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1. The ADMM algorithm for Gaussian mixture models

Algorithm S1 : The ADMM algorithm for Gaussian mixture models
1: Set initial values as β(0), θ(0)

[·1], and θ
(0)
[·2]. Let ∆

(0)
ijm = θ

(0)
im − θ

(0)
jm and ν

(0)
ijm = 0 for

any 1 ≤ i < j ≤ n and m = 1, 2.
2: Compute and store E⊤E.
3: t← 0.
4: while ∥Rp(Θ

(t),∆(t))∥F > κpri or ∥R(t)
d ∥F > κdual do

5: Update θ
(t+1)
[·1] by (3.2).

6: Update β(t+1) by (3.3).
7: Update θ

(t+1)
[·2] by repeatedly applying (3.4) in a cyclical manner until the

relative distance of parameters between two cycles is smaller than a tolerance
(e.g., 10−3).

8: Update ∆(t+1) by (3.7) for the hard penalty or (3.8) for the
SCAD penalty.

9: Update ν(t+1) by (3.9).
10: t← t+ 1.
11: end while
12: Output the final estimates β̂ = β(t), θ̂[·1] = θ

(t)
[·1], and θ̂[·2] = θ

(t)
[·2].
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2. Proofs of conclusions in Section 3

2.1 Derivations of (3.2) – (3.4)

For the Gaussian mixture model, the log-likelihood function can be written as

L(β,Θ) =
n∑

i=1

log θi2
2
− θi2(yi − β⊤xi − θi1)2

2
+ C,

where C is a generic constant. By the first order condition of optimality, setting the

derivative ∂H(β,Θ,∆,ν)/∂β = −∂L(β,Θ)/∂β to zero, we have

β = (X⊤WX)−1X⊤W (y − θ[·1]), (S2.1)

where W is the diagonal matrix of θ[·2]. Taking the partial derivative of L(β,Θ) with

respect to θ[·1], we have

∂L(β,Θ)

∂θ[·1]
=
(
θ12(y1 − β⊤x1 − θ11), . . . , θn2(yn − β⊤xn − θn1)

)⊤
.

One can verify that

∂H(β,Θ,∆,ν)

∂θ[·1]
=−

(
θ12(y1 − β⊤x1 − θ11), . . . , θn2(yn − β⊤xn − θn1)

)⊤
+ ρE⊤ {Eθ[·1] −

(
∆[·1] − ρ−1ν[·1]

)}
=(ρE⊤E +W )θ[·1] −W (y −Xβ)− ρE⊤ (∆[·1] − ρ−1ν[·1]

)
=(ρE⊤E +A)θ[·1] −Ay − ρE⊤ (∆[·1] − ρ−1ν[·1]

)
,
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2.1 Derivations of (3.2) – (3.4)

where the last equality is derived based on (S2.1) with A = W (In−X(X⊤WX)−1X⊤W ).

By setting ∂H(β,Θ,∆,ν)/∂θ[·1] = 0, we have

θ[·1] =
(
ρE⊤E +A

)−1 {
Ay + ρE⊤ (∆[·1] − ρ−1ν[·1]

)}
.

Then (3.2) and (3.3) follow immediately.

Similarly, we take the partial derivative of L(β,Θ) with respect to θ[·2],

∂L(β,Θ)

∂θ[·2]
=

(
1

2θ12
− (y1 − β⊤x1 − θ11)2/2, . . . ,

1

2θn2
− (yn − β⊤xn − θn1)2/2

)⊤

.

Thus, one can compute that

∂H(β,Θ,∆,ν)

∂θi2
= − 1

2θi2
+ (yi − β⊤xi − θi1)2/2 +

∑
j>i

νij2 −
∑
j<i

νji2

+ ρ

{∑
j>i

(θi2 − θj2 −∆ij2)−
∑
j<i

(θj2 − θi2 −∆ji2)

}

=− 1

2θi2
+ (yi − β⊤xi − θi1)2/2 +

∑
j>i

νij2 −
∑
j<i

νji2

+ ρ

{∑
j>i

θi2 −
∑
j>i

(θj2 +∆ij2) +
∑
j<i

θi2 −
∑
j<i

(θj2 −∆ji2)

}

=ρ(n− 1)θi2 + bi −
1

2θi2
,

with

bi = (yi−β⊤xi−θi1)2/2+
∑
j>i

νij2−
∑
j<i

νji2−ρ

{∑
j>i

(θj2 +∆ij2) +
∑
j<i

(θj2 −∆ji2)

}
.
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2.2 Derivations of (3.7) and (3.8)

The solution of ∂H(β,Θ,∆,ν)/∂θi2 = 0 is the root of a quadratic equation ρ(n −

1)θ2i2 + biθi2 − 1/2 = 0. By b2i + 2ρ(n− 1) > b2i , there exists only one positive root,

θi2 = {2ρ(n− 1)}−1

(
−bi +

√
b2i + 2ρ(n− 1)

)
.

2.2 Derivations of (3.7) and (3.8)

Minimizing H(β,Θ,∆,ν) with respect to ∆ijm is equivalent to minimizing

2−1(rijm −∆ijm)
2 + ρ−1p(|∆ijm|, λm, γm).

The hard penalty (2.2) can be written as

p(|∆ijm|, λm, γm) =


−∆2

ijm/2 + λm|∆ijm|, if |∆ijm| < λm,

λ2m/2, if |∆ijm| ≥ λm.

For |∆ijm| < λm, by the first order condition of optimality, any optimal solution ∆ijm

must satisfy

−(rijm −∆ijm) + ρ−1(−∆ijm + λmgijm) = 0,

where gijm ∈ R belongs to the subdifferentials of the L1 norm at ∆ijm. In particular,

we have gijm = sign(∆ijm) if ∆ijm ̸= 0; otherwise gijm ∈ [−1, 1]. By the KKT

condition, we have ∆ijm = 0 if and only if |rijm| ≤ ρ−1λm. When ∆ijm ̸= 0, it holds

that ∆ijm = (rijm−ρ−1λmgijm)/(1−ρ−1). Hence, we have ∆ijm = S(rijm, ρ−1λm)/(1−

ρ−1) with S(u, c) = sign(u)(|u|−c)+ being the soft thresholding function. For |∆ijm| ≥
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2.2 Derivations of (3.7) and (3.8)

λm, the minimum value is obtained at ∆ijm = rijm. Hence, we have

∆ijm =


S(rijm, ρ−1λm)/(1− ρ−1), if |rijm| < λm,

rijm, if |rijm| ≥ λm.

The SCAD penalty function can also be written as

p(|∆ijm|, λm, γm) =



λm|∆ijm|, if |∆ijm| ≤ λm,

− (∆ijm)
2 − 2γmλm|∆ijm|+ λ2m

2(γm − 1)
, if λm < |∆ijm| ≤ γmλm,

(γm + 1)λ2m
2

, if |∆ijm| > γmλm.

For |∆ijm| ≤ λm, which is the same as Lasso, by the first order condition of optimality,

any optimal solution ∆ijm must satisfy −(rijm −∆ijm) + ρ−1λmgijm = 0. Thus, one

can verify that ∆ijm = S(rijm, ρ−1λm). For λm < |∆ijm| ≤ γmλm, by the first order

condition of optimality, any optimal solution ∆ijm must satisfy

−(rijm −∆ijm)− ρ−1∆ijm − γmλmgijm
γm − 1

= 0.

By the KKT condition, we have ∆ijm = 0 if and only if |rijm| ≤ γmρ
−1λm/(γm − 1).

When ∆ijm ̸= 0, it holds that ∆ijm = {rijm−γmρ−1λmgijm/(γm−1)}/{1−ρ−1/(γm−

1)}. Hence, we have

∆ijm =
S(rijm, γmρ−1λm/(γm − 1))

1− ρ−1/(γm − 1)
.
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2.3 Proof of Lemma 1

Moreover, by the first order condition of optimality, one can verify that for |∆ijm| >

γmλm, the SCAD yields ∆ijm = rijm. Combining the three cases, we update ∆ijm as

follows,

∆ijm =



S(rijm, ρ−1λm), if |rijm| ≤ λm(1 + ρ−1),

S(rijm, γmρ−1λm/(γm − 1))

1− ρ−1/(γm − 1)
, if (1 + ρ−1)λm < |rijm| ≤ γmλm,

rijm, if |rijm| > γmλm.

2.3 Proof of Lemma 1

Note that the objective function Q(β,Θ,∆) is coercive over the feasible set, that is,

Q(β,Θ,∆)→∞ if EΘ−∆ = 0 and ∥(β⊤,θ⊤
[·1],θ

⊤
[·2],∆

⊤
[·1],∆

⊤
[·2])∥2 →∞. Moreover,

as Im(E) ⊆ Im(I) with Im(·) being the image of a matrix, there exists ∆′ such that

EΘ(t) −∆′ = 0. Therefore, we have

Q(β(t),Θ(t),∆′) ≥ min
β,Θ,∆

{Q(β,Θ,∆) : EΘ−∆ = 0} > −∞. (S2.2)

By the first order condition of optimality, it holds that for m = 1, 2,

∂H(β(t),Θ(t),∆(t),ν(t−1))

∂∆[·m]

=
∂
∑

i<j p(|∆
(t)
ijm|, λm, γm)

∂∆[·m]

− ν
(t−1)
[·m] − ρ(Eθ

(t)
[·m] −∆

(t)
[·m])

=
∂
∑

i<j p(|∆
(t)
ijm|, λm, γm)

∂∆[·m]

− ν
(t)
[·m] = 0,

(S2.3)

where ∂
∑

i<j p(|∆
(t)
ijm|, λm, γm)/∂∆[·m] belongs to the subdifferentials of the penalty
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2.3 Proof of Lemma 1

function and the last equality is derived from (3.9). Therefore, we have

ν
(t)
[·m] =

∂
∑

i<j p(|∆
(t)
ijm|, λm, γm)

∂∆[·m]

, m = 1, 2.

