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S1 Notations

Notation Definition

X Random vector of regression covariates

Y Response variable

ϵ Error term

β Regression coefficient vector

p Number of all covariates

s Number of relevant covariates

σ Standard deviation of the error term



Notation Definition

S Number of data sources

D Index set of all samples

D1 Index set of samples without response values

D2 Index set of samples with response values

y Vector consisting of all samples of the response variable

X Design matrix

N Number of samples in D1

n Number of samples in D2

R Number of missing groups

ξi Random group label of the i-th sample

S(r) Index set of the samples in Group r

Index set of the groups where missing variables of Group r and
G(r)

variables in at least one of the other data sources are observed

a(r) Index set of the observed variables in Group r

a(r)c Index set of the missing variables in Group r

a(r, k) Index set of covariates which are observed in Groups r and k

Xi The i-th sample, that is, the i-th row of X

Xij The i-th sample of the j-th covariate

Xia(r,k) Vector consisting of the i-th sample of covariates indexed by a(r, k)

X
(k)
ij E(Xij | Xia(r,k)) if Xij is missing; otherwise Xij

Imputed vector for the i-th sample based on Group k, that is,



Notation Definition
X

(k)
i (X

(k)
i1 , . . . , X

(k)
ip )T

Estimate of the coefficient vector for the relationship between
γ̂j,a(r,k) Xij and Xia(r,k) for i ∈ S(k)

ej A p-dimensional vector with 1 as the j-th element and 0 otherwise

X̂
(k)
ij γ̂T

j,a(r,k)Xia(r,k) if Xij is missing; otherwise Xij

Actual imputed vector for the i-th sample based on Group k, that is,
X̂

(k)
i (X̂

(k)
i1 , . . . , X̂

(k)
ip )T

Sub-vector of X
(k)
i corresponding to all the covariates observed in

X
(k)
ia(k) Group k

Sub-vector of X̂
(k)
i corresponding to all the covariates observed in

X̂
(k)
ia(k) Group k

Estimate of observed rate for the r-th group among D2, that is,
θ̂r |D2 ∩ S(r)|/|D2|

g(β) Vector of all estimating equations with conditional expectations

gn(β) Vector of all estimating equations with actual imputed values

β̂ Proposed estimator of β

Sub-vector of gn(β) consisting of estimating equations with fewer
g∗
n(β) imputed values

g∗(β) Population counterpart of g∗
n(β)

Gn(β) Matrix defined by d
dβ
g∗
n(β)

G(β) Matrix defined by d
dβ
g∗(β)

v̂j Projection vector for the j-th coefficient



Notation Definition

Ŝj(β) Projected estimating function for the j-th coefficient

Subvector of the projection vector v̂j corresponding to the estimating

v̂j,rk

functions in g∗
n(β) associated to Group k ∈ G(r)

β̃j Bias-corrected estimator of βj

zα/2 Upper α/2-quantile of the standard normal distribution

Tj Test statistic for null hypothesis H0: βj = bj

Σ(r,k) Matrix defined as E[I{ξi = r}X(k)
i (X

(k)
i )T ]

Nr Number of samples in D1 ∩ S(r)

nr Number of samples in D2 ∩ S(r)

Σ Covariance matrix of Xi

λmin(·) The smallest singular value of a matrix

λmax(·) The largest singular value of a matrix

ωij The (i, j) element of Σ−1

X̂ Set of all the imputed observations

βs Signal strength in simulations

pi Number of total covariates in the i-th data source

si Number of relevant covariates in the i-th data source in simulations

T Number of testing responses in the real data application

Table 3: Notations.



S2 Additional simulation results

To estimate the asymptotic variance sj, we recommend using the moment estimator

σ̂2 =

∑
i∈D2

∑
k∈G(r),1≤r≤R

[
I(ξi = r){yi − (X̂

(k)
i )T β̂}

]2∑
k∈G(r),1≤r≤R |D2 ∩ S(r)|

+ max
1≤r≤R
k∈G(r)

β̂⊤
a(r)cΩ̂r,kβ̂a(r)c , (S2.1)

for the parameter σ2
r,k, where Ω̂r,k is the sample covariance matrix of the fitted residuals

{ϵ̂(k)ia(r)c = Xia(r)c − Γ̂⊤
r,kXia(r,k) : i ∈ S(k), k ∈ G(r)} from the imputation step.

We implement the multivariate imputation by chained equations (MICE) method using

the R package mice1 , and apply the debiased Lasso method and the Lasso projection method

to each MICE-imputed dataset under simulation Setting 3. We then pool the estimates based

on all MICE-imputed datasets by taking averages according to Rubin’s rules (Rubin, 1987)

for the debiased Lasso method and the Lasso projection method, respectively.

The bias and variance of the corresponding estimators are provided in the last two rows

of Table 4. The results show that MICE-based methods produce much larger biases than the

proposed method. This is possibly due to that the imputations by the proposed method are

more accurate than those by MICE, since the MICE imputation does not fully use the block-

wise missing structure, but the blockwise imputation (BI) in the proposed method does.

When correlations between covariates are larger (ρ = 0.3), empirical standard deviations

of these MICE-based methods increases. In addition, we observe that when correlations

between covariates are larger (ρ = 0.3), empirical standard deviations of these MICE-based

methods increases. Similarly, the empirical standard deviations of most other methods also

increase as ρ increases.

1https://cran.r-Bproject.org/web/packages/glmnet/index.html

https://cran.r-project.org/web/packages/glmnet/index.html


Moreover, as shown in Table 4, methods using single imputation (SI) or MICE (that is,

DL-SI, LP-SI, DL-MICE, and LP-MICE) produce larger biases than the proposed method

under both ρ = 0.1 and ρ = 0.3. This is possibly due to that the imputations by the

proposed method are more accurate than those by SI or MICE. Compared to the proposed

method, the bias of the Lasso projection method with complete cases (LP-CC) is smaller,

which is probably because there is no imputation bias in LP-CC. However, since the number

of complete cases is limited, LP-CC produces larger empirical standard deviation than the

proposed method. In contrast, the debiased Lasso method with complete cases (DL-CC)

has large bias and small standard deviation, suggesting that it fails to remove the leading

bias of the initial estimators. This is likely due to the limited sample size compared to the

sparsity level and the dimensionality, which violates its underlying assumption n ≫ s2

log2 p

(Javanmard and Montanari, 2014) required for successful bias correction.

Table 4: Averages of the absolute values of empirical bias and empirical standard deviation under Setting

3 based on 250 replications. Proposed: the proposed method. DL-CC: the debiased Lasso method with

complete cases. LP-CC: the Lasso projection method with complete cases. DL-SI: the debiased Lasso method

with single regression imputation. LP-SI: the Lasso projection method with single regression imputation.

ρ = 0.1 ρ = 0.3

Method Bias Standard Deviation Bias Standard Deviation

Proposed 0.064 0.158 0.084 0.160

DL-CC 0.174 0.086 0.160 0.106

LP-CC 0.018 0.342 0.005 0.347

DL-SI 0.181 0.034 0.182 0.033

LP-SI 0.141 0.066 0.136 0.068

DL-MICE 0.159 0.125 0.160 0.144

LP-MICE 0.159 0.122 0.160 0.140
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Figure 1: Histograms of β̂j under Setting 3 based on 250 replications for different correlations ρ’s, where the j-th covariate

is a relevant covariate with true signal βj = 0.2. (a) ρ = 0.1. (b) ρ = 0.3.



In addition, we calculate absolute values of empirical biases of β̂j and β̃j for the j-th

covariate under Setting 3, and provide the results in Table 5, which shows that the empirical

bias of β̂j is much larger than that of β̃j. This implies that the bias-correction procedure

improves the finite sample performance, which is the main advantage of the approach in

Section 2.3 over the one in Section 2.2. Moreover, we provide histograms of β̂j based on 250

replications in Figure 1, indicating that the empirical distribution of β̂j is right-skewed and

contains a large portion of point-mass at 0. Thus, the asymptotic distribution of β̂j is likely

to be an asymmetric, non-Gaussian (or, in general non-standard) distribution.

Table 5: Averages of the absolute values of empirical biases of β̂j and β̃j for the j-th covariate under Setting

3 based on 250 replications.

