 := ∪1≤p ̸=q≤s(S ′
p × S ′

q), and similarly, the set of node pairs

not used in the ρth repetition step of SONNET is Wρ := ∪1≤p ̸=q≤s(S
′
pρ×S ′

qρ).

By the structure of the algorithms, all node pairs from S0 × S is used in

SimpleSONNET and the 0th repetition step of SONNET. A node pair (i, j) is

defined as unused for the first ρ repetition steps of SONNET if that node pair

is not included in SONNET up to that point, i.e., (i, j) ∈ ∩ρµ=0Wµ. Lemma

S4 presents a result on the expected number of unused node pairs for the

first ρth repetition steps. Theorem 3 follows directly from this lemma.

Lemma S4. Let SONNET, with a suitable community detection algorithm

and parameters s, o, and r, be applied to a network with nodes in S. Let
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Xρ = |∩ρµ=0Wµ| be the number of unused node pairs up to the ρth repetition.

Then the expectation of X is given by

E [Xρ] = (n− o)2
(
s− 1

s

)ρ+1

. (S2.21)

Proof. For any 0 ≤ ρ ≤ r and node pair (i, j) ∈ (S \S0)× (S \S0), consider

the following probability:

P [(i, j) is unused up to the ρth repetition]

=P

[
(i, j) ∈

ρ⋂
µ=0

Wµ

]

=

ρ∏
µ=0

P [(i, j) ∈ Wµ] (as the non-overlapping parts are randomly
shuffled at each repetition step)

=

ρ∏
µ=0

P

[
(i, j) ∈

⋃
1≤p ̸=q≤s

(S ′
pµ × S ′

qµ)

]

=

ρ∏
µ=0

s∑
p=1

P
[
j ∈ S ′

pµ, i /∈ S ′
pµ

]
=

ρ∏
µ=0

s∑
p=1

P
[
j ∈ S ′

pµ

]
P
[
i /∈ S ′

pµ

]
(due to random assignments
of nodes into subgraphs)

=

ρ∏
µ=0

s∑
p=1

1

s
× s− 1

s

=

(
s− 1

s

)ρ+1

. (S2.22)
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Thus, from (S2.22),

E[Xρ] =
∑

(i,j)∈(S\S0)×(S\S0)

P

[
(i, j) ∈

ρ⋂
µ=0

Wµ

]

= (n− o)2
(
s− 1

s

)ρ+1

. (S2.23)

The expected data usage proportion is also a function of the number

of subgraphs s, and it is smaller for larger s given a fixed value of ρ. We

simulated the divide and the repetition steps of SONNET to estimate the

proportion of used node pairs in a 10000-node network. Overlapping size o

was taken as 1000, and we obtained line charts of estimated and theoretical

proportions of used node pairs for four different values of s: 10, 20, 50, and

100. The number of repetitions r ranges from 0 (SimpleSONNET) to 50. The

plot is presented in Figure 1.

From Figure 1, we observe that for all the cases, the expected and

simulated data usage proportions are visibly indistinguishable. For smaller

values of s, a higher data usage proportion is achieved with fewer repetitions

r. For larger values of s, large values of r are required to achieve a reasonable

data usage proportion.

Regarding the data usage maximization with time constraint for param-

eter selection as in Section 3.3, one may need to provide a search space for
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Figure 1: Estimated (solid line) and expected (dashed line) data usage proportions over

the number of repetitions (r): Simulations are based on n = 10000 nodes and overlapping

size o = 1000

s and o depending on the optimizer. The search space can be decided based

on the computing resources available. In the case that SONNET is parallelized

over ncore processors, barring a small overhead due to parallelization, com-

putation complexity is approximately divided by ncore. Thus, one may

replace q by q × ncore in the previous expression.

S2.3 Proof of bound for SONNET with spectral clustering on SBM

Proof of Theorem 4

Proof. Note that we use the superscript (Sd) on any quantity to indicate the

feature of the subgraph GSd . Also note that the quantities λ and αn remain

18
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the same for the random subgraph GSd . Conditions 1, 2, and 3 of Theorem

S1 are also satisfied by GSd as they are satisfied by G. The subgraph GSd

can be treated as a network modeled by SBM(C
(Sd)
d×K , PK×K).

From a direct application of Lemma S3, we have

(2 + δ)
K

λ2π
(Sd)2
min dαn

≤ (2 + δ)
K(1 + πmin)

2

λ2π2
mindαn

w.p. ≥ 1− ωd,

where ωd = K exp
(
− dπ3

min

4(1+πmin)2

)
. Thus,

(2 + δ)
K(1 + πmin)

2

λ2π2
mindαn

< c

=⇒ (2 + δ)
K

λ2π
(Sd)2
min dαn

< c w.p. ≥ 1− ωd.

