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Supplementary Material

S.1 Computation Details

S.1.1 Details on Updating S

In this subsection, we provide more details on solving (4.1) of the main paper through the MM algorithm. To

construct the majorized function for PA(t)(S), we first let Sk and S(1),k be the k-th iterations of S and S(1) in the

MM algorithm respectively. Using the concave property of the square root function, we have

‖x‖2 =
√
‖x‖22 ≤

√
‖x0‖22 +

‖x‖22 − ‖x0‖22
2
√
‖x0‖22

:= g(x|x0).

It can be verified that g(x|x0) is a majorization function for ‖x‖2. Since PA(t)(S) is a summation over `2 norms, a

majorized function for PA(t)(S) at Sk is

ΦA(t)(S|Sk) = λ

p∑
j=1

{√
‖(a(t)

j )ᵀS(1),k‖22 +
‖(a(t)

j )ᵀS(1)‖22 − ‖(a
(t)
j )ᵀS(1),k‖22

2‖(a(t)
j )ᵀS(1),k‖2

}
. (S.1)

Denoting λ
(t)
j,k = 1/{2‖(a(t)

j )ᵀS(1),k‖2}, j = 1, . . . , p, and Σ
(t)
k = diag(λ

(t)
1,k, . . . , λ

(5)
p,k), the majorized function ΦA(t)(S|Sk)

in (S.1) can be rewritten as

ΦA(t)(S|Sk) = PA(t)(Sk) + λ
[
vec(S(1))

ᵀ{IR2R3 ⊗ (A(t))ᵀΣ
(t)
k A

(t)}vec(S(1))

−vec(S(1),k)ᵀ{IR2R3 ⊗ (A(t))ᵀΣ
(t)
k A

(t)}vec(S(1),k)
]
.
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Note that ΦA(t)(S|Sk) is well-defined except for ‖(a(t)
j )ᵀS(1),k‖2 = 0. When ‖(a(t)

j )ᵀS(1),k‖2 = 0, j = 1, 2, . . . , p, we

make a further discussion in two cases: (i) ‖a(t)
j ‖2 = 0; (ii) ‖a(t)

j ‖2 6= 0, but a
(t)
j belongs to the null space of Sᵀ

(1),k.

For case (i), denote J̃ = {j : ‖a(t)
j ‖2 = 0, j = 1, . . . , p}. If j ∈ J̃ , the j-th component in PA(t)(S) equals

zero, which allows us to set the j-th diagonal element in Σ
(t)
k to be zero. Define Σ̃

(t)
k = diag(λ̃

(t)
1,k, . . . , λ̃

(t)
p,k) and

λ̃
(t)
j,k = λ

(t)
j,k · I{j ∈ J̃ }, j = 1, . . . , p, where I{·} is the indicator function. Denote the refined quadratic function

Φ̃A(t)(S|Sk) = PA(t)(Sk) + vec(∆(1),k)ᵀ{IR2R3 ⊗ (A(t))ᵀΣ̃
(t)
k A

(t)}vec(∆(1),k).

Similar to ΦA(t)(S|Sk), Φ̃A(t)(S|Sk) is also a majorized function for PA(t)(S). Now we proceed to the minimizing

step of the MM algorithm, and the corresponding minimization problem is

min
S
{HA(t),B(t),C(t)(S) + Φ̃A(t)(S|Sk)}.

Taking gradient of the objective function and setting it to zero gives

vec(S(1),k+1) =

[
n∑
i=1

(U
(t)
S,i)

ᵀU
(t)
S,i + IR2R3 ⊗ {(A

(t))ᵀΣ̃
(t)
k A

(t)}

]+( n∑
i=1

(U
(t)
S,i)

ᵀyi

)
, (S.2)

where U
(t)
S,i = C(t) ⊗ {bᵀ(ti)B

(t)} ⊗ (xᵀ
iA

(t)) and (·)+ denotes the Moore-Penrose inverse.

For case (ii), an improved version of local quadratic approximation has been suggested in Hunter and Li

(2005). To handle the ill-posedness of (S.1) when 2‖(a(t)
j )ᵀS(1),k‖2 = 0, Hunter and Li (2005) proposed to replace

2‖(a(t)
j )ᵀS(1),k‖2 by 2(ε + ‖(a(t)

j )ᵀS(1),k‖2) for some ε > 0. After applying such replacement to all (a
(t)
j )ᵀS(1),k in

(S.1), j = 1, . . . , p, the adjusted version is no longer a majorizer of PA(t)(S) as required by the MM algorithm.

Nonetheless, Hunter and Li (2005) showed that it majorizes a perturbed version of PA(t)(S). This would lead to

an objective function that is similar to the one in case (i). In addition, the minimizer of this function should be

close to the minimizer of the original function as long as ε is small enough and the original objective function is

not extremely flat in the neighborhood of the minimizer. We thus define Σ̃
(t)
ε,k = diag

(
λ̃
(t)
1,k(ε), . . . , λ̃

(t)
p,k(ε)

)
with

λ̃
(t)
j,k(ε) = 1/{2ε+ 2‖(a(t)

j )ᵀS(1),k‖2}. We get the perturbed version of the approximation function

Φ̃εA(t)(S|Sk) = PA(t)(Sk) + vec(∆(1),k)ᵀ{IR2R3 ⊗ (A(t))ᵀΣ̃
(t)
ε,kA

(t)}vec(∆(1),k).

Similar to case (i), we replace Σ̃
(t)
k by Σ̃

(t)
ε,k in (S.2) and obtain an updating rule for case (ii):

vec(S(1),k+1) =

[
n∑
i=1

(U
(t)
s,i )

ᵀU
(t)
S,i + IR2R3 ⊗ {(A

(t))ᵀΣ̃
(t)
ε,kA

(t)}

]+( n∑
i=1

(U
(t)
S,i)

ᵀyi

)
. (S.3)
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The choice of ε can be

ε =
τ

2n
min

{
‖(a(t)

j )ᵀS(1),0‖2 : (a
(t)
j )ᵀS(1),0 6= 0, j = 1, . . . , p

}

with τ = 10−4 as suggested in Hunter and Li (2005), where S(1),0 is the initial value of S(1) for the MM algorithm

to solve (4.1) of the main paper. We summarize the MM algorithm in Algorithm S.1.

Algorithm S.1: MM Algorithm for Updating S.

Input : Data set {yi,Xi, ti}ni=1; Fixed A(t), B(t), and C(t); Random initial S(1),0 ∈ RR1×R2R3 ;

δ > 0.