Estimator ρ = 0.1 ρ = 0.3

β̃j 0.064 0.084

β̂j 0.188 0.183



S3 Additional results for ADNI Data Set

Table 6: Biomarkers identified by all the methods.

Method Biomarkers selected

Proposed

ST101SV, ST104TS, ST107TS, ST110TS, ST121TS, ST124SV, ST26TA,

ST30SV, ST35TA, ST57TS, ST58TA, ST60TA, ST68SV, ST6SV,

ST83CV, ST84CV, ST84SA, ST84TA, ST94CV, CTX RH TEMPORALPOLE,

LEFT CHOROID PLEXUS, PJA2, SFRP1, P4HA3, ABCG1, IKZF5, NLRP10,

ACOXL, DNAH2, EIF4ENIF1, TEKT4, PPIL2, TRPM8, SIGMAR1,

ANKRD13C, MAGI2

DL-CC

ST129TS, ST15CV, ST15SA, ST147SV, ST24TA, ST26TA,

ST29SV, ST32CV, ST34CV, ST40TA, ST45CV, ST48TA,

ST60TA, ST60TS, ST72TA, ST73CV, ST76SV, ST77SV,

ST84SA, ST85CV, ST93CV, ST97TA, ST97TS, CC ANTERIOR,

CTX LH CUNEUS, CTX LH LINGUAL, CTX LH PERICALCARINE,

CTX RH CUNEUS, SUMMARYSUVR WHOLECEREBNORM 1.11CUTOFF,

SUMMARYSUVR COMPOSITE REFNORM, PHF1, SFRP1, GOLGA8A ||

GOLGA8B, IKZF5, MECR, NLRP10, PROKR2, TAS2R4, DAZAP2,

SERPINH1, LDLR, TTYH1, PSMB2, MAGI2, PCDH9, POSTN

LP-CC ST147SV, ST32CV, SFRP1

DL-SI

ST129TA, ST130TS, ST18SV, ST24TA, ST26TA, ST29SV,

ST30SV, ST31CV, ST31TA, ST32CV, ST40CV, ST40TA, ST46TA,

ST48TA, ST58CV, ST58TA, ST59CV, ST80SV, ST83CV, ST85CV,

ST89SV, ST90CV, ST90TA, CC POSTERIOR, CTX LH FUSIFORM,

LEFT LATERAL VENTRICLE, SUMMARYSUVR WHOLECEREBNORM 1.11CUTOFF,

SUMMARYSUVR COMPOSITE REFNORM, CTX LH FRONTALPOLE, COL4A1,

PHF1, SFRP1, SCFD2, ABCG1, CDH2, NAALAD2, TRIM6-TRIM34 ||

TRIM34, IKZF5, MECR, OXT, NLRP10, PROKR2, ACOXL, TAS2R4,

BRDT, CACYBP, PCSK6, DNAH2, SERPINH1, EIF4ENIF1, TEKT4,

STXBP1, PPIL2, ABHD14B, LDLR, TRPM8, PRMT6, SIGMAR1, ZNF195,

PSMB2, CALD1, MAGI2, PYCR2

LP-SI
ST107TS, ST30SV, ST39SA, ST46TA, CTX RH PARAHIPPOCAMPAL,

SUMMARYSUVR COMPOSITE REFNORM, SFRP1, DNAH2, EIF4ENIF1, TEKT4,

TRPM8, SIGMAR1, MAGI2
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Table 7: Biomarkers identified by the proposed method and one of other methods.

Method Overlapped biomarkers

DL-CC ST26TA, ST60TA, ST84SA, SFRP1, IKZF5, NLRP10, MAGI2

LP-CC SFRP1

DL-SI
ST26TA, ST30SV, ST58TA, ST83CV, SFRP1, ABCG1, IKZF5, NLRP10,

ACOXL, DNAH2, EIF4ENIF1, TEKT4, PPIL2, TRPM8, SIGMAR1, MAGI2

LP-SI
ST107TS, ST30SV, SFRP1, DNAH2, EIF4ENIF1, TEKT4, TRPM8,

SIGMAR1, MAGI2

Table 8: Averages of absolute mean and standard deviation of differences between true responses and predicted

values based on 150 replications. Proposed (β̂): the proposed method with the estimator β̂. MRI Lasso, PET Lasso,

and Gene Lasso: Lasso method using only MRI, PET, and gene expression variables, respectively. CC Lasso: the

Lasso method using only complete cases. Naive mean: using the sample mean of the response variable in the training

sets for prediction.

Method Absolute Mean Standard Deviation

Proposed (β̂) 0.715 3.662

MRI Lasso 0.837 3.814

PET Lasso 0.715 4.018

Gene Lasso 0.791 4.369

CC Lasso 0.857 4.321

Naive mean 0.787 4.401

The results in Table 9 show that the proposed method produces the smallest squared bias

among all the methods. In addition, the proposed method performs the best in terms of sum

of the squared bias and variance.
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Table 9: Squared bias and variance of predicted values by each method based on 150 replications. Proposed (β̂):

the proposed method with the estimator β̂. MRI Lasso, PET Lasso, and Gene Lasso: Lasso method using only

MRI, PET, and gene expression variables, respectively. CC Lasso: the Lasso method using only complete cases.

Naive mean: using the sample mean of the response variable in the training sets for prediction.

Method Squared bias Variance

Proposed (β̂) 11.910 2.191

MRI Lasso 14.930 0.583

PET Lasso 16.472 0.479

Gene Lasso 15.929 3.999

CC Lasso 17.079 3.063

Naive mean 20.970 0.009

S4 Theoretical results for only supervised samples

When there are only n supervised samples, our analysis suggests that we can randomly select

m samples from all the supervised samples preserving the blockwise missing pattern of the

entire dataset, perform the imputation step in (2.2) in the manuscript using the selected

samples, and construct β̂ and β̃ using the remaining samples. Let A1 denote the index set

of the selected samples, and A2 denote the index set of the remaining samples. Similar to

Theorem 2 in the manuscript, under regularity conditions (A1)–(A5), m ≳ (n − m) log p,

log p ≪ n − m, τ ≍
√

log p/m, λ ≍
√
log p/(n−m) + s

√
log p/m, λ′ ≍

√
log p/(n−m),

and s ≪ min
{√

n−m
log p

,
√

m
(n−m) log p

}
, for sufficiently large n,m, p and each j ∈ [1 : p], we have

(n−m)(β̃j − βj)/sj = AB +D,



12

where

s2j =
∑
i∈A2

∑
k∈G(r),1≤r≤R

|A2|2σ2
r,k

|A2 ∩ S(r)|2
I{ξi = r}(v̂⊤

j,rkXia(r,k))
2, (S4.2)

A → 1 and D → 0 in probability, and B|X̂ → N(0, 1) in distribution, in which X̂ =

{X̂(k)
i }i∈A2 is the set of all the imputed observations in A2. The σ2

r,k and v̂j,rk are defined

in the paragraph following equation (4.18) in the manuscript. Note that sj here is of order

√
n−m by the above equation (S4.2).

When there are both supervised and unsupervised samples of sizes n and N , respectively,

by Theorem 2 in the manuscript, the convergence rate (i.e., the order of standard error) of

β̃j is 1/
√
n. In contrast, when there are only n supervised samples, the convergence rate of

β̃j is 1/
√
n−m by the above paragraph, which is slower than 1/

√
n for diverging p since

n/(n − m) ≳ log p + 1 by m ≳ (n − m) log p. The asymptotic variances of β̃j under the

two situations are similar averages by equation (4.18) in the manuscript and above equation

(S4.2).

S5 Proof of Theorem 1

The proof of the following theorem can be separated into two parts. In the first part, we

show that the constraint ∥gn(β)∥∞ ≤ λ is feasible with high probability. In the second part,

we obtain the rate of convergence of the proposed estimator β̂. For simplicity, and without

loss of generality, we assume that there are 2n samples in D2, where half of the samples along

with the N samples in D1 are used for imputation, whereas the other half of the samples are

used for constructing the estimating function.