Consider the following probability

P

(
δ(Ĉ(Sd), CSd∗) > c−1(2 + δ)

Kπ
(Sd)
max

π
(Sd)2
min λ

2dαn

)

=P

(
δ(Ĉ(Sd), CSd∗) > c−1(2 + δ)

Kπ
(Sd)
max

π
(Sd)2
min λ

2dαn

∣∣∣∣∣(2 + δ)
K

λ2π
(Sd)2
min dαn

< c

)
P

(
(2 + δ)

K

λ2π
(Sd)2
min dαn

< c

)

+ P

(
δ(Ĉ(Sd), CSd∗) > c−1(2 + δ)

Kπ
(Sd)
max

π
(Sd)2
min λ

2dαn

∣∣∣∣∣(2 + δ)
K

λ2π
(Sd)2
min dαn

≥ c

)
P

(
(2 + δ)

K

λ2π
(Sd)2
min dαn

≥ c

)

≤1

d
× 1 + 1× ωd

(the first bound is from Theorem S1, and second bound is from the previous equation).

Therefore, δ(Ĉ(Sd), CSd∗) ≤ c−1(2 + δ) Kπ
(Sd)
max

π
(Sd)2
min λ2dαn

w.p. ≥ 1 − 1
d
− ωd. Com-

bining with Lemma S3, we have

δ(Ĉ(Sd), CSd∗) ≤ c−1(2 + δ)
Kπmax(1 + πmin)

2

π2
min(1− πmax)λ2dαn

w.p. ≥ 1− 1

d
− 3ωd.
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Proof of Theorem 5

Proof. Condition (3.13) ensures that Theorem 4 can be applied. Replacing

d = o +m in Theorem 4, we can see that Condition (3.3) in Theorem 1 is

satisfied with α = 1
o+m

+ 3ωo+m, and ϵ = c−1(2 + δ) Kπmax(1+πmin)
2

π2
min(1−πmax)λ2(o+m)αn

.

Condition (3.14) translates to Condition (3.4) in Theorem 1. Thus, com-

bining Theorem 4 and Theorem 2, we have the final bound in Theorem

5.

S2.4 Proof of bound for SONNET with spherical K-median spectral

clustering on DCBM

Here, we present a result on a bound on the sum from an SRSWOR sample,

given by Serfling (1974). Consider a population P containing N elements

P = {p1, . . . , pN}, with pi ∈ R. Let a and b be the minimum and the

maximum value in P , respectively, and µ = 1
N

N∑
i=1

pi be the population

mean. Let 1 ≤ i ≤ n ≤ N , and Xi be the ith SRSWOR draw from the

population P . Define Mn =
n∑
i=1

Xi. Then the following lemma holds.
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Lemma S5. (Finite sampling bound (Serfling, 1974)) For 1 ≤ n ≤ N ,

λ > 0, and Mn being the sum in SRSWOR,

max

{
P

(√
n

(
Mn

n
− µ

)
≥ λ

)
, P

(√
n

(
Mn

n
− µ

)
≤ −λ

)}
≤ exp

(
−2λ2

(1− fn)(b− a)2

)
,

(S2.24)

where fn = n−1
N

.

Lemma S6. Suppose GSd is a random subgraph of size d from a network

G of size n that is generated by DCBM. Assume ñ
(Sd)
min is defined similarly

for GSd as ñmin for G. Then with probability ≥ 1− K
n
,

ñ
(Sd)
min ≥

d

n
ñmin − γ∗, (S2.25)

where γ∗ =
(
d(n−d+1) logn

2n

) 1
2
.

Proof. Note that for 1 ≤ l ≤ K, ñ
(Sd)
l =

∑
i∈Sd

ψ2
i 1{i ∈ Gl} is a sum of an SR-

SWOR sample of size d from the population P = {ψ2
11{1 ∈ Gl}, ψ2

21{2 ∈ Gl}, . . . , ψ2
n1{n ∈ Gl}}.