Furthermore, it can be verified that for m = 1, 2,

∑
i<j

p(|∆(t)
ijm|, λm, γm) + (ν

(t)
[·m])

⊤(Eθ
(t)
[·m] −∆

(t)
[·m])

=
∑
i<j

p(|∆(t)
ijm|, λm, γm) +

{
∂
∑

i<j p(|∆
(t)
ijm|, λm, γm)

∂∆[·m]

}⊤

(∆′
[·m] −∆

(t)
[·m])

≥
∑
i<j

p(|∆′
ijm|, λm, γm) + Im −

Cp

2
∥∆′

[·m] −∆
(t)
[·m]∥

2
2,

with the inequality derived from the weakly convexity of the penalty function and

Im =

{
∂
∑

i<j p(|∆′
ijm|, λm, γm)

∂∆[·m]

−
∂
∑

i<j p(|∆
(t)
ijm|, λm, γm)

∂∆[·m]

}⊤

(∆
(t)
[·m] −∆′

[·m]).
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2.4 Proof of Lemma 2

Then it holds that

H(β(t),Θ(t),∆(t),ν(t))

=Q(β(t),Θ(t),∆(t)) +

2∑
m=1

(ν
(t)
[·m])

⊤(Eθ
(t)
[·m] −∆

(t)
[·m]) +

ρ

2

2∑
m=1

∥Eθ
(t)
[·m] −∆

(t)
[·m]∥

2
2

=− L(β(t),Θ(t)) +

2∑
m=1

∑
i<j

p(|∆(t)
ijm|, λm, γm) +

2∑
m=1

(ν
(t)
[·m])

⊤(Eθ
(t)
[·m] −∆

(t)
[·m])

+
ρ

2

2∑
m=1

∥Eθ
(t)
[·m] −∆

(t)
[·m]∥

2
2

≥− L(β(t),Θ(t)) +
2∑

m=1

∑
i<j

p(|∆′
ijm|, λm, γm) +

2∑
m=1

(
Im +

ρ− Cp

2
∥∆′

[·m] −∆
(t)
[·m]∥

2
2

)

≥Q(β(t),Θ(t),∆′) +

2∑
m=1

(
−2n(n− 1)C2

s∥∆′
[·m] −∆

(t)
[·m]∥2 +

ρ− Cp

2
∥∆′

[·m] −∆
(t)
[·m]∥

2
2

)
.

As ρ − Cp > 0, combing with (S2.2), we have H(β(t),Θ(t),∆(t),ν(t)) > −∞. This

completes the proof. □

2.4 Proof of Lemma 2

To bound H(β(t),Θ(t),∆(t),ν(t)) − H(β(t−1),Θ(t−1),∆(t−1),ν(t−1)), we consider the

following four terms,

(i) H(β(t),Θ(t),∆(t),ν(t))−H(β(t),Θ(t),∆(t),ν(t−1));

(ii) H(β(t),Θ(t),∆(t),ν(t−1))−H(β(t),Θ(t),∆(t−1),ν(t−1));

(iii) H(β(t),Θ(t),∆(t−1),ν(t−1))−H(β(t), (θ
(t)
[·1],θ

(t−1)
[·2] ),∆(t−1),ν(t−1));

(iv) H(β(t), (θ
(t)
[·1],θ

(t−1)
[·2] ),∆(t−1),ν(t−1))−H(β(t−1),Θ(t−1),∆(t−1),ν(t−1)).
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2.4 Proof of Lemma 2

For (i), we have

H(β(t),Θ(t),∆(t),ν(t))−H(β(t),Θ(t),∆(t),ν(t−1))

=
2∑

m=1

(ν
(t)
[·m] − ν

(t−1)
[·m] )⊤(Eθ

(t)
[·m] −∆

(t)
[·m]) = ρ−1

2∑
m=1

∥ν(t)
[·m] − ν

(t−1)
[·m] ∥

2
2 ≤ 4ρ−1n(n− 1)C2

s .

(S2.4)

By (S2.3), we have

ν
(t−1)
[·m] =

∂
∑

i<j p(|∆
(t)
ijm|, λm, γm)

∂∆[·m]

− ρ(Eθ
(t)
[·m] −∆

(t)
[·m]), m = 1, 2. (S2.5)

Then it holds that

H(β(t),Θ(t),∆(t),ν(t−1))−H(β(t),Θ(t),∆(t−1),ν(t−1))

=
2∑

m=1

∑
i<j

p(|∆(t)
ijm|, λm, γm)−

2∑
m=1

∑
i<j

p(|∆(t−1)
ijm |, λm, γm) +

2∑
m=1

(ν
(t−1)
[·m] )⊤(∆

(t−1)
[·m] −∆

(t)
[·m])

+
ρ

2

2∑
m=1

∥Eθ
(t)
[·m] −∆

(t)
[·m]∥

2
2 −

ρ

2

2∑
m=1

∥Eθ
(t)
[·m] −∆

(t−1)
[·m] ∥

2
2

=

2∑
m=1

∑
i<j

p(|∆(t)
ijm|, λm, γm)−

2∑
m=1

∑
i<j

p(|∆(t−1)
ijm |, λm, γm)

+
2∑

m=1

(
∂
∑

i<j p(|∆
(t)
ijm|, λm, γm)

∂∆[·m]

)⊤

(∆
(t−1)
[·m] −∆

(t)
[·m])

+
ρ

2

2∑
m=1

{
∥Eθ

(t)
[·m] −∆

(t)
[·m]∥

2
2 − ∥Eθ

(t)
[·m] −∆

(t−1)
[·m] ∥

2
2 − 2

(
Eθ

(t)
[·m] −∆

(t)
[·m]

)⊤
(∆

(t−1)
[·m] −∆

(t)
[·m])

}

≤
2∑

m=1

(
Cp

2
∥∆(t)

[·m] −∆
(t−1)
[·m] ∥

2
2 −

ρ

2
∥∆(t)

[·m] −∆
(t−1)
[·m] ∥

2
2

)

=− ρ− Cp

2
∥∆(t) −∆(t−1)∥2F ,
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2.5 Proof of Theorem 1

where the inequality is derived from the weakly convexity of the penalty function

and the strongly convexity of the function ∥u∥2.

Similarly, by the convexity of the negative log-likelihood function and the strongly

convexity of the function ∥u∥2, it can be verified that

H(β(t),Θ(t),∆(t−1),ν(t−1))−H(β(t), (θ
(t)
[·1],θ

(t−1)
[·2] ),∆(t−1),ν(t−1))

≤− ρ

2
∥Eθ

(t)
[·2] −Eθ

(t−1)
[·2] ∥

2
2,

and

H(β(t), (θ
(t)
[·1],θ

(t−1)
[·2] ),∆(t−1),ν(t−1))−H(β(t−1),Θ(t−1),∆(t−1),ν(t−1))

≤− ρ

2
∥Eθ

(t)
[·1] −Eθ

(t−1)
[·1] ∥

2
2.

Therefore, we have

H(β(t),Θ(t),∆(t),ν(t))−H(β(t−1),Θ(t−1),∆(t−1),ν(t−1))

≤4ρ−1n(n− 1)C2
s −

ρ

2
∥EΘ(t) −EΘ(t−1)∥2F −

ρ− Cp

2
∥∆(t) −∆(t−1)∥2F .

This completes the proof. □

2.5 Proof of Theorem 1

Proof. (i) From Lemma 1 and Lemma 2, H(β(t),Θ(t),∆(t),ν(t)) is upper bounded and

so are Q(β(t),Θ(t),∆′) and ∥EΘ(t)−∆(t)∥2F . As the objective function Q(β,Θ,∆) is
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2.5 Proof of Theorem 1

coercive over the feasible set, {β(t),Θ(t)} is bounded and, therefore, {∆(t)} is bounded.

By the assumption that the subdifferential of the penalty function is bounded and

(S2.3), {ν(t)} is also bounded.

By Lemma 2, we have

H(β(t),Θ(t),∆(t),ν(t))−H(β(0),Θ(0),∆(0),ν(0))

≤
t∑

l=1

{
4ρ−1n(n− 1)C2

s −
ρ

2
∥EΘ(l) −EΘ(l−1)∥2F −

ρ− Cp

2
∥∆(l) −∆(l−1)∥2F

}
.

As H(β(t),Θ(t),∆(t),ν(t)) > −∞ by Lemma 1 and ρ > 0,
∑t

l=1 ∥EΘ(l) −EΘ(l−1)∥2F

is upper bounded. Based on the fact that
∑t

l=1 ∥EΘ(l)−EΘ(l−1)∥2F ≤
∑t+1

l=1 ∥EΘ(l)−

EΘ(l−1)∥2F ,
∑t

l=1 ∥EΘ(l)−EΘ(l−1)∥2F converges to a non-negative number as t→∞.

As a result, limt→∞ ∥EΘ(t) − EΘ(t−1)∥2F = 0. Similarly, we have limt→∞ ∥∆(t) −

∆(t−1)∥2F = 0, and thus,

lim
t→∞
∥R(t)

d ∥F = lim
t→∞
∥ρE⊤(∆(t+1) −∆(t))∥F = 0.

As ∥Θ(t) − Θ(t−1)∥2F ≤ λ−1
++(EE⊤)∥EΘ(t) − EΘ(t−1)∥2F , where λ++(EE⊤) is the

smallest strictly-positive eigenvalue of EE⊤, we have limt→∞ ∥Θ(t) −Θ(t−1)∥2F = 0.

Moreover, by (3.3), it holds that limt→∞ ∥β(t) − β(t−1)∥22 = 0.

As (β(t),θ
(t)
[·1]) is a minimizer of H(β, (θ[·1],θ

(t−1)
[·2] ),∆(t−1),ν(t−1)), by the first order
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2.5 Proof of Theorem 1

condition of optimality, we have

∂H(β(t), (θ
(t)
[·1],θ

(t−1)
[·2] ),∆(t−1),ν(t−1))

∂θ[·1]

=
−∂L(β(t), (θ

(t)
[·1],θ

(t−1)
[·2] ))

∂θ[·1]
−E⊤ν

(t−1)
[·1] − ρE

⊤(Eθ
(t)
[·1] −∆

(t−1)
[·1] )

=
−∂L(β(t), (θ

(t)
[·1],θ

(t−1)
[·2] ))

∂θ[·1]
−E⊤ν

(t)
[·1] − ρE

⊤(∆
(t)
[·1] −∆

(t−1)
[·1] ) = 0.

Therefore, we have

E⊤(ν
(t+1)
[·1] − ν

(t)
[·1]) =

∂L(β(t), (θ
(t)
[·1],θ

(t−1)
[·2] ))

∂θ[·1]
−
∂L(β(t+1), (θ

(t+1)
[·1] ,θ

(t)
[·2]))

∂θ[·1]

− ρE⊤(∆
(t+1)
[·1] −∆

(t)
[·1]) + ρE⊤(∆

(t)
[·1] −∆

(t−1)
[·1] ).