Throughout, we adopt the following notations. Recall that γ̂j,a(r,k) is the Lasso estimator
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defined in the main paper, we define the matrix Γ̂a(r,k),a(r)c ∈ R|a(r,k)|×|a(r)c| whose columns

are γ̂j,a(r,k) with j ∈ a(r)c. In addition, we define γj = argminγ∈Rp−1 E(Xij − γ⊤Xi,−j)
2,

and similarly define Γa(r,k),a(r)c ∈ R|a(r,k)|×|a(r)c| as a matrix whose columns are γj,a(r,k) with

j ∈ a(r)c. As a consequence, by (A1) - (A4) and the standard estimation bound for the

Lasso estimator (Bickel et al., 2009; Negahban et al., 2010), we have

max
j∈a(r)c

∥γ̂j,a(r,k) − γj,a(r,k)∥2 ≲
√

s log p

N + n
, (S5.3)

with probability at least 1− p−c. In addition, for simplicity, we may also write Γa(r,k),a(r)c as

Γr,k and write Γ̂a(r,k),a(r)c as Γ̂r,k.

Part I. Feasibility. We start with the following lemmas.

Lemma 1. Under conditions (A1) to (A4), with probability at least 1− p−c, it holds that

∥g(β)∥∞ ≲

√
log p

n
. (S5.4)

Lemma 2. Under conditions (A1) to (A4), if s ≲ N+n
log p

, then with probability at least 1−p−c,

it holds that

∥gn(β)− g(β)∥∞ ≲ s

√
log p

N + n

(
1 + s

√
log p

n

)
(S5.5)

Combining the above two lemmas, we have

∥gn(β)∥∞ ≤ ∥gn(β)− g(β)∥∞ + ∥g(β)∥∞ ≲

√
log p

n
+ s

√
log p

N + n

(
1 + s

√
log p

n

)
(S5.6)

with probability at least 1−p−c. Whenever s ≪
√

n/ log p, the RHS of (S5.6) can be bounded

by λ ≍
√

log p/n + s
√
log p/(n+N), which shows that the constraint ∥gn(β)∥∞ ≤ λ is

feasible with high probability.
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Part II. Rate of Convergence. Firstly, if we denote gn(β) =
1
n

∑n
i=1 ĥi(β), where ĥi(β) has

its components n
nr
I{ξi = r}[yi − (X̂

(k)
i )⊤β]X̂

(k)
ia(k), it then follows that gn(β̂) =

1
n

∑n
i=1 ĥi(β̂)

where ĥi(β̂) has its components

n

nr

I{ξi = r}[yi − (X̂
(k)
i )⊤β̂)]X̂

(k)
ia(k)

=
n

nr

I{ξi = r}[X⊤
i β − (X̂

(k)
i )⊤β̂ + ϵi]X̂

(k)
ia(k)

=
n

nr

I{ξi = r}[(X̂(k)
i )⊤(β − β̂) + (Xi − X̂

(k)
i )⊤β + ϵi]X̂

(k)
ia(k). (S5.7)

Now, we will show that∥∥∥∥ 1n
n∑

i=1

n

nr

I{ξi = r}X̂(k)
ia(k)(X̂

(k)
i )⊤(β − β̂)

∥∥∥∥
∞

≲ λ. (S5.8)

To see this, by the definition of β̂ and Part I, we have∥∥∥∥ 1n
n∑

i=1

ĥirk(β̂)

∥∥∥∥
∞

≤ ∥gn(β̂)∥∞ ≲ λ, (S5.9)

with probability at least 1 − p−c. Then, in light of the decomposition (S5.7), it suffices to

show that, with probability at least 1− p−c,∥∥∥∥ 1n
n∑

i=1

I{ξi = r}ϵiX̂(k)
ia(k)

∥∥∥∥
∞

≤ λ, (S5.10)

and ∥∥∥∥ 1n
n∑

i=1

I{ξi = r}(Xi − X̂
(k)
i )⊤βX̂

(k)
ia(k)

∥∥∥∥
∞

≤ λ. (S5.11)

This is done by the following lemma. Thus (S5.8) holds.

Lemma 3. Under the conditions of Theorem 1, (S5.10) and (S5.11) hold with probability at

least 1− p−c.
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By (S5.8), we have∣∣∣∣ 1n
n∑

i=1

n

nr

I{ξi = r}[β− β̂]⊤a(k)X̂
(k)
ia(k)(X̂

(k)
i )⊤(β− β̂)

∣∣∣∣ ≲ λ∥[β− β̂]a(k)∥1 ≤ λs1/2∥[β− β̂]a(k)∥2.

(S5.12)

Next, we would like to prove the lower bound∣∣∣∣ 1n
n∑

i=1

n

nr

I{ξi = r}[β − β̂]⊤a(k)X̂
(k)
ia(k)(X̂

(k)
i )⊤(β − β̂)

∣∣∣∣ ≳ ∥[β − β̂]a(k)∥2∥β − β̂∥2, (S5.13)

which along with the upper bound (S5.12) implies the final results

∥β − β̂∥2 ≤ s1/2λ, and ∥β − β̂∥1 ≤ sλ.

To show (S5.13), we need the following key proposition concerning a restricted singular value

condition.

Proposition 1. Under the conditions of Theorem 1, it holds that

inf
∥u∥2=1,u∈Es

∥ua(k)∥2≥1/2

∣∣∣∣ u⊤
a(k)

∥ua(k)∥2
1

n

n∑
i=1

n

nr

I{ξi = r}X̂(k)
ia(k)(X̂

(k)
i )⊤u

∣∣∣∣ ≥ c0 (S5.14)

with probability at least 1− p−c, where

Es(p) = {δ ∈ Rp : ∥δ∥2 = 1, ∥δSc∥1 ≤ ∥δS∥1, |S| ≤ s}.

Now by the definition of β̂, it follows from the same argument of Candes and Tao (2007)

that

∥[β̂ − β]Sc∥1 ≤ ∥[β̂ − β]S∥1, (S5.15)

where S = supp(β). If in addition

∥[β − β̂]a(k)∥2 ≥ ∥[β − β̂]a(k)c∥2, (S5.16)



16

we have
∥[β−β̂]a(k)∥2

∥β−β̂∥2
≥ 1/2 so that by (S5.14), the lower bound (S5.13) hold. The rest of the

proof is devoted to (S5.16).

Proof of (S5.16). The existence of r and k ∈ G(r) such that (S5.16) holds follows directly from

the assumption that, there exists an r ∈ {1, ..., R} and k, k′ ∈ G(r) such that a(k)c ⊂ a(k′)

and a(k′)c ⊂ a(k). In this case, if

∥[β − β̂]a(k)∥2 < ∥[β − β̂]a(k)c∥2,

we have

∥[β − β̂]a(k′)c∥2 < ∥[β − β̂]a(k′)∥2.

Thus, there exists some k ∈ G(r) such that (S5.16) holds.

S6 Proof of Theorem 2

Without loss of generality, we assume there are 2n supervised samples in D2, split into two

halves. We need the following lemmas.

Lemma 4. Suppose the smallest singular value of EG ∈ RM ′
g×p, where M ′

g =
∑R

r=1

∑
k∈G(r) |a(r, k)|,

is bounded away from zero. Then there exists infinite numbers of v ∈ RMg such that

EG⊤v = ej and ∥v∥2 ≤ C for some constant C > 0.

Lemma 5. Let v∗
j ∈ RM ′

g be any vector such that EG⊤v∗
j = ej. Suppose the smallest singular

value of EG is bounded away from zero, and R ≍ 1. Then with probability at least 1− p−c,

it holds that

∥(v∗
j )

⊤Gn − e⊤
j ∥∞ ≲ λ′.
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Lemma 6. Let Ŝj(β) = v̂⊤
j g

∗
n(β). If sλλ

′√n = o(1), it holds that

√
nŜj(β̂

∗
j ) =

√
nŜj(β) + oP (1). (S6.17)

Lemma 7. Conditional on X̂ = {X̂(k)
i }i∈D2, it holds that

nŜj(β)− µj

sj

∣∣∣∣X̂ →d N(0, 1), (S6.18)

where

µj =
n∑

i=1

∑
k∈G(r),1≤r≤R

n

nr

I{ξi = r}β⊤
a(r)c(Γr,k − Γ̂r,k)

⊤Xia(r,k)v̂
⊤
rkXia(r,k)

and

s2j =
n∑

i=1

∑
k∈G(r),1≤r≤R

n2σ2
r,k

n2
r

I{ξi = r}[v̂⊤
rkXia(r,k)]

2,

where σ2
r,k = σ2 + β⊤

a(r)cE[ϵ
(k)
ia(r)c(ϵ

(k)
ia(r)c)

⊤]βa(r)c, and ϵ
(k)
ia(r)c = Xia(r)c − Γ⊤

r,kXia(r,k) ∈ R|a(r)c|

is the residual term of the i-th sample in the regression model of Xia(r)c with Xia(r,k) as

covariates.

