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A Proofs

A.1 Proof of Proposition 1

First, we show the first and third assertions in Proposition 1. Let α be a vector that satisfies

E(Y ×(k) α
T | X) = E(Y ×(k) α

T) a.s., which is further equivalent to E(αTY(k) | X) =

αTµ(k) a.s. For k = 1, . . . ,m, we first show that α is in the null space of span(M (k)(Y | X)).

Note that

M (k)(Y | X)α = −E
[
E
{
(Y(k) − µ(k))(α

TY ′

(k) − αTµ(k))
T | X,X

′
}
∥X −X

′∥
]
= 0,

and αTM (k)(Y | X)α = 0 which implies M (k)(Y | X) is singular and α is in its null space.

We next show that, if α is in the null space of span(M (k)(Y | X)), then E(αTY(k) |

X) = αTµ(k) a.s. Since M (k)(Y | X) is positive semidefinite and α is in the null space, we

have αTM (k)(Y | X)α = MDD2(αTY(k) | X) = 0. This is equivalent to E(αTY(k) | X) =

αTµ(k) a.s., and E(Y ×(k) α
T | X) = E(Y ×(k) α

T) a.s., which holds for all k = 1, . . . ,m.

Thus, we have E(Y ×(k) Qk | X) = E(Y ×(k) Qk) a.s. for all k = 1, . . . ,m, where Qk =

βk,0β
T
k,0, βk,0 is a basis that constructs E⊥

k . Also, we obtain that dk = rank{M (k)(Y | X)}

for all k = 1, . . . ,m.
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Next, we show the second assertion in Proposition 1. Let α ∈ span
{
M (k) (Y | X)

}⊥
=

E⊥
k , i.e, αTM (k)(Y | X)α = 0. By the first assertion in Proposition 1, this is equivalent to

E(Y ×(k) α
T | X) = E(Y ×(k) α

T) a.s.

Note that this is further identical to

E(αTY(k),j | X) = E(αTY(k),j) a.s., for all j = 1, . . . ,
∏
l ̸=k

rl (S1)

Moreover, (S1) is equivalent to the following by Theorem 1 in Lee and Shao (2018).

α ∈ span
{
M
(
Y(k),j | X

)}⊥ for all j = 1, . . . ,
∏
l ̸=k

rl

Therefore, we have

Ek = span
{
M (k)(Y | X)

}
=
∑
j

span
{
M
(
Y(k),j | X

)}
,

which holds for any k = 1, . . . ,m. This completes the proof of Proposition 1. □

A.2 Proof of Theorem 1

For any k = 1, . . . ,m, we first show that∥∥∥M̂ (k)(Y | X)−M (k)(Y | X)
∥∥∥2
2
= Op(n

−1). (S2)

For any k = 1, . . . ,m, we have∥∥∥M̂ (k)(Y | X)−M (k)(Y | X)
∥∥∥
2
≤
∥∥∥M̂ (k)(Y | X)−M (k)(Y | X)

∥∥∥
F
.

Recall that

M̂ (k)(Y | X) =
[(

M̂ (k)(Y | X)
)
hl

]rk
h,l=1

=
−1

n2

∑
s,t

{
(Ys)(k)−Y(k)

}{
(Yt)(k)−Y(k)

}T∥Xs−Xt∥.
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For the ease of notation, we denote the h-th row of the s-th observation of Y(k) as (Ys)h·,

the sample mean of the h-th row of Y(k) as Yh, and µh = E{(Ys)h·}. For any (h, l), we can

rewrite
(
M̂ (k)(Y | X)

)
hl

as

(
M̂ (k)(Y | X)

)
hl

=
(n− 1)

n
{(Un1)hl + (Un2)hl + (Un3)hl + (Un4)hl} ,

where

(Un1)hl =
−1(
n
2

)∑
s<t

{(Ys)h· − µh}{(Yt)l· − µl}T∥Xs −Xt∥,

(Un2)hl =
−1(
n
2

)∑
s<t

{(Ys)h· − µh}(µl − Y l)
T∥Xs −Xt∥,

(Un3)hl =
−1(
n
2

)∑
s<t

(µh − Yh){(Yt)l· − µl}T∥Xs −Xt∥,

(Un4)hl =
−1(
n
2

)∑
s<t

(µh − Yh)(µl − Y l)
T∥Xs −Xt∥.