Output: S̃
(t+1)
(1) (so is S̃(t+1)).

for k from 0, 1, . . . do

if For any j = 1, . . . , p, ‖(a(t)
j )ᵀS(1),k‖2 = 0 and ‖a(t)

j ‖2 6= 0 then

Update vec(S(1),k+1) by (S.3) and calculate

dεS = HA(t),B(t),C(t)(Sk) + Φε
A(t)(Sk|Sk)HA(t),B(t),C(t)(Sk+1)− Φε

A(t)(Sk+1|Sk).

else

Update vec(S(1),k+1) by (S.2) and calculate

dS = HA(t),B(t),C(t)(Sk) + ΦA(t)(Sk|Sk)−HA(t),B(t),C(t)(Sk+1)− ΦA(t)(Sk+1|Sk).

end

If dS ≤ δ or dεS ≤ δ, then output S(1),k+1 as S̃
(t+1)
(1) . If not, set k ← k + 1 and continue the loop.

end

S.1.2 Details on Updating A

In this subsection, we provide more details on solving (4.4) of the main paper through the Alternating Direction

Method of Multipliers (ADMM, Gabay and Mercier, 1976) algorithm. Let A(k), Γ(k), and ν(k) be the k-th iteration

of the ADMM algorithm. With a penalty parameter ρ, the ADMM solves the subproblem (4.4) by generating the
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following iterates at the (k + 1)-th step

A(k+1) = arg min
A

{
HS̃(t+1),B(t),C(t)(A) + ρ/2

∥∥AS̃(t+1)

(1) − Γ(k) + ν(k)/ρ
∥∥2
2

}
,

Γ(k+1) = arg min
Γ

{
λ

p∑
j=1

g(γj) + ρ/2
∥∥A(k+1)S̃

(t+1)

(1) − Γ + ν(k)/ρ
∥∥2
2

}
,

ν(k+1) = ν(k) + ρ
(
A(k+1)S̃

(t+1)

(1) − Γ(k+1)

)
.

(S.4)

For simplicity, denote ȳ = (yᵀ
1 , . . . ,y

ᵀ
n)ᵀ ∈ Rnq and UA = (Uᵀ

A,1, . . . ,U
ᵀ
A,n)ᵀ ∈ Rnq×pR1 , where UA,i =

{[
C(t) ⊗

{bᵀ(ti)B
(t)}
](
S̃

(t+1)

(1)

)ᵀ}⊗ xᵀ
i ∈ Rq×pR1 , i = 1, 2, . . . , n. HS̃(t+1),B(t),C(t)(A) can be reformulated as

HS̃(t+1),B(t),C(t)(A) =
1

2
‖ȳ −UA vec(A)‖22.

We first note that the first line of (S.4) has a closed-form solution

vec(A) =
[
Uᵀ
AUA + ρ

{
S̃

(t+1)

(1) ⊗ Ip
}{

(S̃
(t+1)

(1) )ᵀ ⊗ Ip
}]−1

×
[
Uᵀ
Aȳ + ρ

{
S̃

(t+1)

(1) ⊗ Ip
}{

vec(Γ(k))−
1

ρ
vec(ν(k))

}]
.

(S.5)

As for the second line of (S.4), we can split it into p subproblems:

γj,(k+1) = arg min
γ∈RR2R3

{
λg(γ) +

ρ

2

∥∥∥∥(S̃
(t+1)

(1) )ᵀaj,(k+1) − γ +
1

ρ
νj,(k)

∥∥∥∥2
2

}
, j = 1, 2, . . . , p,

where aᵀ
j,(k+1) and νᵀ

j,(k) are the j-th rows of A(k+1) and ν(k) respectively. We introduce a proximal operator Boyd

et al. (2011) to simplify our problem. For a given function h(·), its proximal map is defined by

proxh(·)(u) = arg min
v

{
h(v) +

1

2
‖u− v‖22

}
.

The proximal map proxh(·)(u) exists and is unique for all u if h(·) is a closed and convex function. Using this notation,

we observe that γj,(k+1) = proxλg(·)/ρ(uj) with uj = (S̃
(t+1)

(1) )ᵀaj,(k+1) + νj,(k)/ρ. Furthermore, we can obtain the

analytic form of the proximal operator with respect to g(·),

γj,(k+1) =

(
1− λ

ρ‖uj‖2

)
+

uj , (S.6)

where (x)+ = max(0, x).

We use the standard stopping criterion for the ADMM algorithm based on primal and dual residuals as in

Section 3.3 of Boyd et al. (2011). To be specific, we let r(k+1) and s(k+1) denote the primal and dual residuals, which
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are defined as 
r(k+1) = ‖A(k+1)S̃

(t+1)

(1) − Γ(k+1)‖2

s(k+1) = ‖ρ(Γ(k+1) − Γ(k))(S̃
(t+1)

(1) )ᵀ‖2.

(S.7)

The ADMM algorithm is terminated when r(k+1) 6 εpri and s(k+1) 6 εdual are satisfied, where the primal and dual

feasibility εpri and εdual are specified as suggested by Boyd et al. (2011). Theoretically, the primal and dual residuals

will converge to zero for any fixed ρ > 0. However, different choices of ρ may lead to different convergence speeds.

An efficient and stable way of varying penalty strategy is suggested by Zhu (2017). The updating rule for ρ is set to

be

ρ =


ηρ, if r(k)/ε

pri > µ s(k)/ε
dual

η−1ρ, if s(k)/ε
dual > µ r(k)/ε

pri,

(S.8)

where µ and η are set to be 10 and 2, respectively, as suggested by Boyd et al. (2011). The above discussions lead

to Algorithm S.2 for updating A.

S.1.3 Details on Updating B

In this section, we provide detailed steps to update B using the manifold gradient algorithm. Recall that

B(t+1) = arg min
B∈St(R2,K)

HS(t+1),A(t+1),C(t)(B),

where St(R2,K) denotes the Stiefel manifold

St(R2,K) = {B ∈ RK×R2 : BᵀB = IR2}.

Note that HS(t+1),A(t+1),C(t)(B) has the form as

HS(t+1),A(t+1),C(t)(B) =

n∑
i=1

∥∥∥yi − ([{C(t) ⊗ (xᵀ
iA

(t+1))}{S(t+1)

(2) }ᵀ]⊗ bᵀ(ti))vec(B)
∥∥∥2
2
.

Let B(k) denote the k-th iteration of the manifold gradient algorithm. First observe that the Euclidean gradient of

HS(t+1),A(t+1),C(t)(B) can be directly obtained as

∇HS(t+1),A(t+1),C(t)(B) = −2MatK,R2

[ n∑
i=1

{
(U

(t)
B,i)

ᵀyi − (U
(t)
B,i)

ᵀU
(t)
B,i vec(B)

}]
,
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Algorithm S.2: ADMM for Updating A.

Input: Data set {yi,Xi, ti}ni=1; Fixed S̃(t+1), B(t), and C(t); Primal and dual feasibility εpri and

εdual; Parameters of varying penalty strategy µ and η; Random initial A ∈ Rp×R1 .

Output: Ã(t+1) and Γ(t+1) (as for the altertive of Ã(t+1)S̃
(t+1)
(1) ).

for k = 0, 1, . . . do

1. Update A(k+1) using (S.5).

2. Update Γ(k+1) through by rows through (S.6).

3. Update ν(k+1) through the third line of (S.4).

4. Calculate the primal and dual residuals r(k+1) and s(k+1) as in (S.7).

if r(k+1) 6 εpri and s(k+1) 6 εdual then

Output A(k+1) as Ã(t+1) and Γ(k+1) as Γ(t+1).

else

Update ρ using the varying penalty strategy (S.8) and back to step 1 with k ← k + 1.

end

end

where U
(t)
B,i = [{C(t) ⊗ (xᵀ

iA
(t+1))}(S(t+1)