Let β̃∗
j be such that β̃∗

j is β̂∗
j by replacing its j-th component by β̃j. By the mean value

theorem, we have

0 = Ŝj(β̃
∗
j ) = Ŝj(β̂

∗
j ) + v̂⊤

j [Gn].j(β̃j − βj). (S6.19)

By Lemma 6, we have

0 =
√
nŜj(β) +

√
nv̂⊤

j [Gn].j(β̃j − βj) + oP (1),

or
√
n(β̃j − βj)

sj/
√
n

= − nŜj(β)

sjv̂⊤
j [Gn].j

+ oP (1) = −nŜj(β)− µj

sjv̂⊤
j [Gn].j

− µj

sjv̂⊤
j [Gn].j

+ oP (1).
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In the above equation, by the definition of v̂j and Lemma 5, it holds that, with probability

at least 1− p−c

|v̂⊤
j [Gn(β̂

∗
j )].j − 1| ≲

√
s log p

n
.

or

v̂⊤
j [Gn(β̂

∗
j )].j →P 1.

Hence, it suffices to show

µj/
√
n →P 0 (S6.20)

and

s2j/n ≥ c > 0 (S6.21)

with probability at least 1− p−c. With these, it follows that

n(β̃j − βj)

sj
= AB +D,

where A → 1, D → 0 in probability and B|X̂ →d N(0, 1). The rest of the proof is devoted

to (S6.20) and (S6.21).

Proof of (S6.20) and (S6.21). The proof of (S6.20) can be established as soon as we prove∣∣∣∣ ∑
k∈G(r),1≤r≤R

n

nr

I{ξi = r}β⊤
a(r)c(Γr,k − Γ̂r,k)

⊤Xia(r,k)v̂
⊤
rkXia(r,k)

∣∣∣∣ = oP (n
−1/2).

Now since∣∣∣∣ ∑
k∈G(r),1≤r≤R

1

n

n∑
i=1

n

nr

I{ξi = r}β⊤
a(r)c(Γ̂r,k − Γr,k)

⊤Xia(r,k)(Xia(r,k))
⊤v̂j,rk

∣∣∣∣
≲

∑
k∈G(r),1≤r≤R

√√√√ 1

n

n∑
i=1

[β⊤
a(r)c(Γ̂r,k − Γr,k)⊤Xia(r,k)]2

√√√√ 1

n

n∑
i=1

n2

n2
r

I{ξi = r}[(Xia(r,k))⊤v̂j,rk]2.

(S6.22)
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By (S7.28) we have

max
k,r

∥(Γ̂r,k − Γr,k)βa(r)c∥2 ≤ ∥βa(r)c∥1 · max
1≤j≤a(r)c

∥γ̂j,a(r,k) − γj,a(r,k)∥2 ≲ s

√
log p

N + n
(S6.23)

with probability at least 1− p−c. By the definition of v̂j, we have√√√√ 1

n

n∑
i=1

n2

n2
r

I{ξi = r}[(Xia(r,k))⊤v̂j,rk]2 ≤

√√√√ 1

n

n∑
i=1

n2

n2
r

I{ξi = r}[(Xia(r,k))⊤v∗
j,rk]

2, (S6.24)

where by concentration inequality of sub-exponential random variables, the right hand side

of the above inequality is bounded by a constant with probability at least 1− p−c. Thus, we

have∣∣∣∣ ∑
k∈G(r),1≤r≤R

n

nr

I{ξi = r}β⊤
a(r)c(Γr,k − Γ̂r,k)

⊤Xia(r,k)v̂
⊤
rkXia(r,k)

∣∣∣∣ ≲ s

√
log p

N + n
= o(n−1/2)

with high probability under the condition s ≪ ( N
n log p

)1/2 and N ≫ n. Now to show (S6.21),

since σ2
r,k ≥ σ2, it suffices to show

σ2

n

n∑
i=1

∑
k∈G(r),1≤r≤R

n2

n2
r

I{ξi = r}[v̂⊤
j,rkXia(r,k)]

2 ≥ c > 0. (S6.25)

To see this, note that by definition of v̂j, we have∣∣∣∣ ∑
k∈G(r),1≤r≤R

1

n

n∑
i=1

n

nr

I{ξi = r}X̂(k)
ij (Xia(r,k))

⊤v̂j,rk − 1

∣∣∣∣ ≤ λ′,

or ∑
k∈G(r),1≤r≤R

1

n

n∑
i=1

n

nr

I{ξi = r}X̂(k)
ij (Xia(r,k))

⊤v̂j,rk ≥ 1− λ′.

By Cauchy-Schwartz inequality, we have

∑
k∈G(r),1≤r≤R

√√√√ 1

n

n∑
i=1

[X̂
(k)
ij ]2

√√√√ 1

n

n∑
i=1

n2

n2
r

I{ξi = r}[(Xia(r,k))⊤v̂j,rk]2 ≥ 1− λ′,

or √√√√ ∑
k∈G(r),1≤r≤R

1

n

n∑
i=1

n2

n2
r

I{ξi = r}[(Xia(r,k))⊤v̂j,rk]2 ≳
1− λ′

maxk∈G(r),1≤r≤R

√
1
n

∑n
i=1[X̂

(k)
ij ]2

.
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Now since by concentration inequality of subexponential random variables with probability

at least 1− p−c,

max
k∈G(r),1≤r≤R

√√√√ 1

n

n∑
i=1

[X̂
(k)
ij ]2 ≥ c > 0,

it follows that under the same event (S6.25) holds.

S7 Proof of Auxiliary Lemmas

S7.1 Proof of Lemma 1

By definition, g(β) has its subvectors of the form

1

nr

n∑
i=1

I{ξi = r}[yi − (X
(k)
i )⊤β)]X

(k)
ia(k) =

1

nr

n∑
i=1

I{ξi = r}[X⊤
i β + ϵi − (X

(k)
i )⊤β)]X

(k)
ia(k)

=
1

nr

n∑
i=1

I{ξi = r}[(Xi −X
(k)
i )⊤β + ϵi]X

(k)
ia(k).

By assumptions (A4) and ∥β∥2 ≤ C, each of (Xi−X
(k)
i )⊤β, ϵi and X

(k)
ia(k) are sub-Gaussian

random variables and are mutually independent across different samples i ∈ {1, ..., n}. Since

the product of two sub-Gaussian random variables are sub-exponential, and by the properties

of conditional expectations

E[(Xi −X
(k)
i )⊤β + ϵi]X

(k)
ia(k) = 0, i = 1, ..., n,

then it follows that, as long as 0 < c1 < n/nr < c2 < 1 for each 1 ≤ r ≤ R (A2),

each component of g(β) is a centred sub-exponential variable. Applying the concentration

inequality for independent sub-exponential random variables (see, for example, Proposition

5.16 of Vershynin (2010)), we have

P

(
∥g(β)∥∞ ≤ C

√
logMg

n

)
≥ 1−M−c

g
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for some constants C, c > 0. The final results follows from (A2) so that p ≲ Mg ≤ R2p ≲

p.

S7.2 Proof of Lemma 3

To prove (S5.10), we note that X̂
(k)
ia(k) can be partitioned into two subvectors, namely, Xia(r,k)

and X̂ia(r)c . On the one hand, by the concentration inequality for independent centred sub-

exponential random random variables, we have

P

(∥∥∥∥ 1n
n∑

i=1

I{ξi = r}ϵiXia(r,k)

∥∥∥∥
∞

≤ C

√
log p

n

)
≥ 1− p−c. (S7.26)

On the other hand, for any j ∈ a(r)c,

[X̂ia(r)cϵi]j = γ̂⊤
j,a(r,k)Xia(r,k)ϵi = (γ̂j,a(r,k) − γj,a(r,k))

⊤Xia(r,k)ϵi + γ⊤
j,a(r,k)Xia(r,k)ϵi.