It can be verified that

∂L(β(t), (θ
(t)
[·1],θ

(t−1)
[·2] ))

∂θ[·1]
−
∂L(β(t+1), (θ

(t+1)
[·1] ,θ

(t)
[·2]))

∂θ[·1]

=
{
θ
(t−1)
i2 (yi − (β(t))⊤xi − θ(t)i1 )− θ

(t)
i2 (yi − (β(t+1))⊤xi − θ(t+1)

i1 )
}n

i=1

=
{
θ
(t−1)
i2 ((β(t+1) − β(t))⊤xi + θ

(t+1)
i1 − θ(t)i1 ) + (θ

(t−1)
i2 − θ(t)i2 )(yi − (β(t+1))⊤xi − θ(t+1)

i1 )
}n

i=1
.

Therefore, as limt→∞ ∥Θ(t) −Θ(t−1)∥2F = 0 and limt→∞ ∥β(t) − β(t−1)∥22 = 0, it holds

that

lim
t→∞

∥∥∥∥∥∂L(β
(t), (θ

(t)
[·1],θ

(t−1)
[·2] ))

∂θ[·1]
−
∂L(β(t+1), (θ

(t+1)
[·1] ,θ

(t)
[·2]))

∂θ[·1]

∥∥∥∥∥
2

2

= 0,

12



2.5 Proof of Theorem 1

and limt→∞ ∥E⊤(ν
(t+1)
[·1] −ν

(t)
[·1])∥22 = 0. By ∥ν(t+1)

[·1] −ν
(t)
[·1]∥22 ≤ λ−1

++(E
⊤E)∥E⊤(ν

(t+1)
[·1] −

ν
(t)
[·1])∥22, we have limt→∞ ∥ν(t+1)

[·1] − ν
(t)
[·1]∥22 = 0.

As θ(t)
[·2] is a minimizer of H(β(t), (θ

(t)
[·1],θ[·2]),∆

(t−1),ν(t−1)), following similar steps,

it can be verified that limt→∞ ∥ν(t+1)
[·2] − ν

(t)
[·2]∥22 = 0. Therefore, we have

lim
t→∞
∥Rp(Θ

(t),∆(t))∥F = lim
t→∞
∥EΘ(t) −∆(t)∥F = lim

t→∞
∥ν(t) − ν(t−1)∥F = 0.

(ii) Next we prove that ∥∂H(β(t),Θ(t),∆(t),ν(t))∥2 → 0 as t→∞. Note that

∂H(β(t),Θ(t),∆(t),ν(t))

∂β
=
−∂L(β(t),Θ(t))

∂β

=
−∂L(β(t), (θ

(t)
[·1],θ

(t−1)
[·2] ))

∂β
+
−∂L(β(t),Θ(t))

∂β
−
−∂L(β(t), (θ

(t)
[·1],θ

(t−1)
[·2] ))

∂β

=
n∑

i=1

(θ
(t−1)
i2 − θ(t)i2 )(yi − (β(t))⊤xi − θ(t)i1 )xi.

Based on the fact that ∥(yi − (β(t))⊤xi − θ
(t)
i1 )xi∥2 is bounded and limt→∞ ∥θ(t)

[·2] −

θ
(t−1)
[·2] ∥2 = 0, we have limt→∞ ∥∂H/∂β∥2 = 0. Similarly, it can be verified that

limt→∞ ∥∂H/∂θ[·1]∥2 = 0 and limt→∞ ∥∂H/∂θ[·2]∥2 = 0.

Furthermore, as

lim
t→∞
∥∂H/∂ν[·m]∥2 = lim

t→∞
∥Eθ

(t)
[·m] −∆

(t)
[·m]∥2 = 0, m = 1, 2,

and

lim
t→∞
∥∂H/∂∆[·m]∥2 = lim

t→∞
∥ν(t−1)

[·m] − ν
(t)
[·m]∥2 = 0, m = 1, 2,

13



we have ∥∂H(β(t),Θ(t),∆(t),ν(t))∥2 → 0 as t→∞.

As {β(t),Θ(t),∆(t),ν(t)} is bounded, there exists a convergent subsequence and a

limit point, denoted by {β(ts),Θ(ts),∆(ts),ν(ts)} → (β∗,Θ∗,∆∗,ν∗) as s → ∞. And

moreover, we have ∥∂H(β(ts),Θ(ts),∆(ts),ν(ts))∥2 → 0 as s→∞. Since H is a contin-

uous function, it holds that H(β∗,Θ∗,∆∗,ν∗) = lims→∞H(β(ts),Θ(ts),∆(ts),ν(ts)).

By the definition of general subdifferential, we have 0 ∈ ∂H(β∗,Θ∗,∆∗,ν∗).

Thus, the sequence {β(t),Θ(t),∆(t),ν(t)} has at least a limit point {β∗,Θ∗,∆∗,ν∗},

and any limit point is a stationary point. Similar conclusions and steps are found in

Wang et al. (2019) (see Proposition 2 in their paper). This completes the proof. □

3. Proofs of theorems in Section 4

3.1 Proof of Theorem 2

Proof. For a, b ∈ R+, we denote a ≲ b if a ≤ cb for some generic constant 0 < c < +∞.

As ((θ̂or
[·1])

⊤, (θ̂or
[·2])

⊤) = ((Z(1)µ̂or)⊤, (Z(2)τ̂ or)⊤), to prove Theorem 2, it suffices to

show

∥((β̂or)⊤, (µ̂or)⊤, (τ̂ or)⊤)− ((β0)⊤, (µ0)⊤, (τ 0)⊤)∥2

≲max(K1, K2)

(
(p+K1)K

2
2 log n

n

)1/2

+max(K1, K2)

(
K2 log n

n

)1/2

,

(S3.6)

with probability converging to 1 as n goes to infinity.

Denote η = (β⊤,µ⊤)⊤, α = (η⊤, τ⊤)⊤, and x̃i = (x⊤
i , (z

(1)
[i·] )

⊤)⊤. Define

Sn(α) = n−1

n∑
i=1

K2∑
k′=1

z
(2)
ik′

{
log τk′ − τk′(yi − η⊤x̃i)

2
}
.

14



3.1 Proof of Theorem 2

It can be seen that ((β̂or)⊤, (µ̂or)⊤, (τ̂ or)⊤)⊤ = argmaxSn(α). Furthermore, de-

fine the function evaluating the error between α and the true parameter α0 =

((β0)⊤, (µ0)⊤, (τ 0)⊤)⊤ as

g(∆α) = Sn(α
0 +∆α)− Sn(α

0).

As α̂or = ((β̂or)⊤, (µ̂or)⊤, (τ̂ or)⊤)⊤ is the maximum point of Sn(α), we have g(∆̃α) ≥

0 with ∆̃α = αor −α0. We prove (S3.6) by contradiction. For any δ1, δ2 > 0, let

ι1 =(p+K1)
1/2K2

(
2max{M, 1} log(2(p+K1)K2/δ1)

τminn

)1/2

,

ι2 =(K2)
1/2 max{(2n−1 log(K2/δ2))

1/2, 2n−1 log(K2/δ2)},

and

ξ1 = c̃−1
1 max(K1, K2)(2(1 + c2)τmaxι1 + 16τ−1

minι2),

ξ2 = 2c̃−1
2 c2τmax max{K1, K2}ι1,

ξ3 = 4c̃−1
3 c2τmax max(K1, K2)ι1,

where c̃1, c̃2, c2 and c̃3 are finite constants defined below. Let ξ = max{2ξ1, 2ξ2, 2ξ3}.

If ∥∆̃α∥2 ≥ ξ, there exists some 0 < t∗ ≤ 1 such that ∥t∗∆̃α∥2 = ξ/2. Denote

α∗ = t∗αor + (1− t∗)α0. We then prove the following two results:

(i) g(t∗∆̃α) < 0 with probability at least 1− 2(δ1 + δ2).

(ii) g(t∗∆̃α) ≥ g(∆̃α) ≥ 0 with probability at least 1− (4δ1 + 2δ2).

15



3.1 Proof of Theorem 2

By the results in (i) and (ii), ∥∆̃α∥2 ≥ ξ leads to a contradiction and thus, we

have ∥∆̃α∥2 < ξ with probability at least 1 − (6δ1 + 4δ2). Under the condition

(p+K1)K2 = o(n), setting δ1 = (p+K1)K2/n and δ2 = K2/n, it holds that

∥αor−α0∥2 = Op

(
max(K1, K2)

(
(p+K1)K

2
2 log n

n

)1/2

+max(K1, K2)

(
K2 log n

n

)1/2
)
.

Step 1: We prove the result in (i). Note that for any α and α′,

Sn(α)− Sn(α
′
) = I1(α,α

′) + I2(α,α
′),

where

I1(α,α
′) =n−1

n∑
i=1

K2∑
k′=1

z
(2)
ik′

(
−τk′(yi − η⊤x̃i)

2 + τk′(yi − (η
′
)⊤x̃i)

2
)
,

I2(α,α
′) =n−1

n∑
i=1

K2∑
k′=1

z
(2)
ik′

(
−τk′(yi − (η′)⊤x̃i)

2 + τ
′

k′(yi − (η′)⊤x̃i)
2 + log τk′ − log τ

′

k′

)
.

On the other hand, we have

⟨∇αSn(α
′
),α−α

′⟩ = ⟨∇ηSn(α
′
),η − η

′⟩+ ⟨∇τSn(α
′
), τ − τ

′⟩.
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3.1 Proof of Theorem 2

Then one can verify that

I1(α,α
′)− ⟨∇ηSn(α

′
),η − η

′⟩

=I1(α,α
′)− n−1

n∑
i=1

K2∑
k′=1

2z
(2)
ik′ τ

′
k′(yi − (η

′
)⊤x̃i)x̃

⊤
i (η − η

′
)

=I1(α,α
′)− n−1

n∑
i=1

K2∑
k′=1

2z
(2)
ik′ τk′(yi − (η

′
)⊤x̃i)x̃

⊤
i (η − η

′
)

+ n−1

n∑
i=1

K2∑
k′=1

2z
(2)
ik′ (τk′ − τ

′
k′)(yi − (η

′
)⊤x̃i)x̃

⊤
i (η − η

′
)

=− n−1

n∑
i=1

K2∑
k′=1

z
(2)
ik′ τk′∥(η − η

′
)⊤x̃i∥22

+ n−1

n∑
i=1

K2∑
k′=1

2z
(2)
ik′ (τk′ − τ

′
k′)(yi − (η

′
)⊤x̃i)x̃

⊤
i (η − η

′
). (S3.7)

We then consider I2(α,α′)− ⟨∇τSn(α
′
), τ − τ

′⟩. Define

ψn(τ ) = n−1

n∑
i=1

K2∑
k′=1

z
(2)
ik′

{
−τk′(yi − (η′)⊤x̃i)

2 + log τk′
}
.