(2) )ᵀ]⊗ bᵀ(ti) and MatK,R2(·) transforms a vector with length K ·R2 into a

matrix with K × R2 dimension by its columns. We denote gradHS(t+1),A(t+1),C(t)(B) as the Riemannian gradient

of HS(t+1),A(t+1),C(t)(B), and define a projection operator PB(ξ) be

PB(ξ) = (I −BBᵀ)ξ +
1

2
B(Bᵀξ − ξᵀB),

where ξ is a generic matrix with dimension K × R2. According to Absil et al. (2009), the Riemannian gradient

gradHS(t+1),A(t+1),C(t)(B) at B is simply the projection of ∇HS(t+1),A(t+1),C(t)(B) onto the tangent space, that is,

gradHS(t+1),A(t+1),C(t)(B) = PB{∇HS(t+1),A(t+1),C(t)(B)}. (S.9)
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After getting the Riemannian gradient, we perform a line-search on the negative Riemannian gradient and retract

the update back onto the Stiefel manifold. One of the commonly used retractions of Stiefel manifold is (Absil et al.,

2009)

RB(ξ) = qf(B + ξ),

where qf(·) denotes the Q factor of the QR decomposition for a matrix. Therefore, we update

B(k+1) = qf{B(k) − τB(k)
gradHS(t+1),A(t+1),C(t)(B(k))}, (S.10)

where τB(k)
is the Armijo step size. We select τB(k)

such that, for some fixed εB ∈ (0, 1), the following inequality

holds

HS(t+1),A(t+1),C(t)(B(k+1)) ≤ HS(t+1),A(t+1),C(t)(B(k))

− εBτB(k)
‖gradHS(t+1),A(t+1),C(t)(B(k))‖2F .

(S.11)

The above discussion leads to Algorithm S.3 as follows.

Algorithm S.3: Stiefel Manifold Optimization for Updating B.

Input : Data set {yi,Xi, ti}ni=1; Fixed S(t+1), A(t+1), and C(t); Random initial B(0) ∈ RK×R2 ;

εB > 0 and ε > 0.

Output: B(t+1)

for k from 0, 1, . . . do

1. Compute the Riemannian gradient at B(k) as in (S.9).

2. Obtain B(k+1) as in (S.10) with step size τB(k)
, where τB(k)

is chosen according to (S.11).

3. Calculate the descent of the objective function

dB = HS(t+1),A(t+1),C(t)(B(k))−HS(t+1),A(t+1),C(t)(B(k+1)).

If dB ≤ ε, then output B(k+1) as B(t+1). If not, return to step 1.

end
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S.2 Proof of Theorem 1

To present the proof, we use C with or without subscripts to represent generic positive constants that may change

values from line to line. Recall that Z = (z1, . . . , zn)ᵀ ∈ Rn×pK , where zi = b(ti) ⊗ xi. For any I ⊂ {1, . . . , p},

define ZI ∈ R|I|×pK such that it has the same columns as Z for those predictors within the index I and zero columns

otherwise. Denote PI as the projection matrix onto the column space of ZI .

With the notation of zi, we can write

{G ×̄2 b(ti)}ᵀxi = (A⊗B)Sᵀ
(3)C

ᵀzi, i = 1, . . . , n,

in (3.5) of the main paper by using the matricization operator of a tensor (Kolda and Bader, 2009). Let D =

(A ⊗ B)Sᵀ
(3)C

ᵀ ∈ RpK×q. It can be seen that D = Gᵀ
(3), where G(3) is the mode-3 matricization of G. Let

Dj ∈ RK×q be the collection of rows of D associated with the predictor j.

The optimization problem (3.6) of the main paper can then be rewritten as

arg min
D

‖Y −ZD‖2F + λ

p∑
j=1

‖Dj‖F . (S.12)

Respectively denoting D0 = Gᵀ
0,(3) and D̂ as the solution of (S.12) (which is equal to Ĝᵀ

(3)), we have ∆2
G =

‖Z(D −D0)‖2F and ∆2
Ĝ

= ‖Z(D̂ −D0)‖2F . Recall that J (G) = {j : Dj 6= 0} and J (Ĝ) = {j : D̂j 6= 0}. Denote

J̃ = J (G) ∪ J (Ĝ) for simplicity.

By definition, we can obtain

‖Y −ZD̂‖2F + λ
∑

j∈J (Ĝ)

‖D̂j‖F ≤ ‖Y −ZD‖2F + λ
∑

j∈J (G)

‖Dj‖F ,

which implies

∆2
Ĝ

+ λ
∑

j∈J (G)c

‖D̂j −Dj‖F ≤ ∆2
G + 2〈E,ZJ̃ (D̂ −D)〉

+ 2〈R,ZJ̃ (D̂ −D)〉+ λ
∑

j∈J (G)

‖Dj − D̂j‖F .

(S.13)

Denote d1(·) as the largest singular value of a matrix. Since rank(D) ≤ R3 and rank(S(3)) ≤ R1R2, we have

rank{ZJ̃ (D̂ −D)} ≤ 2R = 2 min{R3, R1R2}.
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It yields

2〈E,ZJ̃ (D̂ −D)〉 = 2〈PJ̃E,ZJ̃ (D̂ −D)〉

≤ 2d1(PJ̃E)‖ZJ̃ (D̂ −D)‖∗

≤ 2d1(PJ̃E)
√

2R‖ZJ̃ (D̂ −D)‖F

≤ 2d1(PJ̃E)
√

2R(∆Ĝ + ∆G)

≤ 16Rd21(PJ̃E) +
1

4
(∆2

Ĝ
+ ∆2

G),

(S.14)

where PJ̃ is the projection matrix of the space spanned by ZJ̃ and ‖·‖∗ denotes the nuclear norm. The second, third,

fourth, and fifth lines of (S.14) are due to the Cauchy-Schwarz inequality, the relationship between the nuclear norm

and Frobenius norm, the triangle inequality, and the inequality of arithmetic and geometric means, respectively. It

follows from (S.13) and (S.14),

3

4
∆2
Ĝ

+ λ
∑

j∈J (G)c

‖D̂j −Dj‖F ≤
5

4
∆2
G + 16Rd21(PJ̃E)

+ 2〈R,ZJ̃ (D̂ −D)〉+ λ
∑

j∈J (G)

‖Dj − D̂j‖F .

Now, there are two cases as follows.

Case 1. If

λ
∑

j∈J (G)

‖Dj − D̂j‖F ≥
5

4
∆2
G + 16Rd21(PJ̃E) + 2〈R,ZJ̃ (D̂ −D)〉, (S.15)

it straightforwardly implies ∑
j∈J (G)c

‖D̂j −Dj‖F ≤ 2
∑

j∈J (G)

‖Dj − D̂j‖F .

By Condition M(J (G), δJ (G)), we have

λ
∑

j∈J (G)

‖Dj − D̂j‖F ≤
4

nδJ (G)

λ2|J (G)|+
nδJ (G)

16

∑
j∈J (G)

‖Dj − D̂j‖2F

≤ 4

nδJ (G)

λ2|J (G)|+ 1

16
‖ZD̂ −ZD‖2F

≤ 4

nδJ (G)

λ2|J (G)|+ 1

8
(∆2

Ĝ
+ ∆2

G).