By the concentration inequality for independent centred sub-exponential random random

variables, we have

P

(
max
j∈a(r)c

∣∣∣∣ 1n
n∑

i=1

I{ξi = r}γ⊤
j,a(r,k)Xia(r,k)ϵi

∣∣∣∣ ≤ C

√
log p

n

)
≥ 1− p−c.

In addition, by (S5.3), with probability at least 1− p−c, we have

max
j∈a(r)c

∣∣∣∣ 1n
n∑

i=1

I{ξi = r}(γ̂j,a(r,k) − γj,a(r,k))
⊤Xia(r,k)ϵi

∣∣∣∣
∞

≤ max
j∈a(r)c

∥γ̂j,a(r,k) − γj,a(r,k)∥1
∥∥∥∥ 1n

n∑
i=1

I{ξi = r}Xia(r,k)ϵi

∥∥∥∥
∞

≲ s

√
log p

N + n

√
log p

n
.

Therefore,

P

(
max
j∈a(r)c

∣∣∣∣ 1n
n∑

i=1

I{ξi = r}γ̂⊤
j,a(r,k)Xia(r,k)ϵi

∣∣∣∣ ≤ C

(
1 + s

√
log p

N + n

)√
log p

n

)
≥ 1− p−c.

(S7.27)



S7.2 Proof of Lemma 322

Inequality (S5.10) then follows from (S7.26) and (S7.27).

To prove (S5.11), note that

(Xi − X̂
(k)
i )⊤βX̂

(k)
ia(k) = [X⊤

ia(r,k)(Γr,k − Γ̂r,k)+ϵ
(k)
ia(r)c ]βa(r)cX̂

(k)
ia(k).

Again, the above vector consists of two parts, corresponding to the above partition of X̂
(k)
ia(k).

For the first part, it follows that∥∥∥∥ 1n
n∑

i=1

I{ξi = r}[X⊤
ia(r,k)(Γr,k − Γ̂r,k)+ϵ

(k)
ia(r)c ]βa(r)cXia(r,k)

∥∥∥∥
∞

= max
k∈a(r,k)

∣∣∣∣ 1n
n∑

i=1

I{ξi = r}β⊤
a(r)c [X

⊤
ia(r,k)(Γr,k − Γ̂r,k)+ϵ

(k)
ia(r)c ]Xik

∣∣∣∣
≤ ∥β⊤

a(r)c(Γ̂r,k − Γr,k)
⊤∥2 · max

k∈a(r,k)

∣∣∣∣ 1n
n∑

i=1

I{ξi = r}u⊤
r,kXia(r,k)Xik

∣∣∣∣
+ max

k∈a(r,k)

∣∣∣∣ 1n
n∑

i=1

I{ξi = r}β⊤
a(r)cϵ

(k)
ia(r)cXik

∣∣∣∣,
where u⊤

r,k = β⊤
a(r)c(Γ̂r,k−Γr,k)

⊤/∥β⊤
a(r)c(Γ̂r,k−Γr,k)

⊤∥2. Note that ∥βa(r)c∥1 ≤
√
s∥β∥2 ≲

√
s.

Then we have

∥(Γ̂r,k − Γr,k)βa(r)c∥2 ≤
∑

j∈a(r)c
|βj| · ∥γ̂j,a(r,k) − γj,a(r,k)∥2

≤ ∥βa(r)c∥1 · max
1≤j≤a(r)c

∥γ̂j,a(r,k) − γj,a(r,k)∥2 ≲ s

√
log p

N + n
, (S7.28)

and, by the concentration inequality of sub-exponential random variables and the indepen-

dence between Γ̂r,k and Xi,

max
k∈a(r,k)

∣∣∣∣ 1n
n∑

i=1

I{ξi = r}u⊤
r,kXia(r,k)Xik

∣∣∣∣ ≤ C, (S7.29)

with probability at least 1− p−c. Moreover, by the fact that E[β⊤
a(r)cϵ

(k)
ia(r)cXik] = 0 and the

concentration inequality of sub-exponential random variables, we also have

max
k∈a(r,k)

∣∣∣∣ 1n
n∑

i=1

I{ξi = r}β⊤
a(r)cϵ

(k)
ia(r)cXik

∣∣∣∣ ≲
√

log p

n
,
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with probability at least 1− p−c.

For the second part, it follows that∥∥∥∥ 1n
n∑

i=1

I{ξi = r}[X⊤
ia(r,k)(Γr,k − Γ̂r,k)+ϵ

(k)
ia(r)c ]βa(r)cX

⊤
ia(r,k)Γ̂r,k

∥∥∥∥
∞

= max
k∈a(r)c

∣∣∣∣ 1n
n∑

i=1

I{ξi = r}β⊤
a(r)c [(Γr,k − Γ̂r,k)

⊤Xia(r,k)+ϵ
(k)
ia(r)c ]X

⊤
ia(r,k)γ̂j,a(r,k)

∣∣∣∣
≤ ∥β⊤

a(r)c(Γ̂r,k − Γr,k)
⊤∥2 · max

k∈a(r)c

∣∣∣∣ 1n
n∑

i=1

I{ξi = r}u⊤
r,kXia(r,k)X

⊤
ia(r,k)γj,a(r,k)

∣∣∣∣
+ ∥β⊤

a(r)c(Γ̂r,k − Γr,k)
⊤∥2 · max

k∈a(r)c

∣∣∣∣ 1n
n∑

i=1

I{ξi = r}u⊤
r,kXia(r,k)X

⊤
ia(r,k)(γ̂j,a(r,k) − γj,a(r,k))

∣∣∣∣
+ max

k∈a(r)c

∣∣∣∣ 1n
n∑

i=1

I{ξi = r}β⊤
a(r)cϵ

(k)
ia(r)cX

⊤
ia(r,k)γ̂j,a(r,k)

∣∣∣∣.
By the concentration inequality for sub-exponential random variables and the fact that

supj,r,k ∥[Γr,k].j∥2 ≤ C, which is implied by the assumption that Σ has bounded eigenvalues

from both above and below, we have with probability at least 1− p−c,

max
k∈a(r)c

∣∣∣∣ 1n
n∑

i=1

I{ξi = r}u⊤
r,kXia(r,k)X

⊤
ia(r,k)γj,a(r,k)

∣∣∣∣ ≤ C. (S7.30)

Similarly, since Eϵ(k)ia(r)cX
⊤
ia(r,k)γ̂j,a(r,k) = E[E[ϵ(k)ia(r)cX

⊤
ia(r,k)γ̂j,a(r,k)|X̂]] = 0, we also have

max
k∈a(r)c

∣∣∣∣ 1n
n∑

i=1

I{ξi = r}β⊤
a(r)cϵ

(k)
ia(r)cX

⊤
ia(r,k)γ̂j,a(r,k)

∣∣∣∣ ≲
√

log p

n
,

with probability at least 1− p−c. In addition,

max
k∈a(r)c

∣∣∣∣ 1n
n∑

i=1

I{ξi = r}u⊤
r,kXia(r,k)X

⊤
ia(r,k)(γ̂j,a(r,k) − γj,a(r,k))

∣∣∣∣
≤ max

k∈a(r)c
∥γ̂j,a(r,k) − γj,a(r,k)∥2 ·

∥∥∥∥ 1n
n∑

i=1

I{ξi = r}u⊤
r,kXia(r,k)X

⊤
ia(r,k)vj

∥∥∥∥
2

≲

√
s log p

N + n
,

where in the second last inequality vj = (γ̂j,a(r,k)−γj,a(r,k))/∥γ̂j,a(r,k)−γj,a(r,k)∥2 and the last

inequality follows again from the concentration inequality for the sub-exponential random

variables. The above inequalities imply (S5.11).
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S7.3 Proof of Lemma 2

For each r ∈ [1 : R], i ∈ S(r) and k ∈ G(r), we have

ĥirk(β) = I(ξi = r)[{Xi − X̂
(k)
i }⊤β + ϵi] · X̂(k)

ia(k)