Note that

I2(α,α
′)− ⟨∇τSn(α

′
), τ − τ

′⟩ =ψn(τ )− ψn(τ
′
)− ⟨∇ψn(τ

′
), τ − τ

′⟩

=2−1(τ − τ
′
)⊤∇2ψn(τ

′′
)(τ − τ

′
),

17



3.1 Proof of Theorem 2

with τ
′′
= tτ + (1− t)τ ′ for some t ∈ [0, 1]. It can be verified that


∂2ψn(τ

′′
)

∂τk′∂τk′′
=0, for k′ ̸= k

′′
,

∂2ψn(τ
′′
)

∂τ 2k′
=− n−1

n∑
i=1

z
(2)
ik′ (τ

′′

k′)
−2.

Thus, we have

I2(α,α
′)− ⟨∇τSn(α

′
), τ − τ

′⟩ ≤ −2−1 min
k′

(
n−1

n∑
i=1

z
(2)
ik′

)
min
k′
{(τ ′′

k′)
−2}∥τ − τ

′∥22.

(S3.8)

For simplicity, let ϵ̃i = yi − (η0)⊤x̃i. Obviously, ϵ̃i is from a normal distribution

with mean zero and precision τ 0k′ if z(2)ik′ = 1 for some k′. We now plug α∗ and α0 in

(S3.7). By the Central Limit Theory, there exists some constant 0 < c2 < 1/2 such

that (1 − c2)τ 0k′ ≤ τ ∗k′ ≤ (1 + c2)τ
0
k′ for each k′ when n is sufficiently large. One can

verify that

I1(α
∗,α0)

=− n−1
n∑

i=1

K2∑
k′=1

z
(2)
ik′ τ

∗
k′∥(η∗ − η0)⊤x̃i∥22

+ n−1
n∑

i=1

K2∑
k′=1

2z
(2)
ik′ (τ

∗
k′ − τ0k′)(yi − (η0)⊤x̃i)x̃

⊤
i (η

∗ − η0) + ⟨∇ηSn(α
0),η∗ − η0⟩

=− n−1
n∑

i=1

K2∑
k′=1

z
(2)
ik′ τ

∗
k′∥(η∗ − η0)⊤x̃i∥22 + n−1

n∑
i=1

K2∑
k′=1

2z
(2)
ik′ τ

∗
k′(yi − (η0)⊤x̃i)x̃

⊤
i (η

∗ − η0)

≤− n−1min
k′
{τ∗k′}(η∗ − η0)⊤X̃⊤X̃(η∗ − η0) +

K2∑
k′=1

2τ∗k′

(
n−1

n∑
i=1

z
(2)
ik′ ϵ̃ix̃

⊤
i (η

∗ − η0)

)
.
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3.1 Proof of Theorem 2

Note that

− n−1 min
k′
{τ ∗k′}(η∗ − η0)⊤X̃⊤X̃(η∗ − η0) ≤ −n−1c1 min

k′
{τ ∗k′}|G

(1)
min|∥η∗ − η0∥22

=− c1 min
k′
{τ ∗k′}min

k

(
n−1

n∑
i=1

z
(1)
ik

)
∥η∗ − η0∥22.

We derive a concentration bound for the random term {mink(n
−1
∑n

i=1 z
(1)
ik )}. For

simplicity, denote k∗ = argmink n
−1
∑n

i=1 z
(1)
ik . Applying Hoeffding’s inequality, we

have

P

(∣∣∣∣∣n−1

n∑
i=1

z
(1)
ik − E(z(1)ik )

∣∣∣∣∣ ≤ u

)
≥ 1− 2 exp(−2nu2), k = 1, . . . , K1,

which implies

∣∣∣∣∣n−1

n∑
i=1

z
(1)
ik − E(z(1)ik )

∣∣∣∣∣ ≤ ((2n)−1 log(2K1K2/δ1))
1/2,

with probability at least 1− δ1/(K1K2). Therefore, it holds that

P

(∣∣∣∣∣n−1

n∑
i=1

z
(1)
ik∗ − E(z(1)ik∗)

∣∣∣∣∣ ≤ ((2n)−1 log(2K1K2/δ1))
1/2

)
≥ 1− δ1/K2.

Note that for δ1 = (p +K1)K2/n, ((2n)−1 log(2K1K2/δ1))
1/2 → 0, and by Condition

(C3), E(z(1)ik∗) =
∑K2

k′=1 πk∗k′ = O(K−1
1 ). Moreover, as max{K1, K2}

√
p+K1K2 =

o(
√
n(log n)−1), there exists a constant c3 > 0 such that n−1

∑n
i=1 z

(1)
ik∗ ≥ c3/K1

with probability at least 1 − δ1/K2 for sufficiently large n. Furthermore, we have
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3.1 Proof of Theorem 2

mink′{τ ∗k′}mink

(
n−1

∑n
i=1 z

(1)
ik

)
≥ (1− c2)c3τminK

−1
1 with probability at least 1− δ1.

Moreover, we have

K2∑
k′=1

2τ ∗k′

(
n−1

n∑
i=1

z
(2)
ik′ ϵ̃ix̃

⊤
i (η

∗ − η0)

)
≤

K2∑
k′=1

2τ ∗k′

∥∥∥∥∥n−1

n∑
i=1

z
(2)
ik′ ϵ̃ix̃i

∥∥∥∥∥
2

∥∥η∗ − η0)
∥∥
2
.

Since ϵ̃i is sub-Gaussian with parameter τ−1
min, by Condition (C1), z(2)ik′ ϵ̃ix̃ij is also sub-

Gaussian with parameter max{M, 1}τ−1
min for j = 1, . . . , p + K1 and k′ = 1, . . . , K2.

Applying Hoeffding’s inequality, we have

P

(∣∣∣∣∣n−1

n∑
i=1

z
(2)
ik′ ϵ̃ix̃ij

∣∣∣∣∣ ≤ u

)
≥ 1− 2 exp

(
− τminnu

2

2max{M, 1}

)
, j = 1, . . . , p+K1,

which implies

∣∣∣∣∣n−1

n∑
i=1

z
(2)
ik′ ϵ̃ix̃ij

∣∣∣∣∣ ≤
(
2max{M, 1} log(2(p+K1)K2/δ1)

τminn

)1/2

, j = 1, . . . , p+K1,

with probability at least 1− δ1/((p+K1)K2). Therefore, it holds that

∥∥∥∥∥n−1

n∑
i=1

z
(2)
ik′ ϵ̃ix̃i

∥∥∥∥∥
2

≤ (p+K1)
1/2

(
2max{M, 1} log(2(p+K1)K2/δ1)

τminn

)1/2

,

with probability at least 1− δ1/K2. And thus, we have

K2∑
k′=1

2τ ∗k′

∥∥∥∥∥n−1

n∑
i=1

z
(2)
ik′ ϵ̃ix̃i

∥∥∥∥∥
2

≤ 2(1 + c2)τmaxι1,
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3.1 Proof of Theorem 2

with probability at least 1− δ1 and

ι1 = (p+K1)
1/2K2

(
2max{M, 1} log(2(p+K1)K2/δ1)

τminn

)1/2

.

As a result, it holds that

I1(α
∗,α0) ≤ −c1(1− c2)c3τminK

−1
1 ∥η∗ − η0∥22 + 2(1 + c2)τmaxι1∥η∗ − η0∥2, (S3.9)

with probability at least 1− 2δ1.

On the other hand, we plug α∗ and α0 in (S3.8). As τ
′′
= tτ ∗ + (1 − t)τ 0,

similarly, we have (τ
′′

k′)
−2 ≥ {(1 + c2)τ

0
k′}−2 when n is large enough. Thus, we have

I2(α
∗,α0) ≤ −2−1min

k′

{
(τ

′′
k′)

−2n−1
n∑

i=1

z
(2)
ik′

}
∥τ ∗ − τ 0∥22 + ⟨∇τSn(α

0), τ ∗ − τ 0⟩

≤ − 2−1min
k′

{
(τ

′′
k′)

−2n−1
n∑

i=1

z
(2)
ik′

}
∥τ ∗ − τ 0∥22

+ n−1
n∑

i=1

K2∑
k′=1

z
(2)
ik′ {1/τ

0
k′ − (yi − (η0)⊤x̃i)

2}(τ∗k′ − τ0k′)

≤− 2−1min
k′

{
(τ

′′
k′)

−2n−1
n∑

i=1

z
(2)
ik′

}
∥τ ∗ − τ 0∥22 + n−1

n∑
i=1

K2∑
k′=1

z
(2)
ik′ {E(ϵ̃

2
i )− ϵ̃2i }(τ∗k′ − τ0k′)

≤− 2−1min
k′

{
(τ

′′
k′)

−2n−1
n∑

i=1

z
(2)
ik′

}
∥τ ∗ − τ 0∥22 +

∥∥∥∥∥n−1
n∑

i=1

{E(ϵ̃2i )− ϵ̃2i }z
(2)
[i·]

∥∥∥∥∥
2

∥τ ∗ − τ 0∥2.