(S.16)

Using (S.15), (S.16), and the Cauchy-Schwarz inequality, we further obtain

3

4
∆2
Ĝ
≤ 2λ

∑
j∈J (G)

‖Dj − D̂j‖F ≤
8

nδJ (G)

λ2|J (G)|+ 1

4
(∆2

Ĝ
+ ∆2

G).
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Thus,

∆2
Ĝ
≤ 2∆2

G +
16λ2|J (G)|
nδJ (G)

. (S.17)

For notational simplicity, we let

γ = 24nλmax(Σ)Kσ2{1 + log(p)}. (S.18)

Taking λ2 = 768γR3R in (S.17) will then lead to

∆2
Ĝ
≤ C1∆2

G + C2‖R‖2F +
C3R3Rλmax(Σ)Kσ2{1 + log(p)}|J (G)|

δJ (G)

. (S.19)

Case 2. If

λ
∑

j∈J (G)

‖Dj − D̂j‖F <
5

4
∆2
G + 16Rd21(PJ̃E) + 2〈R,ZJ̃ (D̂ −D)〉,

using the Cauchy-Schwarz inequality, we have

3∆2
Ĝ
≤ 10∆2

G + 128Rd21(PJ̃E) + 16〈R,ZJ̃ (D̂ −D)〉

≤ 10∆2
G + 128Rd21(PJ̃E) + 16‖R‖F (∆Ĝ + ∆G).

(S.20)

The quadratic form of inequality (S.20) implies that

∆Ĝ ≤
16‖R‖F +

√
ζ2

6
, (S.21)

where

ζ2 = 256‖R‖2F + 12{10∆2
G + 128Rd21(PJ̃E) + 16‖R‖F∆G}.

Plugging (S.21) into (S.20) shows that

9∆2
Ĝ
≤ 304‖R‖2F + 108∆2

G + 768Rd21(PJ̃E). (S.22)

According to Lemma 8 of Bunea et al. (2012), we have

P(d21(PJ̃E)− 6Kσ2{|J̃ |+ |J̃ | log(ep/|J̃ |)} − 6σ2q > t̃) ≤ 16σ2 exp(−q/2)

t̃

for t̃ > 0. Taking t̃ = 6Kσ2 log(p), we then have

d21(PJ̃E) ≤ t̃+ 6Kσ2{|J̃ |+ |J̃ | log(ep/|J̃ |)}+ 6σ2q

≤ 12Kσ2{1 + log(p)}{|J (G)|+ |J (Ĝ)|}+ 6σ2q

(S.23)
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with probability at least

1− 8 exp(−q/2)

3K log(p)
. (S.24)

Next, observe that when Ĉ of the solution of (3.6) of the main paper is given, the other components (Ŝ, Â, B̂)

can be obtained through solving

arg min
S,A,B

‖Y Ĉ −Z(A⊗B)Sᵀ
(3)‖

2
F + λ

p∑
j=1

‖aᵀ
jS(1)‖F ,

where aᵀ
j is the j-th row of A. By a QR decomposition, we can represent AS(1) = UV ᵀ such that U ∈ Rp×R1 ,

V ∈ RR2R3×R1 and V ᵀV = IR1 . Thus, the solution of (3.6) of the main paper, which is in the form of (S,A,B,C),

can be reparametrized into the form of (U ,V ,B,C). In other words, we can find a (V̂ , Û) such that Ĝ(1) =

ÂŜ(1)(Ĉ ⊗ B̂)ᵀ = Û V̂ ᵀ(Ĉ ⊗ B̂)ᵀ Let

Z̃i =
[
xᵀ
i ⊗ {IR3 ⊗ b

ᵀ(ti)B̂}
]
(Ip ⊗ V̂ ) ∈ RR3×pR1 , i = 1, . . . , n. (S.25)

Therefore, Û can be obtained from solving

Û = arg min
U

‖Y Ĉ − (Z̃1u, . . . , Z̃nu)ᵀ‖2F + λ

p∑
j=1

‖uj‖2, (S.26)

where u = vec(Uᵀ) ∈ RpR1 and uj is the j-th row of U . Since Y Ĉ ∈ Rn×R3 , we write the i-th row of Y Ĉ as γᵀ
i ,

i = 1, . . . , n, that is,

Y Ĉ = (γ1, . . . ,γn)ᵀ.

Using this notation, (S.26) can be written as

Û = arg min
U

n∑
i=1

‖γi − Z̃iu‖22 + λ

p∑
j=1

‖uj‖2.

Analogously, let û = vec(Û) and ûj be the j-th row of Û . To solve ûj from the above displayed objective function,

we have

n∑
i=1

Z̃ᵀ
ij(γi − Z̃iû) = λ

ûj
‖ûj‖2

∈ RR1 ,

where Z̃ij ∈ RR3×R1 is the submatrix of Z̃i defined in (S.25), associated the j-th predictor, j ∈ J (Ĝ). For simplicity,

denote

Z̃] = (Z̃ᵀ
1 , . . . , Z̃

ᵀ
n)ᵀ = (Z̃],1, . . . , Z̃],p) ∈ RnR3×pR1 ,
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where Z̃],j = (Z̃ᵀ
1j , . . . , Z̃

ᵀ
nj)

ᵀ ∈ RnR3×R1 . We then have

∥∥∥Z̃ᵀ
],j

[
(γᵀ

1 , . . . ,γ
ᵀ
n)ᵀ − {(Z̃1û)ᵀ, . . . , (Z̃nû)ᵀ}ᵀ

]∥∥∥2
2

= λ2, j ∈ J (Ĝ).

Thus,

λ2|J (Ĝ)| =
∑

j∈J (Ĝ)

∥∥∥Z̃ᵀ
],j

[
(γᵀ

1 , . . . ,γ
ᵀ
n)ᵀ − {(Z̃1û)ᵀ, . . . , (Z̃nû)ᵀ}ᵀ

]∥∥∥2
2

≤ 2λmax (Z̃]Z̃
ᵀ
] )
{
‖Z(A0 ⊗B0)Sᵀ

0,(3)C
ᵀ
0 Ĉ −Z(Â⊗ B̂)Ŝᵀ

(3)Ĉ
ᵀĈ‖2F + ‖PJ̃EĈ‖

2
F + ‖RĈ‖2F

}
≤ 2λmax (Z̃]Z̃

ᵀ
] )
{
R3∆2

Ĝ
+R3d

2
1(PJ̃E) +R3‖R‖2F

}
. (S.27)

Note that the eigenvalues of

Z̃ᵀ
] Z̃] =

n∑
i=1

Z̃ᵀ
i Z̃i =

n∑
i=1

(Ip ⊗ V̂ ᵀ)
{
xᵀ ⊗ (IR3 ⊗ b

ᵀB̂)
}ᵀ{

xᵀ ⊗ (IR3 ⊗ b
ᵀB̂)

}
(Ip ⊗ V̂ )

are the same as those of

n∑
i=1

{
xᵀ ⊗ (IR3 ⊗ b

ᵀB̂)
}ᵀ{

xᵀ ⊗ (IR3 ⊗ b
ᵀB̂)

}
. (S.28)

Similarly, it can be shown that (S.28) has the same eigenvalues as of

n∑
i=1

{
x⊗ B̂ᵀb}

{
xᵀ ⊗ bᵀB̂

}
.