= I(ξi = r)
[
{Xia(r)c − X̂

(k)
ia(r)c}

⊤βa(r)c + ϵi

]
· X̂(k)

ia(k),

and therefore

g(β)− gn(β) =
1

n

n∑
i=1

{hi(β)− ĥi(β)}, (S7.31)

where ĥi(β) = (θ̂−1
1 ĥi1(β)

⊤, . . . , θ̂−1
R ĥiR(β)

⊤)⊤ and hi(β) = (θ̂−1
1 hi1(β)

⊤, . . . , θ̂−1
R hiR(β)

⊤)⊤

which consist of all the (imputed) estimating functions for the i-th sample. In particular,

for k ∈ G(r), we have

1

n

n∑
i=1

θ̂−1
r

{
hirk(β)− ĥirk(β)

}
=

1

n

n∑
i=1

θ̂−1
r I(ξi = r)

(
[yi − {X(k)

i }⊤β] ·X(k)
ia(k) − [yi − {X̂(k)

i }⊤β]X̂(k)
ia(k)

)
=

1

nθ̂r

n∑
i=1

I(ξi = r)
([

{Xia(r)c −X
(k)
ia(r)c}

⊤βa(r)c + ϵi

]
X

(k)
ia(k)

−
[
{Xia(r)c − X̂

(k)
ia(r)c}

⊤βa(r)c + ϵi

]
X̂

(k)
ia(k)

)
=

1

nθ̂r

n∑
i=1

I(ξi = r)
(
X

(k)
ia(k){Xia(r)c −X

(k)
ia(r)c}

⊤βa(r)c − X̂
(k)
ia(k){Xia(r)c − X̂

(k)
ia(r)c}

⊤βa(r)c

+ϵi

{
X

(k)
ia(k) − X̂

(k)
ia(k)

})
.
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Then, ∥∥∥∥∥ 1n
n∑

i=1

θ̂−1
r

{
hirk(β)− ĥirk(β)

}∥∥∥∥∥
∞

= θ̂−1
r max

1≤r≤R,k∈G(r),j∈a(k)

∣∣∣∣∣ 1n
n∑

i=1

I(ξi = r)
(
X

(k)
ij {Xia(r)c −X

(k)
ia(r)c}

⊤βa(r)c

−X̂
(k)
ij {Xia(r)c − X̂

(k)
ia(r)c}

⊤βa(r)c + ϵi ·
{
X

(k)
ij − X̂

(k)
ij

})∣∣∣
= θ̂−1

r max
1≤r≤R,k∈G(r),j∈a(k)

∣∣∣∣∣ 1n
n∑

i=1

I(ξi = r)
(
X

(k)
ij X⊤

ia(r,k)

{
Γ̂a(r,k),a(r)c − Γa(r,k),a(r)c

}
βa(r)c

+
{
X̂

(k)
ij −X

(k)
ij

}[
X⊤

ia(r,k)

{
Γ̂a(r,k),a(r)c − Γa(r,k),a(r)c

}
−
{
ϵ
(k)
ia(r)c

}⊤
]
βa(r)c

+ϵi ·
{
X

(k)
ij − X̂

(k)
ij

})∣∣∣ , (S7.32)

where ϵ
(k)
ia(r)c is the residual term of the i-th sample in the regression model of Xia(r)c with

Xia(r,k) as covariates. In particular, ϵ
(k)
ia(r)c is centered and uncorrelated with Xia(r,k).

If j ∈ a(r, k), then∣∣∣∣ 1nr

n∑
i=1

I(ξi = r)
(
X

(k)
ij X⊤

ia(r,k)

{
Γ̂a(r,k),a(r)c − Γa(r,k),a(r)c

}
βa(r)c

+
{
X̂

(k)
ij −X

(k)
ij

}[
X⊤

ia(r,k)

{
Γ̂a(r,k),a(r)c − Γa(r,k),a(r)c

}
−
{
ϵ
(k)
ia(r)c

}⊤
]
βa(r)c

+ϵi ·
{
X

(k)
ij − X̂

(k)
ij

}) ∣∣∣∣
=

∣∣∣∣ 1nr

n∑
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≲ s

√
log p

N + n
, (S7.34)

where the last inequality follows from (S7.28) and (S7.29).

If j ∈ a(k) \ a(r, k), then
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ij X⊤
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=
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+θ̂−1
r

{
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}⊤
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n
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I(ξi = r)ϵiXia(r,k), (S7.35)

where C∗
a(r,k),a(r,k) = E

{
I(ξi = r)Xia(r,k)X

⊤
ia(r,k)

}
and

Sn =
1

n

n∑
i=1

I(ξi = r)Xia(r,k)X
⊤
ia(r,k) −C∗

a(r,k),a(r,k).

For the first term in (S7.35), we have, with probability at least 1− p−c

∣∣∣γ⊤
j,a(r,k)Sn

{
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∣∣∣
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∥∥∥
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√
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s2 log p√
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(S7.36)

where the second last inequality follows from

∥∥∥(Γ̂a(r,k),a(r)c − Γa(r,k),a(r)c)βa(r)c

∥∥∥
1
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j∈a(r)c
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1
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√
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.

and

P

(
∥Sn∥∞ ≥ C

√
log p

n

)
≤ p−c, (S7.37)

which is a direct consequence of the concentration inequality of sub-exponential random

variables. For the second term in (S7.35), we have with probability at least 1− p−c
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{
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∥∥∥
2
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√
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N + n
, (S7.38)
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where the last inequality follows from (S7.28). For the third term, we have, with probability

at least 1− p−c,
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}⊤
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∥∥
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√
n
. (S7.39)

The fourth term satisfies
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√
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, (S7.40)

with probability at least 1− p−c. The fifth term satisfies∣∣∣∣∣{γj,a(r,k) − γ̂j,a(r,k)

}⊤
{
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n

n∑
i=1

I(ξi = r)Xia(r,k)

{
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∥∥∥∥∥
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√
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n
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1

≲
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, (S7.41)
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with probability at least 1− p−c. Lastly, the sixth term satisfies∣∣∣∣∣{γj,a(r,k) − γ̂j,a(r,k)

}⊤ 1

n

n∑
i=1

I(ξi = r)ϵiXia(r,k)

∣∣∣∣∣ (S7.42)

≤
∥∥γj,a(r,k) − γ̂j,a(r,k)

∥∥
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∥∥∥∥∥ 1n
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∥∥∥∥∥
∞
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√
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√
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n
(S7.43)

with probability at least 1 − p−c. Combining all the pieces together, it follows that with

probability at least 1− p−c,

∥gn(β)− g(β)∥∞ ≲ s

√
log p

N + n
+ s

√
log p

N + n
· s
√

log p

n
≍ s

√
log p

N + n

(
1 + s

√
log p

n

)
.

where the last inequality follow from s ≲ (n+N)/ log p.

S7.4 Proof of Proposition 1

The proof is separated into two parts. For simplicity, we write Es(p) as Es when there is no

risk of confusion. In the first part, we show that with probability at least 1− p−c,

sup
∥u∥2=1,u∈Es

∥ua(k)∥2≥1/2

∣∣∣∣ u⊤
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i )⊤ −X

(k)
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∣∣∣∣ ≤ c/4. (S7.44)

In the second part, we show that with probability at least 1− p−c,
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∥u∥2=1,u∈Es

∥ua(k)∥2≥1/2

∣∣∣∣ u⊤
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∣∣∣∣ ≥ c. (S7.45)

The above inequalities implies (S5.14).

Part I. Note that by Hölder’s inequality
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∥u∥2=1,u∈Es

∥ua(k)∥2≥1/2

∣∣∣∣ u⊤
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By definition, it holds that, after proper permutation of coordinates
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To control the first term, we have∥∥∥∥ 1n
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 and vk is the k-th row of
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for any j ∈ a(r)c, ∥[Γr,k].j∥2 ≤ C, and for all 1 ≤ k ≤ p, ∥vk∥2 ≤ C, then X⊤
ia(r)vk is sub-

Gaussian random variable with parameter bounded by some absolute constant. On the other

hand, by the Lasso bound (S5.3) for the columns of Γ̂r,k, we have ∥uj∥2 ≤
√

s log p/(n+N),
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so that conditional on Γ̂r,k, u
⊤
j Xia(r,k) is a sub-Gaussian random variable with parameter

asymptotically bounded by
√

s log p/(n+N). In addition, with probability at least 1− p−c,

the mean value satisfies∣∣∣∣ nnr
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where the last inequality follows from λmax(EI{ξi = r}XiX
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Similarly, one can also show that
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Since s ≲ N+n
log p

, we have shown (S7.44) holds with high probability.