Similarly, we derive a concentration bound for mink′{(τ
′′

k′)
−2n−1

∑n
i=1 z

(2)
ik′ }, i.e.,

mink′{(τ
′′

k′)
−2n−1

∑n
i=1 z

(2)
ik′ } ≥ {(1 + c2)τmax}−2c3/K2 with probability at least 1− δ2

for sufficiently large n as ((2n)−1 log(2K2/δ2))
1/2 → 0 with δ2 = K2/n and Condition

(C3) E(z(2)ik∗) =
∑K1

k=1 πkk∗ = O(K−1
2 ).
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3.1 Proof of Theorem 2

We now consider n−1
∑n

i=1{E(ϵ̃2i ) − ϵ̃2i }z
(2)
ik′ for k′ = 1, . . . , K2. Since ϵ̃i is sub-

Gaussian with parameter τ−1
min, {E(ϵ̃2i ) − ϵ̃2i }z

(2)
ik′ is sub-exponential with parameter

16τ−1
min. By Bernstein’s inequality, it holds that

P

(∣∣∣∣∣n−1

n∑
i=1

{E(ϵ̃2i )− ϵ̃2i }z
(2)
ik′

∣∣∣∣∣ ≤ u

)
≥ 1− exp

{
−n
2
min

(
u2

(16τ−1
min)

2
,

u

16τ−1
min

)}
,

which implies

∣∣∣∣∣n−1

n∑
i=1

{E(ϵ̃2i )− ϵ̃2i }z
(2)
ik′

∣∣∣∣∣ ≤ 16τ−1
min max{(2n−1 log(K2/δ2))

1/2, 2n−1 log(K2/δ2)},

with probability at least 1− δ2/K2. Therefore, we have

∥∥∥∥∥n−1

n∑
i=1

{E(ϵ̃2i )− ϵ̃2i }z
(2)
[i·]

∥∥∥∥∥
2

≤ 16τ−1
minι2,

with probability at least 1−δ2 and ι2 = (K2)
1/2 max{(2n−1 log(K2/δ2))

1/2, 2n−1 log(K2/δ2)}.

As a result, it holds that

I2(α
∗,α0) ≤ −2−1{(1 + c2)τmax}−2c3K

−1
2 ∥τ ∗ − τ 0∥22 + 16τ−1

minι2∥τ ∗ − τ 0∥2, (S3.10)

with probability at least 1− 2δ2.

By the definition of α∗, one can verify that ∥α∗−α0∥2 = ξ/2. Combining (S3.9)
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3.1 Proof of Theorem 2

and (S3.10), we have

I1(α
∗,α0) + I2(α

∗,α0)

≤− c1(1− c2)c3τminK
−1
1 ∥η∗ − η0∥22 + 2(1 + c2)τmaxι1∥η∗ − η0∥2

− 2−1{(1 + c2)τmax}−2c3K
−1
2 ∥τ ∗ − τ 0∥22 + 16τ−1

minι2∥τ ∗ − τ 0∥2,

=− c̃1 min(K−1
1 , K−1

2 )(ξ/2)2 + (2(1 + c2)τmaxι1 + 16τ−1
minι2)(ξ/2),

with probability at least 1 − 2(δ1 + δ2), where c̃1 = min{c1(1 − c2)c3τmin, 2
−1{(1 +

c2)τmax}−2c3}. Based on the definition of ξ, we have ξ/2 ≥ ξ1 = c̃−1
1 max(K1, K2)(2(1+

c2)τmaxι1+16τ−1
minι2). Therefore, it holds that g(t∗∆̃α) = Sn(α

∗)−Sn(α
0) = I1(α

∗,α0)+

I2(α
∗,α0) ≤ 0 with probability at least 1− 2(δ1 + δ2).

Step 2: We prove the result in (ii). We first prove

Sn(α
0)− Sn(α

∗) ≤⟨∇Sn(α
∗),α0 −α∗⟩ = ⟨∇Sn(α

∗),−t∗(αor −α0)⟩, (S3.11)

with probability at least 1− (2δ1 + δ2).

Note that (1− c2)τ 0k′ ≤ τ ∗k′ ≤ (1 + c2)τ
0
k′ for sufficiently large n. Plugging α0 and
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3.1 Proof of Theorem 2

α∗ in (S3.7), we have

I1(α
0,α∗)− ⟨∇ηSn(α

∗),η0 − η∗⟩

≤ − n−1

n∑
i=1

K2∑
k′=1

z
(2)
ik′ τ

0
k′∥(η0 − η∗)⊤x̃i∥22

+ n−1

n∑
i=1

K2∑
k′=1

2z
(2)
ik′ (τ

0
k′ − τ ∗k′)(yi − (η∗)⊤x̃i)x̃

⊤
i (η

0 − η∗)

=− n−1

n∑
i=1

K2∑
k′=1

z
(2)
ik′ τ

0
k′∥(η0 − η∗)⊤x̃i∥22

+ n−1

n∑
i=1

K2∑
k′=1

2z
(2)
ik′ (τ

0
k′ − τ ∗k′)(yi − (η0)⊤x̃i + (η0 − η∗)⊤x̃i)x̃

⊤
i (η

0 − η∗)

=− n−1

n∑
i=1

K2∑
k′=1

z
(2)
ik′ (2τ

∗
k′ − τ 0k′)∥(η0 − η∗)⊤x̃i∥22

+ n−1

n∑
i=1

K2∑
k′=1

2z
(2)
ik′ (τ

0
k′ − τ ∗k′)(yi − (η0)⊤x̃i)x̃

⊤
i (η

0 − η∗)

≤− c1 min
k′
{2τ ∗k′ − τ 0k′}min

k

(
n−1

n∑
i=1

z
(1)
ik

)
∥η0 − η∗∥22

+

K2∑
k′=1

2|τ 0k′ − τ ∗k′ |

∥∥∥∥∥n−1

n∑
i=1

z
(2)
ik′ ϵ̃ix̃i

∥∥∥∥∥
2

∥η0 − η∗∥2.

Since mink′{2τ ∗k′ − τ 0k′}n−1
∑n

i=1 z
(1)
ik∗ ≥ (1 − 2c2)c3τmin/K1 with probability at least

1− δ1 for sufficiently large n and

K2∑
k′=1

2|τ 0k′ − τ ∗k′ |

∥∥∥∥∥n−1

n∑
i=1

z
(2)
ik′ ϵ̃ix̃i

∥∥∥∥∥
2

≤ 2c2τmaxι1,

with probability at least 1− δ1, it holds that

I1(α
0,α∗)−⟨∇ηSn(α

∗),η0−η∗⟩ ≤ −c1(1−2c2)c3K−1
1 τmin∥η0−η∗∥22+2c2τmaxι1∥η0−η∗∥2,
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3.1 Proof of Theorem 2

with probability at least 1− 2δ1. On the other hand, by (S3.8), it holds that

I2(α
0,α∗)− ⟨∇τSn(α

∗), τ 0 − τ ∗⟩ ≤ −2−1{(1 + c2)τmax}−2c3K
−1
2 ∥τ 0 − τ ∗∥22,

with probability at least 1− δ2. Therefore, we have

Sn(α
0)− Sn(α

∗)− ⟨∇Sn(α
∗),α0 −α∗⟩

≤ − c1(1− 2c2)c3K
−1
1 τmin∥η0 − η∗∥22 + 2c2τmaxι1∥η0 − η∗∥2

− 2−1{(1 + c2)τmax}−2c3K
−1
2 ∥τ 0 − τ ∗∥22

≤− c̃2 min(K−1
1 , K−1

2 )(ξ/2)2 + 2c2τmaxι1(ξ/2),

with probability at least 1 − (2δ1 + δ2), where c̃2 = min{c1(1 − 2c2)c3τmin, 2
−1{(1 +

c2)τmax}−2c3}. Therefore, for ξ/2 ≥ ξ2 = 2c̃−1
2 c2τmax max{K1, K2}ι1, it holds that

Sn(α
0)− Sn(α

∗) ≤ ⟨∇Sn(α
∗),α0 −α∗⟩ with probability at least 1− (2δ1 + δ2).

We next prove

Sn(α
or)− Sn(α

∗) ≤⟨∇Sn(α
∗),αor −α∗⟩ = ⟨∇Sn(α

∗), (1− t∗)(αor −α0)⟩, (S3.12)

with probability at least 1− (2δ1 + δ2).
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3.1 Proof of Theorem 2

Plugging αor and α∗ in (S3.7), we have

I1(α
or,α∗)− ⟨∇ηSn(α

∗),ηor − η∗⟩

≤ − n−1

n∑
i=1

K2∑
k′=1

z
(2)
ik′ τ

or
k′ ∥(ηor − η∗)⊤x̃i∥22

+ n−1

n∑
i=1

K2∑
k′=1

2z
(2)
ik′ (τ

or
k′ − τ ∗k′)(yi − (η0)⊤x̃i + (η0 − ηor)⊤x̃i + (ηor − η∗)⊤x̃i)x̃

⊤
i (η

or − η∗)

=− n−1

n∑
i=1

K2∑
k′=1

z
(2)
ik′ (2τ

∗
k′ − τ ork′ )∥(ηor − η∗)⊤x̃i∥22

+ n−1

n∑
i=1

K2∑
k′=1

2z
(2)
ik′ (τ

or
k′ − τ ∗k′)(η0 − ηor)⊤x̃ix̃

⊤
i (η

or − η∗)

+ n−1

n∑
i=1

K2∑
k′=1

2z
(2)
ik′ (τ

or
k′ − τ ∗k′)(yi − (η0)⊤x̃i)x̃

⊤
i (η

or − η∗)

≤− c1 min
k′
{2τ ∗k′ − τ ork′ }min

k

(
n−1

n∑
i=1

z
(1)
ik

)
∥ηor − η∗∥22

+

K2∑
k′=1

2|τ ork′ − τ ∗k′ |

∥∥∥∥∥n−1

n∑
i=1

z
(2)
ik′ (η

0 − ηor)⊤x̃ix̃
⊤
i

∥∥∥∥∥
2

∥ηor − η∗∥2

+

K2∑
k′=1

2|τ ork′ − τ ∗k′ |

∥∥∥∥∥n−1

n∑
i=1

z
(2)
ik′ ϵ̃ix̃i

∥∥∥∥∥
2

∥ηor − η∗∥2.

Similarly, it holds that

I1(α
or,α∗)− ⟨∇ηSn(α

∗),ηor − η∗⟩

≤ − c1(1− 3c2)c3τminK
−1
1 ∥ηor − η∗∥22 + o(1) + 4c2τmaxι1∥ηor − η∗∥2,

with probability at least 1− 2δ1. By (S3.8), we have

I2(α
or,α∗)− ⟨∇τSn(α

∗), τ or − τ ∗⟩ ≤ −2−1{(1 + c2)τmax}−2c3K
−1
2 ∥τ or − τ ∗∥22,
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3.1 Proof of Theorem 2

with probability at least 1− δ2. Thus, it holds that

Sn(α
or)− Sn(α

∗)− ⟨∇Sn(α
∗),αor −α∗⟩

≤ − c1(1− 3c2)c3τminK
−1
1 ∥ηor − η∗∥22 + 4c2τmaxι1∥ηor − η∗∥2

− 2−1{(1 + c2)τmax}−2c3K
−1
2 ∥τ or − τ ∗∥22

≤− c̃3 min(K−1
1 , K−1

2 )∥αor −α∗∥22 + 4c2τmaxι1∥αor −α∗∥2,

with probability at least 1 − (2δ1 + δ2), where c̃3 = min{c1(1 − 3c2)c3τmin, 2
−1{(1 +

c2)τmax}−2c3}. Therefore, for ξ/2 ≥ ξ3 = 4c̃−1
3 c2τmax max(K1, K2)ι1, it holds that

Sn(α
or)− Sn(α

∗) ≤ ⟨∇Sn(α
∗),αor −α∗⟩ with probability at least 1− (2δ1 + δ2).