By (S.27) and Lemma S.1 , we obtain

λ2|J (Ĝ)| ≤ 2nλmax(Σ)
{
R3∆2

Ĝ
+R3d

2
1(PJ̃E) +R3‖R‖2F

}
. (S.29)

For simplicity, let

α = 6σ2q + 16σ2 exp(−q/2) + 12Kσ2|J (G)|{1 + log(p)}. (S.30)

Recall that γ = 24nλmax(Σ)Kσ2{1 + log(p)}. It follows from (S.23) and (S.29) that

d21(PJ̃E) ≤ α+
γR3

λ2

(
∆2
Ĝ

+ d21(PJ̃E) + ‖R‖2F
)
,

with probability at least (S.24), which yields

(
1− γR3

λ2

)
d21(PJ̃E) ≤ α+

γR3

λ2

(
∆2
Ĝ

+ ‖R‖2F
)
,
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that is,

d21(PJ̃E) ≤ α

1− γR3/λ2
+

γR3/λ
2

1− γR3/λ2

(
∆2
Ĝ

+ ‖R‖2F
)
, (S.31)

Plugging (S.31) into (S.22) yields

9− 9γR3/λ
2 − 768γR3R/λ

2

1− γR3/λ2
(∆2

Ĝ
)

≤ 108(∆2
G) +

768Rα

1− γR3/λ2
+

(
768γR3R/λ

2

1− γR3/λ2
+ 304

)
‖R‖2F .

(S.32)

Taking λ2 = 768γR3R in (S.32) yields

∆2
Ĝ
≤ C1∆2

G + C2qRσ
2 + C3RKσ

2|J (G)|{1 + log(p)}+ C4‖R‖2F , (S.33)

with probability at least (S.24). By definitions, it is obviously to see λmax(Σ) ≥ δJ (G). With (5.3) of the main

paper, (S.19), and (S.33), it shows that

∆2
Ĝ
≤ C1∆2

G + C2qRσ
2 + C3

R3RK|J (G)|λmax(Σ)σ2 log(p)

δJ (G)

+ C4
nsq

K2τ
,

with probability at least (S.24), which finishes the proof.

S.3 Proof of Corollaries

S.3.1 Proof of Corollary 1

By definitions, (5.3), (5.5), and (5.7) of the main paper, we have

∆2
F̂

=

n∑
i=1

‖F̂ (ti)
ᵀxi − F0(ti)

ᵀxi‖2

=

n∑
i=1

‖F̂ (ti)
ᵀxi − {G0 ×̄2 b(ti)}ᵀxi + {G0 ×̄2 b(ti)}ᵀxi − F0(ti)

ᵀxi‖2

≤ 2

n∑
i=1

{
‖F̂ (ti)

ᵀxi − {G0 ×̄2 b(ti)}ᵀxi‖2 + ‖{G0 ×̄2 b(ti)}ᵀxi − F0(ti)
ᵀxi‖2}

≤ 2S5∆2
G + 2S6qRσ

2 + 2S7
R3RK|J (G)|λmax(Σ)σ2 log(p)

δJ (G)

+ (2S8 + 2S3)
nsq

K2τ
,

(S.34)

with probability at least (S.24).
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S.3.2 Proof of Corollary 2

Theorem 1 of the main paper implies that when Σ satisfies Condition M(J (G0), δJ (G0)),

∆2
Ĝ
≤ S6qRσ

2 + S7
R3RKsλmax(Σ)σ2 log(p)

δJ (G0)

+ S8
nsq

K2τ
, (S.35)

with probability at least (S.24). Similarly, applying the arguments as in the proof of Corollary 1, it can be shown

the convergence rate of ∆2
F̂

has the upper bound

Op

(
qRσ2 +

R3RKsλmax(Σ)σ2 log(p)

δJ (G0)

+
nsq

K2τ

)
,

by specifying G = G0 in (S.34) under the assumption that Σ satisfies Condition M(J (G0), δJ (G0)). In the above

bound, let

K �
{

nδJ (G0)q

R3Rλmax(Σ) log(p)

}1/(2τ+1)

, (S.36)

we then have

∆2
F̂

= Op

(
qR+

{
R3Rλmax(Σ) log(p)

δJ (G0)

}2τ/(2τ+1)

s(nq)1/(2τ+1)

)
,

which finishes the proof of (5.9) of the main paper.

Next, we will show the relevant predictors will be selected consistently. Recall that D0 = Gᵀ
0,(3) and D̂ = Ĝᵀ

(3).

By (5.1) of the main paper and the orthonormality of b(t), we observe that for j ∈ J (G0),

q∑
l=1

‖f0,jl‖22 ≤
q∑
l=1

(∥∥∥∥∥
K∑
k=1

G0,jklbk

∥∥∥∥∥
2

+

∥∥∥∥∥
K∑
k=1

G0,jklbk − f0,jl

∥∥∥∥∥
2

)2

≤ 2‖D0,j‖2F +
Cq

K2τ
,

where D0,j ∈ RK×q is the submatrix of D0 associated with the predictor j. Now, with K chosen to be (S.36), and

the assumption that
∑q
l=1 ‖f0,jl‖

2
2 ≥ S11, it follows that when (5.10) of the main paper is satisfied, we have

‖D0,j‖F > C, (S.37)

for some positive constant C. On the other hand, the triangular inequality implies

‖D0,j‖F ≤ ‖D0,j − D̂j‖F + ‖D̂j‖F . (S.38)

Thus, if we can show as n tends to infinity

P
{
‖D0,j − D̂j‖F < C/2, j ∈ J (G0)

}
→ 1, (S.39)
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then following (S.37)–(S.39), we obtain

P
{
‖D̂j‖F > C/2, j ∈ J (G0)

}
→ 1.

Using the orthonormality of b(t), the above result will complete the proof of this corollary.

It remains to prove (S.39). Recall that

3

4
∆2
Ĝ

+ λ
∑

j∈J (G0)c

‖D̂j −D0,j‖F ≤ 16Rd21(PJ̃E)

+ 2〈R,ZJ̃ (D̂ −D0)〉+ λ
∑

j∈J (G0)

‖D0,j − D̂j‖F ,

where J̃ = J (G0) ∪ J (Ĝ), and there are two cases as follows.

Case 1. If

λ
∑

j∈J (G0)

‖D0,j − D̂j‖F ≥ 16Rd21(PJ̃E) + 2〈R,ZJ̃ (D̂ −D0)〉,

it straightforwardly implies ∑
j∈J (G0)c

‖D̂j −D0,j‖F ≤ 2
∑

j∈J (G0)

‖D0,j − D̂j‖F .

By Condition M(J (G0), δJ (G0)), we have

δJ (G0)

∑
j∈J (G0)

‖D0,j − D̂j‖2F ≤ tr{(D0,j − D̂j)
ᵀΣ(D0,j − D̂j)}

≤
∆2
Ĝ

n
.

(S.40)

Using (S.19), (S.36), and (5.3) of the main paper, we have

∆2
Ĝ
≤ C1

nsq

K2τ
+
C2R3RKsλmax(Σ)σ2{1 + log(p)}

δJ (G0)

≤ C3

{
R3Rλmax(Σ) log(p)

δJ (G0)

}2τ/(2τ+1)

s(nq)1/(2τ+1).

(S.41)

With (5.10), we prove (S.39) by plugging (S.41) in (S.40).