Part II. If we denote
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n
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∥um(k)∥1 ≤ ∥u∥1 ≤ 2
√
s.

If we can show that, with probability at least 1− p−c,

1

2
inf

∥v∥2=1,∥v∥1≤4
√
s
|v⊤[Hn].a(k)v| > 3c, (S7.46)

and

sup
∥v∥1≤4

√
s,∥u∥1≤2

√
s

∥v∥2=1,∥u∥2=1

|v⊤[Hn].m(k)u| < 2c, (S7.47)

it follows that under the same event (S5.14) holds. Suppose

Σ(k) = E
n

nr

I{ξi = r}X(k)
i (X

(k)
i ) ∈ Rp×p.

In the following, we will show that, under the condition

λmin(Σ
(k)
a(k),a(k)) ≥ 7c > c ≥ λmax(Σ

(k)
a(k),m(k)), (S7.48)

inequalities (S7.46) and (S7.47) holds with the stated probability.

In fact, under condition (S7.48), it can be shown through Theorem 2.5 of Zhou (2009)

(see also Corollary 2.7 of Mendelson et al. (2007) or Theorem 2.1 of Mendelson et al. (2008))

that, for s ≪ n
log p

and n ≫ log p, with probability at least 1−e−cn, (S7.46) holds. Specifically,

by Theorem 2.5 of Zhou (2009), the proof of (S7.46) reduces to show that

E sup
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√
s

∣∣⟨g, [Σ(k)
a(k),a(k)]

1/2v⟩
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s log p ≪
√
n, (S7.49)

where g ∼ N(0, Ip). To see this, simply note that

E sup
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√
s
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1/2g∥∞ ≲
√
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where the last inequality follows from the following property of the maxima of sub-Gaussian

random variables:

E max
1≤i≤n

gi ≤ C
√

σ2 log n
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where g1, ..., gn are centred sub-Gaussian random variables with parameter σ2, not necessarily

independent.

It remains to show (S7.47). Note that

sup
∥v∥1≤4

√
s,∥u∥1≤2

√
s

∥v∥2=1,∥u∥2=1

|v⊤[Hn].m(k)u| ≤ sup
∥v∥1≤4

√
s,∥u∥1≤2

√
s

∥v∥2=1,∥u∥2=1

|v⊤[Hn].m(k)u− Ev⊤[Hn].m(k)u|

+ sup
∥v∥1≤4

√
s,∥u∥1≤2

√
s

∥v∥2=1,∥u∥2=1

Ev⊤[Hn].m(k)u

≤ sup
∥v∥1≤4

√
s,∥u∥1≤2

√
s

∥v∥2=1,∥u∥2=1

|v⊤[Hn].m(k)u− Ev⊤[Hn].m(k)u|

+ λmax(Σ
(k)
a(k),m(k)).

It suffices to show that, with probability at least 1− p−c,

sup
∥v∥1≤4

√
s,∥u∥1≤2

√
s

∥v∥2=1,∥u∥2=1

|v⊤[Hn].m(k)u− Ev⊤[Hn].m(k)u| ≤ c. (S7.50)

To see this, note that

sup
∥v∥1≤4

√
s,∥u∥1≤2

√
s

∥v∥2=1,∥u∥2=1

|v⊤[Hn].m(k)u− Ev⊤[Hn].m(k)u|

≤ sup
∥v∥1≤4

√
s,∥u∥1≤2

√
s

∥v∥2=1,∥u∥2=1

∥v∥1∥u∥1 · ∥[Hn].m(k) − E[Hn].m(k)∥∞,

and

sup
∥v∥1≤4

√
s,∥u∥1≤2

√
s

∥v∥2=1,∥u∥2=1

∥u∥1∥v∥1 ≤ 8s.

Then by the concentration inequality for independent sub-exponential random variables, we

have, for any (i, j) ∈ {1, ..., |a(k)|} ×m(k),

P

(
|[Hn]ij − [EHn]ij| ≤ C

√
log p

n

)
≥ 1− p−c,
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so that

P

(
∥Hn − EHn∥∞ ≤ C

√
log p

n

)
≥ 1− p−c.

Then as long as s ≲
√

n/ log p, we have (S7.50) hold with probability at least 1− p−c. This

completes the proof of the proposition.

S7.5 Proof of Lemma 4

By the theory of inhomogeneous system of linear equations, EG⊤vj = ej has infinitely

numbers of solutions if rank(EG) = rank([EG, ej]) < M ′
g. When the smallest singular value

of EG is nonnegative, we have rank(EG) = p, and the matrix [EG, ej] ∈ Rp×(M ′
g+1) is also

of rank p, which by assumption is smaller than M ′
g.

Secondly, note that

1 = ∥ej∥ = ∥EG⊤vj∥ ≥ λmin(EG)∥vj∥2.

Then as long as λmin(EG) ≥ c > 0, we have ∥vj∥2 ≤ C.

S7.6 Proof of Lemma 5

Since

∥(v∗
j )

⊤Gn − e⊤
j ∥∞ ≤ ∥(v∗

j )
⊤(Gn −G)∥∞ + ∥(v∗

j )
⊤G− e⊤

j ∥∞,

it suffices to show that

∥(v∗
j )

⊤G− e⊤
j ∥∞ ≲

√
log p

n
, (S7.51)

and

∥(v∗
j )

⊤(Gn −G)∥∞ = max
1≤j≤p

|(v∗
j )

⊤[Gn −G].j| ≲ R2

√
s log p

N + n
, (S7.52)
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holds with probability at least 1− p−c.

To prove (S7.51), we use the similar argument as in the proof of Lemma 1. We notice

that each component of (v∗
j )

⊤G is an average of n independent sub-exponential random

variables and E(v∗
j )

⊤G = e⊤
j . Then by concentration inequality for sub-exponential random

variables (Vershynin, 2010), inequality (S7.51) holds with probability at least 1− p−c.

The rest of the proof is devoted to (S7.52). Let h∗
irk(β) = (h∗

irkℓ(β))ℓ∈a(r,k). We can write

G.j =

[
1
nr

∑n
i=1

∂h∗
irkℓ(β)

∂βj

]
1≤r≤R,k∈G(r),ℓ∈a(r,k)

,

where the Mg elements are ordered first by the index r, and then k, and finally ℓ. Now for

each (r, k, ℓ), we have

∂h∗
irkℓ(β)

∂βj

= −I(ξi = r)X
(k)
ij Xiℓ.

If j-th variable is not observed in ith sample, we have

∂h∗
irkℓ(β)

∂βj

= −I(ξi = r)γ⊤
j,a(r,k)Xia(r,k)Xiℓ,

where we used X
(k)
ij = γ⊤

j,a(r,k)Xia(r,k). If j-th variable is observed in ith sample, we have

∂h∗
irkℓ(β)

∂βj

= −I(ξi = r)XijXiℓ.

Similarly, if we write

[Gn].j =

[
1
nr

∑n
i=1

∂ĥ∗
irkℓ(β)

∂βj

]
1≤r≤R,k∈G(r),ℓ∈a(r,k)

,

where

∂ĥ∗
irkℓ(β)

∂βj

= −I(ξi = r)γ̂⊤
j,a(r,k)Xia(r,k)Xiℓ,

if j-th variable is not observed in ith sample, and

∂ĥ∗
irkℓ(β)

∂βj

= −I(ξi = r)XijXiℓ,
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if j-th variable is observed in ith sample. Thus, we have

[G−Gn].j =

[
1
nr

∑n
i=1(

∂h∗
irkℓ(β)

∂βj
− ∂ĥ∗

irkℓ(β)

∂βj
)

]
1≤r≤R,k∈G(r),ℓ∈a(r,k)

. (S7.53)

If the j-th variable is not observed in i-th sample, we have

∂ĥ∗
irk(β)

∂βj

− ∂h∗
irk(β)

∂βj

= −I(ξi = r)(γ̂j,a(r,k) − γj,a(r,k))
⊤Xia(r,k)Xia(r,k) (S7.54)

In the following we control the left hand side of (S7.52) for j not observed in Group r.