Note that (Un1)hl is a second-order U-statistic which has a form of

(Un1)hl =
1(
n
2

)∑
s<t

H̃(Zs,Zt), H̃(Zs,Zt) =
−1

2!

(s,t)∑
(q,r)

{(Yq)h·−µh}{(Yr)l·−µl}T∥Xq−Xr∥,

where Zs = (Ys, Xs) and
∑(s,t)

(q,r) denotes the summation over all permutations of the 2-tuple

of indices (s, t).

Under the assumptions that E(∥X−µX∥2∥Y(k)−µ(k)∥2F ) < ∞ and E(∥X∥2+∥Y∥2F ) <

∞, we have E{H̃(Z,Z ′
)2} < ∞ and notice that E{(Un1)hl} =

(
M (k)(Y | X)

)
hl

. Then by

applying Lemma 5.2.1.A (page 183) in Serfling (1980) to (Un1)hl, we obtain

∣∣(Un1)hl −
(
M (k)(Y | X)

)
hl

∣∣2 = Op(n
−1).

Also, due to the fact that ∥µh − Yh∥2 = Op(n
−1) for h = 1, . . . , rk, we have (Unj)hl =

Op(n
−1/2), j = 2, 3, 4, h, l = 1, . . . , rk. Hence, we have
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∥∥∥M̂ (k)(Y | X)−M (k)(Y | X)
∥∥∥2
F

≤
rk∑

h,l=1

∣∣∣(M̂ (k)(Y | X)
)
hl
−
(
M (k)(Y | X)

)
hl

∣∣∣2 = Op(n
−1) (S3)

which implies (S2).

Recall that {λ(k)
j , γ

(k)
j }rkj=1 are the eigenvalues and eigenvectors of M(k)(Y | X) and

{λ̂(k)
j , γ̂

(k)
j }rkj=1 are the sample counterparts. For the ease of notation, we shall drop the

index (k) and denote {λj, γj}rkj=1 as the eigenvalues and eigenvectors of M (k)(Y | X) and

{λ̂j, γ̂j}rkj=1 as the sample counterparts. Next, we use Lemma A.1. in Kneip and Utikal

(2001) to show that

∥γ̂j − γj∥ = Op(n
−1/2) for j = 1, . . . , dk.

By applying part (b) of Lemma A.1. in Kneip and Utikal (2001), we have

γ̂j − γj = −

{∑
h̸=j

1

λh − λj

γhγ
T

h

}(
M̂ (k)(Y | X)−M (k)(Y | X)

)
γj +R1,

where

∥R1∥2 ≤
6∥M̂ (k)(Y | X)−M (k)(Y | X)∥22
minλ∈{λ1,...,λrk

},λ ̸=λj
|λ− λj|2

= Op(n
−1).

By using (S2), ∥∥∥∥∥−
{∑

h̸=j

1

λh − λj

γhγ
T

h

}(
M̂ (k)(Y | X)−M (k)(Y | X)

)
γj

∥∥∥∥∥
2

=
∑
h̸=j

{
γT
h

(
M̂ (k)(Y | X)−M (k)(Y | X)

)
γj

}2

(λh − λj)2
= Op(n

−1).

Hence, we have

∥γ̂j − γj∥ = Op(n
−1/2) for j = 1, . . . , dk. (S4)

Note that (S4) holds for any k = 1, . . . ,m. This completes the proof of Theorem 1. □
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A.3 Proof of Theorem 2

We adopt similar arguments as the proof of Theorem 1 to prove Theorem 2. For any k =

1, . . . ,m, we have∥∥∥M̂ (k)(Y | X)−M (k)(Y | X)
∥∥∥2
2
≤
∥∥∥M̂ (k)(Y | X)−M (k)(Y | X)

∥∥∥2
F

≤
rk∑

h,l=1

∣∣∣(M̂ (k)(Y | X)
)
hl
−
(
M (k)(Y | X)

)
hl

∣∣∣2 , (S5)

where
(
M̂ (k)(Y | X)

)
hl
= (n−1)

n
{(Un1)hl + (Un2)hl + (Un3)hl + (Un4)hl} and {(Uni)hl}4i=1

are as defined in the proof of Theorem 1.