Case 2. If

λ
∑

j∈J (G0)

‖D0,j − D̂j‖F < 16Rd21(PJ̃E) + 2〈R,ZJ̃ (D̂ −D0)〉, (S.42)

we will use the following arguments to prove (S.39). By (S.31), we have with probability at least (S.24),

Rd21(PJ̃E) ≤ αR

1− 1/(768R)
+

1/768

1− 1/(768R)

(
∆2
Ĝ

+ ‖R‖2F
)

≤ C1αR+ C2

(
∆2
Ĝ

+ ‖R‖2F
)
,

(S.43)
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where α is defined as in (S.30). It follows from (S.42), (5.3) of the main paper, (S.35), and (S.43) that

λ
∑

j∈J (G0)

‖D0,j − D̂j‖F < 16Rd21(PJ̃E) + 2〈R,ZJ̃ (D̂ −D0)〉

≤ C1Rq + C2
nsq

K2τ
+ C3

R3RKsλmax(Σ) log(p)

δJ (G0)

,

with probability at least (S.24). Using (5.6) of the main paper and (S.36), it implies

λ2 = S4R3Rnλmax(Σ)Kσ2{1 + log(p)}

≥ S4R3Rnλmax(Σ)Kσ2 log(p)

� C{R3Rλmax(Σ) log(p)}2τ/(2τ+1)n2(τ+1)/(2τ+1){qδJ (G0)}
1/(2τ+1).

We then have

∑
j∈J (G0)

‖D0,j − D̂j‖F

≤ C1q
(4τ+1)/(4τ+2)R(τ+1)/(2τ+1){R3λmax(Σ) log(p)}−τ/(2τ+1)n−(τ+1)/(2τ+1)δ

−1/(4τ+2)

J (G0)

+ C2s{RR3λmax(Σ) log(p)}τ/(2τ+1)n−τ/(2τ+1)q1/(4τ+2)δ
−(4τ+1)/(4τ+2)

J (G0)
,

(S.44)

with probability at least (S.24). Using (5.10) of the main paper, (S.36), and (S.44), we have (S.39), which completes

the proof.

S.4 Random Design

This section is organized as follows. We first provide two auxiliary lemmas that are used as preliminary results

(Lemmas S.1 and S.2). Lemma S.3 show that the ConditionM(J , δJ ) can be satisfied with high probability (tending

to one) when x and t are random, and the sample size n is large enough compared with |J |2q2K2 + |J |2qK log p. A

special application of this result is for J (G0) with |J (G0)| = s. The term λmax(Σ)/δJ appeared in Theorem 1 of

the main paper is determined in Lemmas S.4 and S.5 for the cases when p and q are diverging with the sample size

n and fixed constants, respectively.

For notational simplicity, we use C with or without subscripts to represent generic constants that may change

values from line to line.
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Lemma S.1. Let zi,I = xi,I ⊗ b(ti), where I ⊂ {1, . . . , p}, i = 1, . . . , n. If the following eigenvalue bounds

LI ≤ λmin

(
1

n

n∑
i=1

zi,Iz
ᵀ
i,I

)
≤ λmax

(
1

n

n∑
i=1

zi,Iz
ᵀ
i,I

)
≤ UI

hold, then

LI ≤ λmin

(
1

n

n∑
i=1

Z̄i,IZ̄
ᵀ
i,I

)
≤ λmax

(
1

n

n∑
i=1

Z̄i,IZ̄
ᵀ
i,I

)
≤ UI ,

where Z̄i,I = xi,I ⊗Bᵀb(ti), for any B satisfying BᵀB = IR2 .

Proof. By definition, for all wjk ∈ R, we have

{∑
j∈I

K∑
k=1

1

n

n∑
i=1

xijbk(ti)wjk

}2

≤ UI
∑
j∈I

K∑
k=1

w2
jk.

Denote B = (B1, . . . ,BK)ᵀ. We then have

{∑
j∈I

R2∑
r2=1

1

n

n∑
i=1

xij

K∑
k=1

Bkr2bk(ti)w̄jr2

}2

=

{∑
j∈I

K∑
k=1

1

n

n∑
i=1

xijbk(ti)

R2∑
r2=1

Bkr2 w̄jr2

}2

≤ UI
∑
j∈I

K∑
k=1

(w̄ᵀ
jBkB

ᵀ
kw̄j)

= UI
∑
j∈I

(w̄ᵀ
jB

ᵀBw̄j)

= UI
∑
j∈I

R2∑
r2=1

w̄2
jr2 ,

where w̄jr2 ∈ R and w̄j = (w̄j1, . . . , w̄jR2)ᵀ. Therefore we finish the proof of the upper bound. The proof of lower

bound can be obtained similarly.

Lemma S.2. Suppose the conditional density of t given x, denoted as ft|x(t), is bounded away from 0 and infinity

by a constant, that is, there exists C > 0

1/C < ft|x(t) < C, t ∈ [0, 1].

If ‖x‖ψ2 ≤ κ, then

‖x⊗ b(t)‖ψ2 ≤ Cκ
√
K (S.45)

and

λmax

[
E{x⊗ b(t)}{xᵀ ⊗ bᵀ(t)}

]
≤ Cκ2. (S.46)
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Further, if λmin{E(xxᵀ)} ≥ C, then

λmin

[
E{x⊗ b(t)}{xᵀ ⊗ bᵀ(t)}

]
≥ C. (S.47)

Proof. Denote {b̃k(t)}Kk=1 as the ordinary B-spline basis with the same knots and order as {bk(t)}. By equivalence,

there exists a nonnegative matrix Ψ ∈ RK×K such that

b(t) = Ψb̃(t), (S.48)

where b̃(t) = (̃b1(t), . . . , b̃K(t))ᵀ. If follows that

IK = Ψ

{∫
b̃(t)b̃ᵀ(t)dt

}
Ψᵀ

and

Ψ−1(Ψᵀ)−1 =

∫
b̃(t)b̃ᵀ(t)dt.

By the property of B-spline (see, e.g., De Boor, 1973, 1976) and Assumption 3, for 1 ≤ q ≤ +∞ and v ∈ RK , we

have

Cζ‖v‖q ≤ h−1/q
n

∥∥∥∥ K∑
k=1

vk b̃k

∥∥∥∥
q

≤ C‖v‖q, (S.49)

where Cζ and C are two positive constants and Cζ depends on the order of B-spline ζ. Thus,

C1
1

K
≤ λmin

{
Ψ−1(Ψᵀ)−1} ≤ λmax

{
Ψ−1(Ψᵀ)−1} ≤ C2

1

K
,

which yields

C2K ≤ λmin

{
ΨΨᵀ} ≤ λmax

{
ΨΨᵀ} ≤ C1K. (S.50)

Recall

‖x⊗ b(t)‖ψ2 = sup
‖w‖2≤1

‖〈x⊗ b(t),w〉‖ψ2 .

For all w ∈ RpK with ‖w‖2 ≤ 1, we then have

‖〈x⊗ b(t),w〉‖qLq
= Ex

∫ ∣∣∣∣∑
j,k

xjbk(t)wjk

∣∣∣∣qft|x(t)dt

= Ex
∫ ∣∣∣∣∑

j,k

xj
(∑

k̃

Ψk,k̃ b̃k(t)
)
wjk

∣∣∣∣qft|x(t)dt
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≤ C1Ex
∫ ∣∣∣∑

k̃

(∑
k,j

Ψk,k̃xjwjk
)
b̃k̃(t)