Since max
1≤i≤n

ψi = 1, the maximum and the minimum values in the population

are respectively 1 and 0. Define µ̃l =
1
n

n∑
i=1

ψ2
i 1{i ∈ Gl}.
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For any γ > 0, using union bound and Lemma S5,

P

(
ñ
(Sd)
min <

d

n
ñmin − γ

)
= P

(
K⋃
l=1

{
ñ
(Sd)
l <

d

n
ñmin − γ

})

≤
K∑
l=1

P

(
ñ
(Sd)
l <

d

n
ñmin − γ

)

=
K∑
l=1

P

(
√
d

(
ñ
(Sd)
l

d
− µ̃l

)
<
√
d

(
ñmin
n
− µ̃l

)
− γ√

d

)
[
from Lemma S5 as

ñmin
n
− µ̃l = min

1<l<K

1

n

n∑
i=1

ψ2
i 1{i ∈ Gl} −

1

n

n∑
i=1

ψ2
i 1{i ∈ Gl} ≤ 0, ∀ l

]

(S2.26)

≤
K∑
l=1

exp

−2
{√

d
(
ñmin
n
− µ̃l

)
− γ√

d

}2

1− fd


≤ K exp

(
−2γ2

d(1− fd)

)
= K exp

(
−2nγ2

d(n− d+ 1)

)
. (S2.27)

Set γ =
(
d(n−d+1) logn

2n

) 1
2
and the result follows.

Lemma S7. Suppose GSd is a random subgraph of size d from a network

G of size n that is generated by DCBM. Define Sψ̃ =
n∑
i=1

(
ψ−2
i

∑
l∈Ggi

ψ2
l

)
,

and Rψ̃ = max
i=1,...,n

ψ−2
i

∑
l∈Ggi

ψ2
l − min

i=1,...,n
ψ−2
i

∑
l∈Ggi

ψ2
l . Then with probability

≥ 1− 1
n
,

∑
i∈Sd

ψ̃−2
i ≤

d

n
Sψ̃ + η∗, (S2.28)

where η∗ =
(
d(n−d+1) logn

2n

) 1
2
Rψ̃.
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Proof. For any η > 0, using Lemma S5, we have

P

(∑
i∈Sd

ψ̃−2
i >

d

n
Sψ̃ + η

)
= P

(
√
d

(
1

d

∑
i∈Sd

ψ̃−2
i −

1

n
Sψ̃

)
>

η√
d

)

≤ exp

(
−2η2

d(1− fd)R2
ψ̃

)
. (S2.29)

Set η =
(
d(n−d+1) logn

2n

) 1
2
Rψ̃ and the result follows.

Proof of Theorem 6

Proof. Define the eventsA =
{
ñ
(Sd)
min ≥ d

n
ñmin − γ∗

}
, B =

{∑
i∈Sd

ψ̃−2
i ≤ d

n
Sψ̃ + η∗

}
,

and C =
{
π
(Sd)
min ≥ πmin

1+πmin

}
.

Note that P (A) ≥ 1− K
n
from Lemma S6, P (B) ≥ 1− 1

n
from Lemma

S7, and P (C) ≥ 1−ωd from Lemma S3. Also, A∩B ∩C implies the event

D =

(2.5 + δ)

√
K

λñ
(Sd)
minπ

(Sd)
min

√
nαn

√∑
i∈Sd

ψ̃−2
i ≤ (2.5 + δ)

√
K
(
d
n
Sψ̃ + η∗

)
(1 + πmin)

λ
(
d
n
ñmin − γ∗

)
πmin
√
nαn

 .

Then

P (D) ≥ P (A ∩B ∩ C))

= 1− P (Ac ∪Bc ∪ Cc)

≥ 1− P (Ac)− P (Bc)− P (Cc)

≥ 1− K

n
− 1

n
− ωd. (S2.30)

Define the event E =

{
(2.5 + δ)

√
K

λñ
(Sd)
minπ

(Sd)
min

√
nαn

√∑
i∈Sd

ψ̃−2
i < c

}
. Then

23



Supplementary: Community Detection for Large Networks

from Condition (3.16), we have

P (E) ≥ 1− K + 1

n
− ωd. (S2.31)

Now, define the event F =

{
δ(Ĉ(Sd), CSd∗) ≤ c−1(2.5 + δ)

√
K

λñ
(Sd)
min

√
nαn

√∑
i∈Sd

ψ̃−2
i

}
.

Then

P (F c) = P (F c|E)P (E) + P (F c|Ec)P (Ec)

≤ 1

d
× 1 + 1×

(
K + 1

n
+ ωd

)
, (S2.32)

where the bound for the first term on the right hand side of (S2.32) follows

from Theorem S2, and the second bound is from (S2.31). Note that A∩B∩F

implies the final bound in the theorem. Thus, the bound holds w.p. ≥

1− 1
d
− ωd − 2(K+1)

n
.