Under the assumptions that E(∥X−µX∥2∥Y(k)−µ(k)∥2F ) < ∞ and E(∥X∥2+∥Y∥2F ) <

∞, the following remains valid after applying Lemma 5.2.1.A (page 183) in Serfling (1980)

to (Un1)hl. ∣∣(Un1)hl −
(
M (k)(Y | X)

)
hl

∣∣2 = Op(n
−1). (S6)

Note that the dominant term of (Un2)hl is a third-order U-statistics, i.e.,

(Un2)hl = O(n−3)
∑

s<t<w

H(Zs,Zt,Zw) +Op(n
−1),

where H(Zs,Zt,Zw) =
−1
3!

∑(s,t,w)
(q,r,e) {(Yq)h· − µh}{(Yr)l· − µl}T∥Xq −Xe∥. By using the

similar arguments in (S6) under the assumption that E(∥X−µX∥2∥Y−µ∥2F ) < ∞, E(∥X−

µX∥∥Y −µ∥2F ) < ∞ and E(∥X∥2+∥Y∥2F ) < ∞, we have (Un2)hl = Op(n
−1/2). Similarly,

we obtain (Unj)hl = Op(n
−1/2), j = 3, 4, h, l = 1, . . . , rk. Thus, by (S5), we have∥∥∥M̂ (k)(Y | X)−M (k)(Y | X)

∥∥∥2
2

≤
rk∑

h,l=1

∣∣∣(M̂ (k)(Y | X)
)
hl
−
(
M (k)(Y | X)

)
hl

∣∣∣2 = Op(r
2
kn

−1). (S7)
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By Lemma A.1. in Kneip and Utikal (2001), we have

γ̂j − γj = −

{∑
h̸=j

1

λh − λj

γhγ
T

h

}(
M̂ (k)(Y | X)−M (k)(Y | X)

)
γj +R1,

where R1 is the remainder term such that ∥R1∥2 →p 0 under the assumption that r2kn
−1 → 0

as n → ∞. Note that the first term in the above equation is equivalent to∥∥∥∥∥−
{∑

h̸=j

1

λh − λj

γhγ
T

h

}(
M̂ (k)(Y | X)−M (k)(Y | X)

)
γj

∥∥∥∥∥
2

=
∑
h̸=j

{
γT
h

(
M̂ (k)(Y | X)−M (k)(Y | X)

)
γj

}2

(λh − λj)2
= Op(r

2
kn

−1).

Therefore, we have

∥γ̂j − γj∥ →p 0 for j = 1, . . . , dk. (S8)

Note that (S8) holds for any k = 1, . . . ,m. This completes the proof of Theorem 2. □

A.4 Proof of Theorem 3

Note that (S3) holds for k = 1, . . . ,m. Then with the conditions that c1n → 0, c2n → 0,

c1nc2nn → ∞, 0 < τ < 1, and rk, k = 1, . . . ,m are fixed, we apply Theorem 2.1 (i) in

Zhu, Guo, Wang, and Zhu (2020) and obtain the consistency result for k = 1, . . . ,m. This

completes the proof of Theorem 3. □

A.5 Proof of Theorem 4

Based on the results in Székeley and Rizzo (2014), trace
{
αT
kM̃

(k)(Y | X)αk

}
is an unbi-

ased estimator of trace
{
αT
kM

(k)(Y | X)αk

}
, and it is a fourth-order U-statistic, which has

the form of

trace
{
αT

kM̃
(k)(Y | X)αk

}
=

∑
h<l<q<r

H(Zh,Zl,Zq,Zr),
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H(Zh,Zl,Zq,Zr) =
1

4!

(h,l,q,r)∑
(s,t,u,v)

{
qk∑
i=1

αT

k,i(astbuv + astbst − astbsu − astbtv)αk,i

}
,

where αk,i is the i-th column of αk,
∑(h,l,q,r)

(s,t,u,v) denotes the summation over all permutations

of the 4-tuple of indices (h, l, q, r). By the calculations following Zhang, Yao, and Shao

(2018) and under the null hypothesis, we have E
{
H(Z,Z ′

,Z ′′
,Z ′′′

) | Z = z
}

= 0, and

E
{
H(Z,Z ′

,Z ′′
,Z ′′′

) | Z = z,Z ′
= z

′}
= U(x, x

′
)V (y, y

′
)/6, for z = (x, y) and z

′
=

(x
′
, y

′
). Under the null and the assumptions that E(∥X∥2 + ∥Y∥2F ) < ∞ and E(∥X −

µX∥2∥Y − µY∥2F ) < ∞, we have E[H(Zh,Zl,Zq,Zr)
2] < ∞. Therefore, we obtain

Tn →D

∞∑
l=1

νl(G
2
l − 1),

by applying Theorem 5.5.2 in Serfling (1980).