As 0 < t∗ ≤ 1, by adding (S3.11) and (S3.12) together with proper scaling, we

have

t∗Sn(α
or) + (1− t∗)Sn(α

0) ≤ Sn(α
∗),

with probability at least 1− (4δ1 + 2δ2). Therefore, it holds that

g(t∗∆̃α) = Sn(α
∗)− Sn(α

0) ≥ t∗{Sn(α
or)− Sn(α

0)} = t∗g(∆̃α) ≥ 0,

with probability at least 1− (4δ1 + 2δ2). This completes the proof. □
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3.2 Proof of Theorem 3

3.2 Proof of Theorem 3

Proof. Note that

Q(β,Θ) =− L(β,Θ) +
2∑

m=1

∑
1≤i<j≤n

p(|θim − θjm|, λm, γm).

When the true group structures Z(1) and Z(2) are known, define T (1) : RK1 → Rn

satisfying T (1)(µ) = Z(1)µ, and T (2) : RK2 → Rn with T (2)(τ ) = Z(2)τ . Furthermore,

define T̃ (1) : Rn → RK1 satisfying T̃ (1)(θ[·1]) = {(Z(1))⊤Z(1)}−1(Z(1))⊤θ[·1], and T̃ (2) :

Rn → RK2 with T̃ (2)(θ[·2]) = {(Z(2))⊤Z(2)}−1(Z(2))⊤θ[·2].

By the results in Theorem 2, for any κ > 0, there exists a finite Mκ > 0 and a

finite Nκ > 0 such that for any n > Nκ,

P
(
∥((β̂or)⊤, (θ̂or

[·1])
⊤, (θ̂or

[·2])
⊤)− ((β0)⊤, (θ0

[·1])
⊤, (θ0

[·2])
⊤)∥∞ > Mκψn

)
< κ,

with

ψn = max(K1, K2)
√
n−1 log n

(√
(p+K1)K2

2 +
√
K2

)
.

Let ϕn =Mκψn. We now consider the neighborhood of ((β0)⊤, (θ0
[·1])

⊤, (θ0
[·2])

⊤), which

is defined as

A =
{
(β⊤,θ⊤

[·1],θ
⊤
[·2]) :

∥∥(β⊤,θ⊤
[·1],θ

⊤
[·2])− ((β0)⊤, (θ0

[·1])
⊤, (θ0

[·2])
⊤)
∥∥
∞
≤ ϕn

}
.

Denote the event {((β̂or)⊤, (θ̂or
[·1])

⊤, (θ̂or
[·2])

⊤) ∈ A} by F1, which satisfies P (F c
1) < κ

for n > Nκ with F c
1 being the complement of F1. For any θ[·m] ∈ Rn, let θ∗

[·m] =
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3.2 Proof of Theorem 3

T (m)(T̃ (m)(θ[·m])) for m = 1, 2.

We show that ((β̂or)⊤, (θ̂or
[·1])

⊤, (θ̂or
[·2])

⊤) is a strictly local minimizer of the objective

function with probability approaching 1 as n→∞ through two steps:

(i) On the event F1, it holds that Q(β,Θ∗) > Q(β̂or, Θ̂or) for any (β⊤,θ⊤
[·1],θ

⊤
[·2]) ∈

A and (β⊤, (θ∗
[·1])

⊤, (θ∗
[·2])

⊤) ̸= ((β̂or)⊤, (θ̂or
[·1])

⊤, (θ̂or
[·2])

⊤).

(ii) There is an event F2 such that P (F c
2) → 0 as n → ∞. On F1 ∩ F2, there is a

neighborhood of ((β̂or)⊤, (θ̂or
[·1])

⊤, (θ̂or
[·2])

⊤), denoted by An, such that Q(β,Θ) ≥

Q(β,Θ∗) for any (β⊤,θ⊤
[·1],θ

⊤
[·2]) ∈ An ∩ A when n is sufficiently large.

By the results in (i) and (ii), we have Q(β,Θ) > Q(β̂or, Θ̂or) for (β⊤,θ⊤
[·1],θ

⊤
[·2]) ∈ An∩

A and (β⊤, (θ∗
[·1])

⊤, (θ∗
[·2])

⊤) ̸= ((β̂or)⊤, (θ̂or
[·1])

⊤, (θ̂or
[·2])

⊤), thus ((β̂or)⊤, (θ̂or
[·1])

⊤, (θ̂or
[·2])

⊤)

is a strictly local minimizer of Q(β,Θ) on the event F1 ∩F2 with P (F1 ∩F2)→ 1 as

n→∞.

First, we prove the result in (i). We begin with showing
∑2

m=1

∑
1≤i<j≤n p(|θ∗im−

θ∗jm|, λm, γm) = Cn for any (β⊤,θ⊤
[·1],θ

⊤
[·2]) ∈ A, where Cn is a constant that does not

depend on (β⊤,θ⊤
[·1],θ

⊤
[·2]). Note that for any (β⊤,θ⊤

[·1],θ
⊤
[·2]) ∈ A,

|θ∗im − θ∗jm|+ ∥θ∗
[·m] − θ0

[·m]∥∞ ≥ |θ∗im − θ∗jm|+ |θ∗jm − θ0jm|

≥|θ∗im − θ0jm| = |θ∗im − θ0jm + θ0im − θ0im| ≥ |θ0im − θ0jm| − |θ∗im − θ0im|

≥|θ0im − θ0jm| − ∥θ∗
[·m] − θ0

[·m]∥∞,

(S3.13)
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3.2 Proof of Theorem 3

and

∥θ∗
[·m] − θ0

[·m]∥∞ =sup
k

∣∣∣∣∣∣∣
∑

i∈G(m)
k

(θim − θ0im)/|Gk|

∣∣∣∣∣∣∣ ≤ sup
k

sup
i∈G(m)

k

|θim − θ0im|

=∥θ[·m] − θ0
[·m]∥∞ ≤ ϕn.

(S3.14)

By (S3.13) and (S3.14), when i ∈ G(m)
k , j ∈ G(m)

k′ for some k ̸= k′, we have

|θ∗im − θ∗jm| ≥ |θ0im − θ0jm| − 2∥θ∗
[·m] − θ0

[·m]∥∞ ≥ bn − 2ϕn > aλm,

where the last inequality follows from the assumption that bn > aλm ≫ ψn. Hence, by

Condition (C4), we have
∑2

m=1

∑
1≤i<j≤n p(|θ∗im−θ∗jm|, λm, γm) = Cn, and Q(β,Θ) =

−L(β,Θ)+Cn, for all (β⊤,θ⊤
[·1],θ

⊤
[·2]) ∈ A. Because ((β̂or)⊤, (θ̂or

[·1])
⊤, (θ̂or

[·2])
⊤) is a local

minimizer of −L(β,Θ), we have Q(β,Θ∗) > Q(β̂or, Θ̂or) for any (β⊤,θ⊤
[·1],θ

⊤
[·2]) ∈ A

and (β⊤, (θ∗
[·1])

⊤, (θ∗
[·2])

⊤) ̸= ((β̂or)⊤, (θ̂or
[·1])

⊤, (θ̂or
[·2])

⊤).

Next, we prove the result in (ii). Based on the results in Theorem 2 and Condition

(C2), we have θ̂ori2 > τmin/2 for sufficiently large n. In addition, there exists a positive

sequence tn = o(1) such that θi2 > 0 for any (θ⊤
[·1],θ

⊤
[·2]) ∈ An with

An =
{
(θ⊤

[·1],θ
⊤
[·2]) :

∥∥∥(θ⊤
[·1],θ

⊤
[·2])− ((θ̂or

[·1])
⊤, (θ̂or

[·2])
⊤)
∥∥∥
∞
≤ tn

}
.

For (β⊤,θ⊤
[·1],θ

⊤
[·2]) ∈ An ∩ A, by Taylor’s expansion, we have

Q(β,Θ)−Q(β,Θ∗) =
∂Q(β, Θ̃)

∂(θ⊤
[·1],θ

⊤
[·2])

((θ⊤
[·1],θ

⊤
[·2])− ((θ∗

[·1])
⊤, (θ∗

[·2])
⊤))⊤,
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3.2 Proof of Theorem 3

with θ̃[·m] = ζθ[·m]+(1− ζ)θ∗
[·m] for some ζ ∈ (0, 1) and m = 1, 2. By (S3.14), it holds

that

∥θ̃[·m] − θ0
[·m]∥∞ ≤ ϕn. (S3.15)

Define

Γ1 =
∂L(β, Θ̃)

∂(θ⊤
[·1],θ

⊤
[·2])

((θ⊤
[·1],θ

⊤
[·2])− ((θ∗

[·1])
⊤, (θ∗

[·2])
⊤))⊤,

Γ2 =
∂
∑2

m=1

∑
1≤i<j≤n p(|θ̃im − θ̃jm|, λm, γm)

∂(θ⊤
[·1],θ

⊤
[·2])

((θ⊤
[·1],θ

⊤
[·2])− ((θ∗

[·1])
⊤, (θ∗

[·2])
⊤))⊤.