Proof of Theorem 7

Proof. Condition (3.18) ensures that Theorem 6 can be applied. Replac-

ing d = o + m in Theorem 6, we can see that Condition (3.3) in The-

orem 1 is satisfied with α = 1
o+m

+ ωo+m + 2(K+1)
n

, and ϵ = c−1(2.5 +

δ)

√
K( o+m

n
Sψ̃+η

∗)

λ( o+mn ñmin−γ∗)
√

(o+m)αn
. Condition (3.19) translates to Condition (3.4) in

Theorem 1. Thus, combining Theorem 6 and Theorem 2, we have the final

bound in Theorem 7.
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S2.5 Comparison with Other Divide and Conquer Methods

We compare the performance of SONNET with a divide and conquer algo-

rithm proposed by Mukherjee et al. (2021) in this section. Mukherjee et al.

(2021) suggested two divide and conquer methods: PACE and GALE, with

results on their consistency. GALE applies the parent algorithm A on T

random subgraphs, each of size p, and matches the output labels along a

traversal on the hypergraph of the subgraphs, where two subgraphs are

connected by an edge if they have at least p1 = p2/2n common nodes. GALE

only uses the outputs from subgraphs that have at least τ common nodes

with the union of the previous subgraphs along the traversal. SONNET and

GALE are similar in the sense that they both apply the parent algorithm on

multiple subgraphs of the network. However, GALE does not fix the overlap

part and depends on the subgraph traversal for stitching. On the contrary,

SONNET fixes the overlap part and partitions the remaining network to en-

sure that label matching can be done between the subgraphs without the

need for traversing and searching for subgraphs with large randomly oc-

curring overlaps. This gives SONNET more control for the parameter tuning

step to achieve a lower error rate in less time compared to GALE. We restrict

the comparison to GALE since PACE is structurally different from SONNET, as

it stitches the output clustering matrices from each subgraph instead of the
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community labels and requires an additional K-means clustering in the end

to obtain the community labels. Also, in the numerical examples considered

in this paper, PACE achieved higher error rates in longer times compared to

GALE.

Here, we restate the theorem on the general error bound of GALE with

T subgraphs each of size p and the threshold parameter τ = θTp/n, for a

suitable 0 < θ < 1.

Theorem S3. (Mukherjee et al., 2021, Theorem 3.2) Let 0 < θ < 1 and

b, b′ > 0. Let ĈGALE be the output community labels of GALE applied with T

subgraphs each of size p and threshold parameter τ = θTp/n on a network

of size n with a parent algorithm A that labels any random p subgraph with

error ≤ p2πmin/24n with probability at least 1 − δ. Let p ≥ C
√

n logn
πmin

,

T ≥ C ′n log n/p, where C and C ′ are absolute constants that depend on

r, r′, and θ. Then, with probability at least 1−Tδ−O(n−r′), the worst case

error rate over all possible traversals of spanning trees of the hypergraph of

the subgraphs is

δ(ĈGALE, C) ≤ 1

θT

T∑
l=1

δ(Ĉ(l), C(l)) +O(n−r), (S2.33)

where Ĉ(l) and C(l) are respectively the estimated and the true community

labels for the lth subgraph of GALE.
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To make the error bound of GALE (S2.33) comparable to the error bound

of SimpleSONNET (3.7), we need to assume the same parent algorithm for

both methods that satisfies Assumptions (3.3), (3.4), and ϵ < p2πmin/24n.

Then, the two bounds reduce to

SimpleSONNET: δ(ĈSS, C) ≤ s(o+m)

n
ϵ with high probability, (S2.34)

GALE: δ(ĈGALE, C) ≤ 1

θ
ϵ =

Tp

τn
ϵ with high probability.

(S2.35)

Note that both error bounds share a similar structure. In SimpleSONNET,

A is applied on s subgraphs each of size (o+m) and in GALE, A is applied

on T subgraphs each of size p. Thus, s(o + m)/n and Tp/n can be in-

terpreted as the total number of nodes used in SimpleSONNET and GALE,

respectively, compared to the number of nodes in the entire network. Usu-

ally, these quantities need to be greater than 1 to produce accurate results

for both methods. However, GALE has an additional threshold parameter

τ to determine if any subgraphs have enough overlap with the union of

the previous subgraphs along the traversal to contain sufficient information

for sequential label matching. Although a large value of τ may improve

the error bound substantially, it might lead to the rejection of many sub-

graphs and their traversals requiring large values of T and p that may slow

down GALE. Even when τ is small, GALE usually needs larger subgraphs to
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ensure that the random overlap between them is substantial. Fixing the

overlapping part in SimpleSONNET helps it get by with smaller subgraphs

and eliminates the need for searching a suitable traversal of the subgraphs,

saving computation time. Also, for any selection of parameters T, p, τ of

GALE, one can obtain s, o of SimpleSONNET such that the bound in (S2.34)

is tighter than (S2.35).