On the other hand, when the null hypothesis does not hold, we apply Hoeffding decom-

position and have

trace
{
αT

kM̃
(k)(Y | X)αk

}
− trace

{
αT

kM
(k)(Y | X)αk

}
=

2

n

n∑
h=1

[
K(Zh)− trace

{
αT

kM
(k)(Y | X)αk

}]
+R2,

where R2 is asymptotically negligible. Since we have E[H(Zh,Zl,Zq,Zr)
2] < ∞ under

the assumptions that E(∥X∥2+∥Y∥2F ) < ∞ and E(∥X−µX∥2∥Y−µY∥2F ) < ∞, we apply

Theorem 5.5.1 in Serfling (1980) and obtain

√
n
[
n−1Tn − trace

{
α⊤
k M

(k)(Y | X)αk

}]
→D N(0, 4σ2),

where σ2 = var(K(Z)). This completes the proof of Theorem 4. □

A.6 Proof of Theorem 5

We first recall the definition of the bootstrap order defined in Chang and Park (2003) and Li,

Hsiao, and Zinn (2003). Let T ∗
n be a bootstrap statistic that depends on the random sample
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(Zj)
n
j=1. Denote T ∗

n = o∗p(1) a.s. if P∗(|T ∗
n | > ϵ) → 0 a.s., for any ϵ > 0, where P∗ is the

conditional probability given (Zj)
n
j=1. Furthermore, denote T ∗

n = O∗
p(1) a.s. if for every

ϵ > 0, there exists a constant M > 0, such that for large n, P∗(|T ∗
n | > M) < ϵ a.s.

Recall that J(Zh,Zg) = U(Xh, Xg)V (Yh,Yg). We first show that

1

(n− 3)

∑
h̸=g

Ãhg

(∑
i

αT

k,iB̃hgαk,i

)
ηhηg =

1

(n− 3)

∑
h̸=g

J(Zh,Zg)ηhηg + o∗p(1) a.s. (S9)

We next show the following, which implies (S9).

var∗

[
1

(n− 3)

∑
h̸=g

{
Ãhg

(∑
i

αT

k,iB̃hgαk,i

)
− J(Zh,Zg)

}
ηhηg

]

=
1

(n− 3)2

∑
h̸=g

{
Ãhg

(∑
i

αT

k,iB̃hgαk,i

)
− J(Zh,Zg)

}2

→a.s. 0, (S10)

where var∗ denotes the conditional variance given {Zh,Zg}.

For the ease of notation, write Bhg =
(∑

i α
T
k,iB̃hgαk,i

)
, Uhg = U(Xh, Xg), and Vhg =

V (Yh,Yg). We have that

O(n−2)
∑
h̸=g

(ÃhgBhg − UhgVhg)
2

≤ O(n−2)
∑
h̸=g

(Ãhg − Uhg)
2(Bhg − Vhg)

2 +O(n−2)
∑
h̸=g

U2
hg(Bhg − Vhg)

2

+ O(n−2)
∑
h̸=g

(Ãhg − Uhg)
2V 2

hg

≤ O(n−2)

{∑
h̸=g

(Ãhg − Uhg)
4

}1/2{∑
h̸=g

(Bhg − Vhg)
4

}1/2

+ O(n−2)

(∑
h̸=g

U4
hg

)1/2{∑
h̸=g

(Bhg − Vhg)
4

}1/2

+ O(n−2)

(∑
h̸=g

V 4
hg

)1/2{∑
h̸=g

(Ãhg − Uhg)
4

}1/2

.
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Note that E(∥Y∥8F + ∥X∥4) < ∞ and αk is a fixed matrix. Thus, we have

1

n2

∑
h̸=g

U4
hg →a.s. E(U4

12),
1

n2

∑
h̸=g

V 4
hg →a.s. E(V 4

12).