Specifically, let v∗
j,rk be the subvector of v∗

j associated to Group k ∈ G(r). We have, with

probability at least 1− p−c,

R∑
r=1

∑
k∈G(r)

1

nr

n∑
i=1

I(ξi = r)(γ̂j,a(r,k) − γj,a(r,k))
⊤Xia(r,k)X

⊤
ia(r,k)v

∗
j,rk

≤
R∑

r=1

∑
k∈G(r)

√√√√ 1

n

n∑
i=1

[
n

nr

I(ξi = r)X⊤
ia(r,k)(γ̂j,a(r,k) − γj,a(r,k))

]2

×

√√√√ 1

n

n∑
i=1

I(ξi = r)(X⊤
ia(r,k)v

∗
j,rk)

2

≲
R∑

r=1

∑
k∈G(r)

√√√√ 1

n

n∑
i=1

[
X⊤

ia(r,k)(γ̂j,a(r,k) − γj,a(r,k))

]2√√√√ 1

n

n∑
i=1

I(ξi = r)(X⊤
ia(r,k)v

∗
j,rk)

2

≲ R2

√
s log p

N + n

where the last inequality follows from the standard Lasso bound

P

(
1

n

n∑
i=1

[
X⊤

ia(r,k)(γ̂j,a(r,k) − γj,a(r,k))

]2
≤ C

s log p

N + n

)
≥ 1− p−c, (S7.55)

and the inequality

P

(
max

1≤r≤R,k∈G(r)

1

n

n∑
i=1

I(ξi = r)((X
(k)
ia(k))

⊤v∗
j,rk)

2 ≤ C

)
≥ 1− p−c, (S7.56)

which can be established by

P

(
max

1≤r≤R,k∈G(r)

∣∣∣∣ 1n
n∑

i=1

(I(ξi = r)X⊤
ia(r,k)v

∗
j,rk)

2 − EI(ξi = r)(X⊤
ia(r,k)v

∗
j,rk)

2

∣∣∣∣ ≤ C

√
log p

n

)
≥ 1− p−c,
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as a consequence of Proposition 5.16 of Vershynin (2010), and

EI(ξi = r)(X⊤
ia(r,k)v

∗
j,rk)

2 ≤ ∥v∗
j∥22λmax(Σ) = O(1),

where the last inequality follows from Lemma 4 and condition (A3).

If the j-th variable observed in ith sample, we have

∂h∗
irkℓ(β)

∂βj

− ∂ĥ∗
irkℓ(β)

∂βj

= 0 (S7.57)

Then combining the above two pieces, we have shown that (S7.52) holds.

S7.7 Proof of Lemma 6

By mean value theorem, we have

Ŝj(β̂
∗
j ) = v̂⊤

j g
∗
n(β̂

∗) = v̂⊤
j g

∗
n(β) + v̂⊤

j Gn(β̂
∗ − β). (S7.58)

To control the second term in (S7.58), we note that, by Theorem 1, with probability at least

1− p−c,

|v̂⊤
j Gn(β̂

∗
j − β)| ≤ ∥[v̂⊤

j Gn]−j∥∞∥β̂∗
j − β∥1 ≲ sλ′λ.

Thus, (S6.17) is proved if sλ′λ
√
n → 0, or, under the specific choices of the tuning parameters

λ ≍
√
log p/n+ s

√
log p/N ≍

√
log p/n and λ′ ≍

√
log p/n, if s ≪

√
n

log p
.
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S7.8 Proof of Lemma 7

By definition

Ŝj(β) =
∑

k∈G(r),1≤r≤R

1

n

n∑
i=1

v̂⊤
rkĥ

∗
irk(β)

=
1

n

n∑
i=1

∑
k∈G(r),1≤r≤R

n

nr

I{ξi = r}[(Xi − X̂
(k)
i )⊤β + ϵi]v̂

⊤
rkXia(r,k)

=
1

n

n∑
i=1

∑
k∈G(r),1≤r≤R

n

nr

I{ξi = r}[β⊤
a(r)c [(Γr,k − Γ̂r,k)

⊤Xia(r,k) + ϵ
(k)
ia(r)c ] + ϵi]v̂

⊤
rkXia(r,k)

=
1

n

n∑
i=1

∑
k∈G(r),1≤r≤R

n

nr

I{ξi = r}[β⊤
a(r)c(Γr,k − Γ̂r,k)

⊤Xia(r,k) + β⊤
a(r)cϵ

(k)
ia(r)c + ϵi]v̂

⊤
rkXia(r,k)

Let

ηi =
∑

k∈G(r),1≤r≤R

n

nr

I{ξi = r}[β⊤
a(r)c(Γr,k − Γ̂r,k)

⊤Xia(r,k) + β⊤
a(r)cϵ

(k)
ia(r)c + ϵi]v̂

⊤
rkXia(r,k).

We have

E[ηi|X̂] =
∑

k∈G(r),1≤r≤R

n

nr

I{ξi = r}β⊤
a(r)c(Γr,k − Γ̂r,k)

⊤Xia(r,k)v̂
⊤
rkXia(r,k) ≡ µji,

and

Var(ηi|X̂) =
∑

k∈G(r),1≤r≤R

n2σ2
r,k

n2
r

I{ξi = r}[v̂⊤
rkXia(r,k)]

2, (S7.59)

where σ2
r,k = σ2 + β⊤

a(r)cE[ϵ
(k)
ia(r)c(ϵ

(k)
ia(r)c)

⊤]βa(r)c . By the central limit theorem, we have the

desired result.

S8 Discussion of the Eigenvalue Condition

Note that

X
(k)
i = ((X

(k)
ia(r))

⊤, (X
(k)
ia(r)c)

⊤)⊤ = (X⊤
ia(r),X

⊤
ia(r,k)Γr,k)

⊤ =

 I|a(r)|

[Γ⊤
r,k, 0]

Xia(r). (S8.60)
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It follows that

Σ(r,k) = EI{ξi = r}X(k)
i (X

(k)
i )⊤

= EI{ξi = r}

 I|a(r)|

[Γ⊤
r,k,0]

Xia(r)X
⊤
ia(r)

[
I|a(r)| [Γ⊤

r,k,0]
⊤

]

=

 I|a(r)|

[Γ⊤
r,k,0]

C∗
a(r),a(r)

[
I|a(r)| [Γ⊤

r,k,0]
⊤

]

=

 C∗
a(r),a(r) C∗

a(r),a(r,k)Γr,k

Γ⊤
r,kC

∗
a(r,k),a(r) Γ⊤

r,kC
∗
a(r,k),a(r,k)Γr,k

 (S8.61)

It can be seen that condition (S7.48) essentially reduces to that on C∗ = E1{ξi = r}XiX
⊤
i

and Γr,k. To see that there exists situation where the condition (S7.48) holds, it suffices to

consider the case where ∥Γr,k∥ → 0 or ∥[Σ−1]a(r)c,a(r,k)∥ → 0 as (n, p) → ∞, and the missing

is completely at random (MCAR) with missing proportion EI{ξi = r} ≥ c0 > 0. In this

case, there exists some c > 0 such that

λmin(Σ
(r,k)
a(k),a(k)) ≥ 7c > c ≥ λmax(Σ

(r,k)
a(k),m(k)).

Under the Gaussian design, the above sufficient condition is more interpretable: under

MCAR, we require there exists a pair (r, k) ∈ [1 : R]× G(r) such that the missing variables

in a(r)c are asymptotically conditionally independent of the observed variables in a(r, k).

S9 The FDR Control Procedure

To test the simultaneous hypotheses

H0j : βj = 0 vs Haj : βj ̸= 0, 1 ≤ j ≤ p,
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we apply the modified BH procedure of Ma et al. (2020). Specifically, we reject the null

hypothesis H0j at significance level α if |T0j| ≥ t̂, where

t̂ = inf

{
0 ≤ t ≤ bp :

p{2− 2Φ(t)}
max{

∑p
j=1 I(|T0j| ≥ t), 1}

≤ α

}
, (S9.62)

bp =
√
2 log p− 2 log log p, T0j = nβ̃j/ŝj, and Φ(t) is the cumulative distribution function of

the standard normal distribution.
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