∣∣∣qdt
≤ Cq 1

K
Ex
∥∥∥∥{(∑

k,j

Ψk,1xjwjk
)
, . . . ,

(∑
k,j

Ψk,Kxjwjk
)}∥∥∥∥q

q

≤ Cq 1

K

K∑
k̃=1

Ex
∣∣∣∑
k,j

Ψk,k̃xjwjk

∣∣∣q
≤ Cq 1

K

K∑
k̃=1

Ex
∣∣∣∑
j

xj
(∑

k

Ψk,k̃wjk
)∣∣∣q

≤ Cq 1

K

K∑
k=1

‖〈x, {Ψᵀ
:,k(w1, . . . ,wp)}ᵀ〉, ‖qLq

≤ Cq 1

K

K∑
k=1

(
√
q‖x‖ψ2‖Ψ

ᵀ
:,k(w1, . . . ,wp)‖2)q

≤ Cq 1

K
qq/2κq

K∑
k=1

(
‖Ψᵀ

:,k(w1, . . . ,wp)‖22
)q/2

≤ CqKq/2−1qq/2κq, (S.51)

where wj = (wj1, . . . , wjK)ᵀ, wjk is the {(j − 1)K + k}-th element of w and Ψ:,k = (Ψ1,k, . . . ,ΨK,k)ᵀ. Therefore,

we obtain

‖〈x⊗ b(t),w〉‖Lq ≤ Cκ
√
qK1/2−1/q ≤ Cκ

√
qK,

which yields the result of (S.45). Taking q = 2 in (S.51) will lead to the result of (S.46). Similarly,

‖〈x⊗ b(t),w〉‖2L2
= Ex

∫ ∣∣∣∣∑
k̃

(∑
k,j

xjΨk,k̃wjk
)
b̃k̃(t)

∣∣∣∣2ft|x(t)dt

≥ C 1

K
Ex
∥∥∥∥{(∑

k,j

Ψk,1xjwjk
)
, . . . ,

(∑
k,j

Ψk,Kxjwjk
)}∥∥∥∥2

2

≥ C 1

K

K∑
k̃=1

Ex
∣∣∣∑
j

xj
(∑

k

Ψk,k̃wjk
)∣∣∣2

≥ C 1

K

K∑
k̃=1

‖Ψᵀ
:,k(w1, . . . ,wp) ‖22

≥ C‖w‖22,

which proves (S.47).

Before presenting the next lemmas, we first introduce γα-functionals defined in (Talagrand, 2005; Banerjee et al.,

2015). In Lemmas S.3–S.5, γ2 will be used in the proofs.
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Definition S.1 (γα-functionals). Consider a metric space (T, d) and for a finite set A ⊂ T , let |A| denote its

cardinality. An admissible sequence is an increasing sequence of subsets {An, n ≥ 0} of T , such that |A0| = 1 and

for n ≥ 1, |An| = 22n . Given α > 0, we define the γα-functional as

γα(T, d) = inf sup
t∈T

∞∑
n=0

Diam{An(t)},

where An(t) is the unique element of An that contains t, Diam{An(t)} is the diameter of An according to d, and the

infimum is over all admissible sequences of T .

The next lemma shows that Condition M(J , δJ ) is satisfied with high probability under random models.

Lemma S.3. If the conditional density of t given x is bounded by a constant, ‖x‖ψ2 ≤ κ and λmin{E(xxᵀ)} ≥ C1,

then Condition M(J , δJ ) holds for some δJ > 0 with high probability when n ≥ C3(|J |2q2K2 + |J |2qK log p), where

C3 depends on C1 and δJ .

Proof. Recall Z = (z1, . . . , zn)ᵀ, where zi = xi ⊗ b(ti), which are i.i.d. copies of z = x ⊗ b(t). Let Σz = E(zzᵀ).

Consider the class of functions:

F =

[
fM{x⊗ b(t)} =

1√
tr(MᵀΣzM)

√
tr[Mᵀ{x⊗ b(t)}{x⊗ b(t)}ᵀM ] : vec(M) ∈ A

]
,

where

A =

{
vec(M) : ‖M‖2F ≤ 1 and 2

∑
j∈J

‖Mj‖F ≥
∑
j∈J c

‖Mj‖F
}
.

For M ∈ A, we have

p∑
j=1

‖Mj‖F ≤ 3
∑
j∈J

‖Mj‖F ≤ 3|J |‖M‖F = 3|J |.

Define

Ā =

{
vec(M) :

p∑
j=1

‖Mj‖F ≤ 3|J | and 2
∑
j∈J

‖Mj‖F ≥
∑
j∈Jc

‖Mj‖F
}
.

We then have

A ⊂ Ā. (S.52)

Note that

‖fM‖2L2
=

1

tr(MᵀΣzM)
E(tr[Mᵀ{x⊗ b(t)}{x⊗ b(t)}ᵀM ]) = 1.
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We then have F ⊂ SL2 := {f : ‖f‖L2 = 1}. By definitions, we have

‖fM‖ψ2 =
∥∥‖z̃ᵀM̃‖2

∥∥
ψ2
≤

q∑
l=1

‖z̃ᵀM̃l‖ψ2 ≤ ‖z̃‖ψ2

q∑
l=1

‖M̃l‖2 ≤
√
q‖z̃‖ψ2 ,

where z̃ᵀ = zᵀΣ−1/2, M̃ = Σ1/2M , and M̃l is the l-th column of M̃ . Further, noting that

〈z̃,w〉 = 〈zᵀΣ−1/2
z ,wᵀ〉 = 〈z,Σ−1/2

z w〉,

and

‖Σ−1/2
z w‖2 ≤ C‖w‖2,

it follows from Lemma S.2 that

‖z̃‖ψ2 ≤ C
√
q‖z‖ψ2 ≤ C

√
qKκ.

By Theorem 2.1.1 of Talagrand (2005), we have

γ2(F ∩SL2 , ‖ · ‖ψ2) ≤ C
√
qKκγ2(F ∩SL2 , ‖ · ‖L2) ≤ C

√
qKκw(A),

where γ2 is the γ2-functional defined as in Definition S.1.

Using Theorem 10 of Banerjee et al. (2015), we chose

θ = C
√
qKκ2w(A)√

n
≥ Cκγ2(F ∩SL2 , ‖ · ‖ψ2)√

n

to satisfy the lower bound in equation (125) of Banerjee et al. (2015). As a result,

sup
A

∣∣∣∣ 1n
n∑
i=1

1

tr(MᵀΣzM)
tr[Mᵀ{xi ⊗ b(ti)}{xi ⊗ b(ti)}ᵀM ]− 1

∣∣∣∣ ≤ C√qKκ2w(A)√
n
,

with probability at least

1− exp{−CqKw2(A)}.

Applying equation (53) of Banerjee et al. (2015) and (S.52), we have

w(A) ≤ C|J |
√
Kq + log p.

The definition of A and Lemma S.2 together show that, for vec(M) ∈ A,

tr(MᵀΣzM) ≥ C‖M‖2F ≥ C
∑
j∈|J |

‖Mj‖2F .
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When n ≥ C3(|J |2q2K2 + |J |2qK log p), we have

1

n

n∑
i=1

tr[Mᵀ{xi ⊗ b(ti)}{xi ⊗ b(ti)}ᵀM ] ≥ C4tr(MᵀΣzM) ≥ C2

∑
j∈|J |

‖Mj‖2F

with high probability. Therefore, when n ≥ C3(|J |2q2K2 + |J |2qK log p), Condition M(J , δJ ) is satisfied for some

δJ = C2 > 0 with high probability.

When q and p are allowed to be growing with the sample size n, the following lemma shows that λmax(Σ) is

bounded by O(K) with probability tending to one. Therefore, together with Lemma S.3, it implies that the term

λmax(Σ)/δJ in Theorem 1 of the main paper is upper bounded by O(K) with high probability.