We first consider Γ1, which can be computed as

Γ1 =(w⊤
1 ,w

⊤
2 )(θ

⊤
[·1] − (θ∗

[·1])
⊤,θ⊤

[·2] − (θ∗
[·2])

⊤)⊤

=

K1∑
k=1

∑
i∈G(1)

k

w1i

(
θi1 −

∑
j∈G(1)

k
θj1

|G(1)k |

)
+

K2∑
k′=1

∑
i∈G(2)

k′

w2i

(
θi2 −

∑
j∈G(2)

k′
θj2

|G(2)k′ |

)

=

K1∑
k=1

∑
i,j∈G(1)

k

w1i(θi1 − θj1)
|G(1)k |

+

K2∑
k′=1

∑
i,j∈G(2)

k′

w2i(θi2 − θj2)
|G(2)k′ |

=

K1∑
k=1

∑
i,j∈G(1)

k ,i<j

(w1j − w1i)(θj1 − θi1)
|G(1)k |

+

K2∑
k′=1

∑
i,j∈G(2)

k′ ,i<j

(w2j − w2i)(θj2 − θi2)
|G(2)k′ |

≤|G(1)min|−1

K1∑
k=1

∑
i,j∈G(1)

k ,i<j

|w1j − w1i||θj1 − θi1|+ |G(2)min|−1

K2∑
k′=1

∑
i,j∈G(2)

k′ ,i<j

|w2j − w2i||θj2 − θi2|

≤ max
m=1,2

(
|G(m)

min |−1 max
i,j
|wmj − wmi|

) 2∑
m=1

∑
i<j,θ∗jm=θ∗im

|θjm − θim|,
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3.2 Proof of Theorem 3

with

w1 =
(
θ̃12(y1 − β⊤x1 − θ̃11), . . . , θ̃n2(yn − β⊤xn − θ̃n1)

)⊤
,

w2 =

(
1

2θ̃12
− (y1 − β⊤x1 − θ̃11)2/2, . . . ,

1

2θ̃n2
− (yn − β⊤xn − θ̃n1)2/2

)⊤

.

Recall that ϵ̃ = y −Xβ0 − θ0
[·1]. One can verify that for tn = o(1),

max
i,j
|w1j − w1i| ≤ 2∥w1∥∞ ≤ 2∥θ̃[·2]∥∞∥y −Xβ − θ̃[·1]∥∞

=2∥θ̃[·2] − θ0
[·2] + θ0

[·2]∥∞∥y −X(β − β0 + β0)− θ̃[·1] − θ0
[·1] + θ0

[·1]∥∞

≤2∥θ̃[·2] − θ0
[·2] + θ0

[·2]∥∞∥y −Xβ0 − θ0
[·1] −X(β − β0) + θ0

[·1] − θ̃[·1]∥∞

≤2(∥θ̃[·2] − θ0
[·2]∥∞ + ∥θ0

[·2]∥∞)(∥ϵ̃−X(β − β0) + θ0
[·1] − θ̃[·1]∥∞)

≤2(∥θ̃[·2] − θ0
[·2]∥∞ + ∥θ0

[·2]∥∞)(∥ϵ̃∥∞ + max
1≤i≤n

p∑
j=1

|xij|∥β − β0∥∞ + ∥θ0
[·1] − θ̃[·1]∥∞)

≤2(ϕn + τmax)(∥ϵ̃∥∞ +Mpϕn + ϕn),

where the last inequality is derived by (S3.15) and Condition (C1). Similarly, we have

max
i,j
|w2j − w2i| ≤ 2∥w2∥∞ ≤ 2 max

1≤i≤n

∣∣∣∣ 1

2θ̃i2
− (yi − β⊤xi − θ̃i1)2/2

∣∣∣∣
≤ ( min

1≤i≤n
|θ̃i2|)−1 ≤ ( min

1≤i≤n
|θ̃i2 − θ0i2 + θ0i2|)−1 ≤ ( min

1≤i≤n
|θ0i2| − max

1≤i≤n
|θ̃i2 − θ0i2|)−1

≤ (τmin − ϕn)
−1,

where the third inequality is derived from the fact that θ̃i2 > 0. Noting that {ϵ̃i, i =
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1, . . . , n} is sub-Gaussian with τ−1
min, we have

P
(
∥ϵ∥∞ > (4τ−1

min log n)
1/2
)
≤

n∑
i=1

P (|ϵi| > (4τ−1
min log n)

1/2) ≤ 2n−1.

Thus, there exists an event F2 such that P (F c
2) ≤ 2n−1, and on the event F2,

max
i,j
|w1j − w1i| ≤2(ϕn + τmax)((4τ

−1
min log n)

1/2 +Mpϕn + ϕn),

max
i,j
|w2j − w2i| ≤(τmin − ϕn)

−1.

Next, we consider Γ2. We have that for m = 1, 2,

∂
∑

1≤i<j≤n p(|θ̃im − θ̃jm|, λm, γm)
∂θlm

=
∑
j>l

∂p(|θ̃lm − θ̃jm|, λm, γm)
∂θlm

+
∑
j<l

∂p(|θ̃jm − θ̃lm|, λm, γm)
∂θlm

=
∑
j>l

p′(|θ̃lm − θ̃jm|, λm, γm)sign(θ̃lm − θ̃jm)−
∑
j<l

p′(|θ̃jm − θ̃lm|, λm, γm)sign(θ̃jm − θ̃lm)

=
∑
j>l

p′(|θ̃lm − θ̃jm|, λm, γm)sign(θ̃lm − θ̃jm) +
∑
j<l

p′(|θ̃lm − θ̃jm|, λm, γm)sign(θ̃lm − θ̃jm).
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3.2 Proof of Theorem 3

Therefore, it holds that

∂
∑

1≤i<j≤n p(|θ̃im − θ̃jm|, λm, γm)
∂θlm

(θlm − θ∗lm)

=
∑
j>l

p′(|θ̃lm − θ̃jm|, λm, γm)sign(θ̃lm − θ̃jm)(θlm − θ∗lm)

+
∑
j<l

p′(|θ̃lm − θ̃jm|, λm, γm)sign(θ̃lm − θ̃jm)(θlm − θ∗lm)

=
∑
j>l

p′(|θ̃lm − θ̃jm|, λm, γm)sign(θ̃lm − θ̃jm)(θlm − θ∗lm)

−
∑
l<j

p′(|θ̃lm − θ̃jm|, λm, γm)sign(θ̃lm − θ̃jm)(θjm − θ∗jm)

=
∑
j>l

p′(|θ̃lm − θ̃jm|, λm, γm)sign(θ̃lm − θ̃jm)
{
θlm − θ∗lm − (θjm − θ∗jm)

}
.

Thus, we have

Γ2 =
2∑

m=1

n∑
l=1

∑
j>l

p′(|θ̃lm − θ̃jm|, λm, γm)sign(θ̃lm − θ̃jm)
{
θlm − θ∗lm − (θjm − θ∗jm)

}
.

For some m, if there exists k ̸= k′ such that l ∈ G(m)
k , j ∈ G(m)

k′ , by (S3.15) and the

same line of (S3.13), we have

|θ̃lm − θ̃jm| ≥ |θ0lm − θ0jm| − 2∥θ̃[·m] − θ0
[·m]∥∞ ≥ bn − 2ϕn > aλm,
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3.2 Proof of Theorem 3

and thus p′(|θ̃lm − θ̃jm|, λm, γm) = 0. Therefore, it holds that

Γ2 =
2∑

m=1

∑
{j>l,θ∗lm=θ∗jm}

p′(|θ̃lm − θ̃jm|, λm, γm)sign(θ̃lm − θ̃jm) (θlm − θjm)

=
2∑

m=1

∑
{j>l,θ∗lm=θ∗jm}

p′(|θ̃lm − θ̃jm|, λm, γm) |θlm − θjm| ,

where the last equality is derived from the fact that θ̃lm − θ̃jm has the same sign as

θlm− θjm for j > l with θ∗lm = θ∗jm. Furthermore, by the same line of (S3.14), we have

∥θ∗
[·m]− θ̂or

[·m]∥∞ ≤ ∥θ[·m]− θ̂or
[·m]∥∞. Then one can verify that for j > l with θ∗lm = θ∗jm,

|θ̃lm − θ̃jm| = |θ̃lm − θ̃jm + θ∗jm − θ∗lm| ≤ |θ̃lm − θ∗lm|+ |θ̃jm − θ∗jm| ≤ 2∥θ̃[·m] − θ∗
[·m]∥∞

≤2∥θ[·m] − θ∗
[·m]∥∞ ≤ 2(∥θ[·m] − θ̂or

[·m]∥∞ + ∥θ∗
[·m] − θ̂or

[·m]∥∞) ≤ 4∥θ[·m] − θ̂or
[·m]∥∞ ≤ 4tn.

(S3.16)

As a result, for tn = o(1), by the concavity of the penalty function and Condition

(C4), we have

Γ2 ≥
2∑

m=1

∑
{j>l,θ∗lm=θ∗jm}

λm|θlm − θjm|.

Note that by Condition (C3), we have |G(m)
min | = O(n/Km). Combining with the

assumption max{K1, K2}
√
p+K1K2 = o(

√
n(log n)−1), it holds that |G(m)

min |−1p =

o(1). As λm ≫ ψn ≫ |G(m)
min |−1pϕn and λ≫ ψn ≫ |G(m)

min |−1(log n)1/2, on the event F2,
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3.3 Proof of Theorem 4

we have for (β⊤,θ⊤
[·1],θ

⊤
[·2]) ∈ An ∩ A,

Q(β,Θ)−Q(β,Θ∗) = Γ2 − Γ1

≥
2∑

m=1

∑
{j>l,θ∗lm=θ∗jm}

{
λm − max

m=1,2

(
|G(m)

min |−1 max
i,j
|wmj − wmi|

)}
|θlm − θjm| > 0,

for sufficiently large n. This completes the proof. □

3.3 Proof of Theorem 4

Proof. The proof of Conclusion (1) in Theorem 4 is the same as that of Theorem 2 by

letting K1 = K2 = 1, which is omitted here. The proof of Conclusion (2), as detailed

below, follows a similar procedure as that of Theorem 3.

Let T (m) : R → Im for m = 1, 2 be the mapping such that T (1)(µ) = 1nµ

and T (2)(τ) = 1nτ . Let T̃ (m) : Rn → R for m = 1, 2 be the mapping such that

T̃ (1)(θ[·1]) = n−1
∑n

i=1 θi1 and T̃ (2)(θ[·2]) = n−1
∑n

i=1 θi2.

Consider the neighborhood of ((β0)⊤, (θ0
[·1])

⊤, (θ0
[·2])

⊤), which is defined as

A =
{
(β⊤,θ⊤

[·1],θ
⊤
[·2]) :

∥∥(β⊤,θ⊤
[·1],θ

⊤
[·2])− ((β0)⊤, (θ0

[·1])
⊤, (θ0

[·2])
⊤)
∥∥
∞
≤Mκψn

}
,

with ψn =
√

(p+ 1)n−1 log n +
√
n−1 log n. Let ϕn = Mκψn. By Conclusion (1) of

Theorem 4, the event F1 = {((β̂or)⊤, (θ̂or
[·1])

⊤, (θ̂or
[·2])

⊤) ∈ A} satisfies P (F c
1) < κ for

n > Nκ . For any θ[·m] ∈ Rn, let θ∗
[·m] = T (m)(T̃ (m)(θ[·m])),m = 1, 2.