S2.6 Error rates and runtimes for different values of SONNET pa-

rameters

Here, we present plots of error rates and computation times of SONNET

against its parameters s, o, and r, keeping the other two fixed. The simu-

lations are for the 10000-node SBM setup as in Section 3.4. We considered

five different values of s: 10, 15, 20, 30, and 50. The values of o were 10,

500, and 1000 and the values of r were 0,2, and 5. We computed error

rates and computation times for SONNET with all possible combinations of

these values of s, o, and r. Figure 2 contains the plot. The plots on the

left side of Figure 2 contains error rates against the parameter and the

plots on the right side contain the computation times. The top levels of

plots are against the number of subgraphs s, the medium level against the

overlap size o, and the bottom level against the number of repetitions r.
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Inside each plot, each line represents the error rates and computation times

against their corresponding parameter , keeping the other two parameters

fixed.

From Figure 2, it can be seen that when the overlap size and the num-

ber of repetitions are kept fixed, the error rate increases with s, but the

computation time initially decreases and then increases. Error rates are

observed to decrease as o and r increase, when the other two parameters

are kept fixed. Computation times are observed to increase as o and r in-

crease. These patterns indicate that one may choose a moderate value of

s, where the error rate is low and the computation time has not increased

by much. For both the overlapping part and the number of repetitions, it

is usually the higher the better.

S2.7 Details on Implementation of SONNET and Real Data Exam-

ples

Implementation Details All the computations were performed on R ver-

sion 4.0.3 on a university campus cluster equipped with Intel Xeon X5355

CPU with operating frequency 2.66 GHz. We ran all the codes with 20 such

processors and 12 GB of memory per processor. The R codes for generating

networks from SBM and DCBM, different variants of spectral clustering,
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Figure 2: Error rates and computation times of SONNET against the parameters s, o, and

r, individually, with the other two kept fixed. All the error rates and computation times

are averages from 100 simulation of 10000-node SBM network with K = 5 communities,

p(intra) = 0.2, and p(inter) = 0.05.
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label matching, SONNET, and GALE were written by us. Eigen decomposition

was done using the base ‘eigen’ function, K-means clustering used ‘kmeans’

function, and spherical K-median clustering used ‘pam’ function from the

package ‘pam’. For community detection on the whole networks, 20 proces-

sors were made available to R, but the methods were not parallelizable. For

community detection using SONNET, all the (r + 1)s community detections

were parallelized over 20 processors using the ‘mclapply’ function from the

package ‘parallel’. For GALE, all the p community detections were paral-

lelized over 20 processors. Algorithm GreedyMatch was used for all the

label matchings inside SONNET and to compute the error rates.

DBLP Four-Area Network Digital Bibliography & Library Project (DBLP)

(https://dblp.org/) is a computer science bibliography website, jointly

maintained by Schloss Dagstuhl - Leibniz Center for Informatics and the

University of Trier. The website hosts over two million articles. Gao et al.

(2009) and Ji et al. (2010) extracted a connected subset of the DBLP data,

containing bibliographical records from four research areas related to data

mining: database, data mining, information retrieval, and artificial intelli-

gence. The original four-area dataset consists of 14376 papers written by

14475 authors, and presented at 20 conferences. However, the ground truth

is available for 4057 authors with 14328 papers, presented in all the 20 con-

31

https://dblp.org/


Supplementary: Community Detection for Large Networks

ferences. We use a version of the data that has the true community labels

of the nodes so that the error rate can be computed.

Twitch Gamers Social Network The authors collected information of 168114

Twitch users in Spring 2018 using public application programming interface

(API). The users are connected by an edge if they have mutual followers.

There are 6 node features available for each user — explicit content identi-

fication, user language, user lifetime, dead account status, affiliate status,

and view count. We performed community detection on a subnetwork of

size n = 32407 to predict the user languages. To form the subnetwork, we

obtained the largest connected component after removing all the users who

broadcast in English, or have a dead account, or have view count or life-

time below their corresponding 10th percentiles. The subnetwork consists

of K = 20 language communities. The ground truth communities are very

unbalanced with their frequency distribution reported in Figure 3. We ap-

plied spectral clustering with row-normalization of the leading eigen vectors

(SC+RN) on the entire network and SONNET with SC+RN and computed the

error rates using the ground truth communities. We selected the param-

eters s and o for SONNET using the parameter selection method described

in Section 3.3 for different values of the computation constraint q (as in

(3.10)).
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