Lemma S.4. Let X = (x1, . . . ,xn)ᵀ, Z = (z1, . . . , zn)ᵀ, where zi = xi ⊗ b(ti), xi = (xi1, . . . , xip)
ᵀ. If

λmax

(
XᵀX

n

)
≤ Ux <∞, (S.53)

then

λmax

(
ZᵀZ

n

)
≤ C1KUx. (S.54)

Proof. For any v = (v1, . . . , vp)
ᵀ ∈ Rp, we have

1

n

n∑
i=1

( p∑
j=1

xijvj

)2

≤ Ux
p∑
j=1

v2j (S.55)

due to the definition of λmax(·). It can be shown that for all ṽ = (ṽ1, . . . , ṽp)
ᵀ ∈ Rp, we have

1

n

n∑
i=1

( p∑
j=1

|xij ṽj |
)2

≤ Ux
p∑
j=1

ṽ2j .

To see this, if xij ≤ 0, we take vj = −|ṽj |, and if xij > 0, we take vj = |ṽj |. The aforementioned inequality is thus

obtained by (S.55). Next, consider w = (wᵀ
1 , . . . ,w

ᵀ
p)ᵀ ∈ RpK , where wj = (wj1, . . . , wjK)ᵀ ∈ RK . We now borrow

some notations used in the proof of Lemma S.2. Recall that {b̃k(t)}Kk=1 is the B-spline basis with the same knots

and order as {bk(t)}, and there exists Ψ = (Ψk,k̃)K×K such that (S.48) holds. By definitions and (S.50), we have

wᵀZᵀZw

n
=

1

n

n∑
i=1

{ p∑
j=1

xij

K∑
k=1

bk(t)wjk

}2

≤ 1

n

n∑
i=1

{ p∑
j=1

∣∣∣∣ K∑
k=1

bk(t)wjk

∣∣∣∣|xij |}2

≤ Ux
p∑
j=1

( K∑
k=1

bk(t)wjk

)2

= CUxK‖w‖22,

(S.56)
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which finishes the proof.

When q and p are fixed (that is, not growing with the sample size n), Lemma S.5 shows that with probability

tending to one, λmax(Σ)/δJ is upper bounded by a constant.

Lemma S.5. If the conditional density of t given x is bounded by a constant, ‖x‖ψ2 ≤ κ and λmin{E(xxᵀ)} ≥ C1,

then Condition M(J , δJ ) holds for some constant δJ > 0 and λmax(Σ) is upper bounded by a constant, with high

probability when n ≥ CK2.

Proof. The following proof is similar to that of Lemma S.3. Recall Z = (z1, . . . , zn)ᵀ, where zi = xi ⊗ b(ti), which

are i.i.d. copies of z = x⊗ b(t). Let Σz = E(zzᵀ). Consider the class of functions:

Fw =

[
fw{x⊗ b(t)} =

1√
wᵀΣzw

√
wᵀ{x⊗ b(t)}{x⊗ b(t)}ᵀw : w ∈ Aw

]
,

where

Aw =
{
w : ‖w‖2F ≤ 1

}
.

It is trivial to see ‖fw‖2L2
= 1, which yields Fw ⊂ SL2 := {f : ‖f‖L2 = 1}. By definitions and Lemma S.2, we have

‖fw‖ψ2 = ‖‖zᵀw‖2‖ψ2 ≤ ‖ ≤ ‖z‖ψ2‖w‖2 ≤ C
√
Kκ.

By Theorem 2.1.1 of Talagrand (2005), we have

γ2(Fw ∩SL2 , ‖ · ‖ψ2) ≤ C
√
Kκγ2(Fw ∩SL2 , ‖ · ‖L2) ≤ C

√
Kκw(Aw),

where γ2 is the γ2-functional defined as in Definition S.1.

Using Theorem 10 of Banerjee et al. (2015), we chose

θ = C
√
Kκ2w(Aw)√

n
≥ Cκγ2(Fw ∩SL2 , ‖ · ‖ψ2)√

n

to satisfy the lower bound in equation (125) of Banerjee et al. (2015). As a result,

sup
A

∣∣∣∣ 1n
n∑
i=1

1

wᵀΣzw
[wᵀ{xi ⊗ b(ti)}{xi ⊗ b(ti)}ᵀw]− 1

∣∣∣∣ ≤ C√Kκ2w(Aw)√
n

, (S.57)

with probability at least

1− exp{−CKw2(Aw)}.
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By the covering number argument, we have

N(ε,Aw, l2) ≤ (C1/ε)
C2K .

It follows from the Dudley’s integral entropy bound (see, e.g., Theorem 3.1 of Koltchinskii, 2011) that the Gaussian

width satisfies

w(Aw) ≤ C
√
K. (S.58)

If n ≥ Cκ4K2 for some constant C, by (S.46), (S.47), (S.57), and (S.58), we have

C1 ≤ λmin

(
ZᵀZ

n

)
≤ λmax

(
ZᵀZ

n

)
≤ C2κ

2

with high probability, which finishes the proof.

S.5 Additional Numerical Results

S.5.1 Additional Experiments of Synthetic Data

We extend our simulation setting to larger numbers of response variables to show the trend of the performance of the

proposed method when q increases. To match the measure of estimation error used in our theoretical investigation

(see (5.4) and (5.5) in Section 5 of the main paper), we calculate the integrated squared error (ISE) in this additional

study, that is,

ISE =

p∑
j=1

q∑
l=1

∫ 1

0

{f̂jl(t)− fjl(t)}2 dt,

where f̂jl(t)’s are the estimated coefficient functions of various methods. More precisely, we calculate the ISE for

the scenarios of q = 15, 30, and 50 under our simulation setting of n = 200 or 400, p = 51, and SNR = 20. For

each scenario, 50 replicates are generated and the proposed all-mode reduction model is trained, where the tuning

parameters are determined as in Section 4.6 of the main paper. The results are shown in Figure S.1 as a line chart,

with a bar denoted the standard errors of each scenario. Figure S.1 shows that the ISE has an rising trend as the

number of responses increases, which is consistent with our main theorem.
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Figure S.1: The ISE for different numbers of the response variables.

S.5.2 Additional Results of Real Data

In this subsection, we plot the estimated coefficient functions of one relevant SNP, rs9321440, identified by the

proposed all-mode reduction method. Figure S.2 depicts the fitted coefficient functions and their average based on

50 replicates of random splitting. From the estimation of varying coefficient functions, we observe that the SNP

rs9321440 may have different varying effects on the phenotypes of height, bi-deltoid girth, right arm girth-upper third,

hip girth, and thigh girth given distinct body weights. To be specific, for both height and bi-deltoid girth, the estimated

coefficients show negative patterns, and the effects decrease first but then increase with respect to the increase of

body weights. This similarity in patterns could be explained by the high correlations between these two phenotypes

(Chalmers et al., 2021), where both are mainly due to the skeleton of a human. For right arm girth-upper third, hip

girth, and thigh girth, these measurements are characterized by the body fat and highly correlated (Freedman and

Rimm, 1989). Their corresponding estimated coefficients have similar patterns and show positive effects. As for the

phenotype of waist girth, the effect of this SNP may not vary with body weights significantly.
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Figure S.2: Fitted coefficient functions of the biologically confirmed SNP rs9321440. In each panel, the blue

dashed lines and the red solid line are the fitted functions and their average based on 50 replicates of random

splitting, respectively.
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