We prove the conclusion through the same two steps as those in Theorem 3. We
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3.3 Proof of Theorem 4

first prove (i). Note that

2∑
m=1

∑
1≤i<j≤n

p(|θ∗im − θ∗jm|, λm, γm) =
2∑

m=1

∑
1≤i<j≤n

p(|θ̂orim − θ̂orjm|, λm, γm) = 0.

By the definition of ((β̂or)⊤, (θ̂or
[·1])

⊤, (θ̂or
[·2])

⊤), we have Q(β,Θ∗) > Q(β, Θ̂or) for any

(β⊤,θ⊤
[·1],θ

⊤
[·2]) ∈ A and (β⊤, (θ∗

[·1])
⊤, (θ∗

[·2])
⊤) ̸= ((β̂or)⊤, (θ̂or

[·1])
⊤, (θ̂or

[·2])
⊤).

Next, we prove the result in (ii). Based on the results in Conclusion (1), we

have θ̂ori2 > τ 0/2 for sufficiently large n. In addition, there exists a positive sequence

tn = o(1) such that θi2 > 0 for any (θ⊤
[·1],θ

⊤
[·2]) ∈ An with

An =
{
(θ⊤

[·1],θ
⊤
[·2]) :

∥∥∥(θ⊤
[·1],θ

⊤
[·2])− ((θ̂or

[·1])
⊤, (θ̂or

[·2])
⊤)
∥∥∥
∞
≤ tn

}
.

For (β⊤,θ⊤
[·1],θ

⊤
[·2]) ∈ An ∩ A, by Taylor’s expansion, we have

Q(β,Θ)−Q(β,Θ∗) = Γ1 + Γ2,

with Γ1 and Γ2 defined in Theorem 3. Note that Γ1 can be computed as

Γ1 =(w⊤
1 ,w

⊤
2 )(θ

⊤
[·1] − (θ∗

[·1])
⊤,θ⊤

[·2] − (θ∗
[·2])

⊤)⊤

=n−1

{
n∑

i=1

n∑
j=1

w1i (θi1 − θj1) +
n∑

i=1

n∑
j=1

w2i (θi2 − θj2)

}

≤n−1

(∑
i<j

|w1j − w1i||θj1 − θi1|+
∑
i<j

|w2j − w2i||θj2 − θi2|

)
.

By the proof of Theorem 3, there exists an event F2 such that P (F c
2) → 0, and on
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3.3 Proof of Theorem 4

the event F2, we have

max
i,j
|w1j − w1i| ≤2(ϕn + τ 0){(4(τ 0)−1 log n)1/2 +Mpϕn + ϕn},

max
i,j
|w2j − w2i| ≤(τ 0 − ϕn)

−1.

Next, we consider Γ2. It holds that for tn = o(1),

Γ2 =
2∑

m=1

∑
j>l

p′(|θ̃lm − θ̃jm|, λm, γm)sign(θ̃lm − θ̃jm)
[
θlm − θ∗lm − (θjm − θ∗jm)

]
=

2∑
m=1

∑
j>l

p′(|θ̃lm − θ̃jm|, λm, γm) |θlm − θjm| ≥
2∑

m=1

∑
j>l

λm|θlm − θjm|.

By the assumption p = o(n(log n)−1), it holds that n−1p = o(1). As λm ≫ ψn ≫

n−1pϕn and λ≫ ψn ≫ n−1(log n)1/2, on the event F2, when n is sufficiently large, it

holds that for (β⊤,θ⊤
[·1],θ

⊤
[·2]) ∈ An ∩ A,

Q(β,Θ)−Q(β,Θ∗) = Γ2 − Γ1

≥
2∑

m=1

∑
j>l

(
λm − n−1 max

{
max
i,j
|w1j − w1i|,max

i,j
|w2j − w2i|

})
|θlm − θjm| > 0.

This completes the proof. □
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4. Additional numerical results

4.1 Results of clustering analysis

We use the Rand Index measure to evaluate the performance of clustering. A pair of

instances is true positive if they are from the same component and are also assigned

to the same cluster. A pair of instances is true negative if they are from different

components and are also assigned to different clusters. The Rand Index (RI) is defined

as

RI = nTP + nTN

n(n− 1)/2
,

where nTP is the number of true positive pairs and nTN is the number of true negative

pairs. The Rand Index lies between 0 and 1, and a higher value is preferred. Table

S1 reports the average value and standard deviation of the Rand Index for clustering

means and precisions, respectively. In Scenario 1, Hard-GMM, SCAD-GMM, and

SubAna can always correctly cluster means. The proposed methods outperform the

EM-based methods FlexMix and MS-GMM in clustering precisions. In Scenario 2, our

method also shows great advantages in clustering. We also note that the clustering

accuracy of FlexMix or MS-GMM is larger in Scenario 2 than that in Scenario 1, while

the former is a much more complicated case. As FlexMix and MS-GMM assume that

the means and precisions share the same structure, the heterogeneity among means

can improve the clustering ability of the two methods, which is the case in Scenario

2.
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4.2 Plots of relative residuals

Table S1: The average value and standard deviation of the Rand Index for clustering
means and precisions over 100 replications.

Hard-GMM SCAD-GMM SubAna FlexMix MS-GMM
Scenario 1

Mean 10 10 10 0.5850.165 0.5470.171

Precision 0.8490.091 0.8380.086 – 0.6800.116 0.6300.109

Scenario 2
Mean 0.9100.028 0.9090.038 0.8950.048 0.8780.077 0.8700.073

Precision 0.8480.040 0.8460.045 – 0.7720.040 0.7920.061

4.2 Plots of relative residuals

Figure S1: The primal and dual relative residuals against the number of iterations by
Hard-GMM for 20 simulated datasets under Scenario 1 (after 200 iterations). Each
curve represents one dataset.
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4.3 Illustration on initialization

Figure S2: Average curves for the primal and dual relative residuals against the
number of iterations with different values of γ by SCAD-GMM over 100 repetitions
under Scenario 1.

4.3 Illustration on initialization

We use one simulated dataset under Scenario 1 to illustrate how the initialization

procedure works. Figure S3 shows the responses, errors, initial points, and final

estimates by Hard-GMM. As one can see, there is no clear pattern in the responses.

The errors, which are unobserved, are centered around 0 with some points close to the

centroid and others diversely distributed. In the initialization procedure, the ridge

penalty shrinks the differences among means and precisions, but it does not lead to

sparsity. We then cluster the observations into ⌊n1/2⌋ subgroups based on the ridge

estimators. In Figure S3, the structures of initial points are clearer than those of the

original observations. The initial points for means become more compact and those

for precisions are separately distributed. After we apply Hard-GMM, the structures

of means and precisions are identified as shown in the right panel in Figure S3. Figure

S4 shows the results for one dataset under Scenario 2.
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4.3 Illustration on initialization

Figure S3: The responses, errors (unobserved), initial points, and estimates by Hard-
GMM for one dataset under Scenario 1.

Figure S4: The responses, errors (unobserved), initial points, and estimates by SCAD-
GMM for one dataset under Scenario 2.
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4.4 Application to the Gold Mine Sampling data

Figure S5: Sequence of the log of the ratio of samples in the Gold Mine Sampling
data.

4.4 Application to the Gold Mine Sampling data

African gold miners extract samples from sections of ore on the basis of face sampling

and submit them for chemical assay to check their gold concentrations. As a quality

control measure, supervisors then randomly select some locations that have already

been sampled by gold miners and cut fresh samples next to the spot, where the gold

concentrations are also measured later. In this way, we have several pairs of samples

and gold concentration, by the gold miners and supervisors respectively. To measure

whether the operation of gold miners is effective, the log of the ratio of the gold

concentration of the original sampler to that of the supervisor is calculated, which

approximately follows a Gaussian mixture distribution. Rowland and Sichel (1961)

provided several such datasets, and we focus on the one that is available in Jandhyala

et al. (2002). In this dataset, there are a total of 157 observations, where the sequence

of the log of the ratio of samples is shown in Figure S5.

We apply Hard-GMM and SCAD-GMM to this dataset by fitting a null regression
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4.4 Application to the Gold Mine Sampling data

model for the observations. The SubAna, FlexMix, and MS-GMM methods are also

implemented for comparisons. Table S2 shows the estimated values of K1, K2, µ, and

(τ )−1/2, where the latter two are the distinct values in means and standard deviations.

The sizes of subgroups of means and precisions, denoted by |Ĝ(1)| and |Ĝ(2)|, are also

presented. By the Hard-GMM and SCAD-GMM methods, we obtain K̂1 = 1 and

K̂2 = 2. The result corresponds to the sequence in Figure S5, where the first part

possesses a relatively large volatility and the second part has a smaller variance. Such

an increase in precision may indicate a highly desirable improvement in gold mining

quality, perhaps caused by gaining knowledge and learning skills.

To compare the performances of various methods in clustering, we calculate the

generalized Dunn (GD) index (Bezdek and Pal, 1998),

GD = min
k ̸=k′

okk′/(2max
k
hk),

where okk′ is the maximum distance between two samples from different clusters, and

hk is the average distance of all samples in the k-th cluster to its centroid. The GD

index quantifies the ratio of between-clusters and within-groups distances, for which

a larger value indicates better performance in clustering. The values of the GD index

for Hard-GMM, SCAD-GMM, FlexMix, and MS-GMM are 1.738, 1.715, 1.279, and

1.212, respectively, indicating the proposed method performs much better than the

other approaches.
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Table S2: Estimated values of K1, K2, µ, and (τ )−1/2, and the sizes of subgroups
in means and precisions, respectively denoted by |Ĝ(1)| and |Ĝ(2)|, for the Gold Mine
Sampling data.

K̂1 K̂2 µ̂ |Ĝ(1)| (τ̂ )−1/2 |Ĝ(2)|

Hard-GMM 1 2 -0.014 157 (0.876, 0.244) (58, 99)
SCAD-GMM 1 2 -0.015 157 (0.895, 0.206) (53, 104)
SubAna 1 – 0.003 157 – –
FlexMix 2 2 (0.102, -0.032) (20, 137) (0.819, 0.107) (20, 137)
MS-GMM 2 2 (0.153, -0.072) (16, 141) (1.012, 0.323) (16, 141)
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