We can further show that

1

n2

∑
h̸=g

(Ãhg − Uhg)
4 →a.s. 0 (S11)

1

n2

∑
h̸=g

(Bhg − Vhg)
4 →a.s. 0 (S12)

We first prove (S12). After some direct calculations, we have

1

n2

∑
h̸=g

(Bhg − Vhg)
4 ≤ C

n2

∑
h̸=g

{ 1

n

n∑
s=1

∑
i

αT

k,i(bhs − E(bhs | Yh))αk,i

}4

+

{
1

n2

∑
s ̸=t

∑
i

αT

k,i(bst − E(bst))αk,i

}4
+ oa.s.(1),

where C > 0 is a constant. By the assumption that E(∥Y∥8F ) < ∞ and the strong law of

large numbers, we have

1

n

n∑
h=1

{
1

n

n∑
s=1

∑
i

αT

k,i(bhs − E(bhs | Yh))αk,i

}4

=
1

n5

n∑
h=1

n∑
s1,s2,s3,s4=1

4∏
j=1

{∑
i

αT

k,i(bhsj − E(bhsj | Yh))αk,i

}
→a.s. 0.

Following similar arguments, we obtain

1

n2

∑
h̸=g

{
1

n2

∑
s ̸=t

∑
i

αT

k,i(bst − E(bst))αk,i

}4

→a.s. 0.

Similarly, we can show (S11), and we obtain (S9).

Next, we show that

1

(n− 3)

∑
h̸=g

J(Zh,Zg)ηhηg →D∗
∞∑
l=1

νl(G
2
l − 1) a.s. (S13)
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Note that E{J(Z,Z ′
)2} < ∞ under the assumption E(∥X − µX∥2∥Y − µ∥2F ) < ∞ and

E(∥X∥4 + ∥Y∥8F ) < ∞. Therefore, we apply Dunford and Schwartz (1963, p108, Exercise

56) to J(Z,Z ′
) and obtain

J(Z,Z ′
) =

∞∑
l=1

νlϕl(Z)ϕl(Z
′
),

where (νl, ϕl)
+∞
l=1 is a sequence of eigenvalues and eigenfunctions of J . Define

nU∗
n =

1

(n− 3)

∑
h̸=g

J(Zh,Zg)ηhηg, nU (K)∗
n =

1

(n− 3)

∑
h̸=g

J (K)(Zh,Zg)ηhηg,

where J (K)(Z,Z ′
) =

∑K
l=1 νlϕl(Z)ϕl(Z

′
).

We next prove that, for any ϵ > 0,

limK→∞limsupn→∞P∗(|nU∗
n − nU (K)∗

n | > ϵ) = 0 a.s. (S14)

Let

1

n(n− 3)

∑
h̸=g

J∗(Zh,Zg) :=
1

n(n− 3)

∑
h̸=g

{
J(Zh,Zg)− J (K)(Zh,Zg)

}2
.

Since E{J(Z,Z ′
)2} =

∑∞
l=1 ν

2
l < ∞, we have

E{|J∗(Z,Z ′
)|} = E

[{
J(Z,Z ′

)− J (K)(Z,Z ′
)
}2
]
=

∞∑
l=K+1

ν2
l < ∞.

We apply the strong law of large numbers and obtain that

E∗ {|nU∗
n − nU (K)∗

n |2
}
=

1

(n− 3)2

∑
h̸=g

{
∞∑

l=K+1

νlϕl(Zh)ϕl(Zg)

}2

→a.s. E

{ ∞∑
l=K+1

νlϕl(Z)ϕl(Z
′
)

}2
 .

Henceforth, (S14) holds by Markov inequality and the fact that

limK→∞E
[{

J(Z,Z ′
)− J (K)(Z,Z ′

)
}2
]
= limK→∞

∞∑
l=K+1

ν2
l = 0.
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Next, we show that for any K,

nU (K)∗
n →D∗

K∑
l=1

νl(G
2
l − 1) a.s. (S15)

Note that nU (K)∗
n is identical to

nU (K)∗
n =

1

n

∑
h

∑
g

{
K∑
l=1

νlϕl(Zh)ϕl(Zg)ηhηg

}
− 1

n

∑
h

K∑
l=1

νl{ϕl(Zh)ηh}2 + o∗p(1) a.s.

(S16)

By Lemma 2 in the supplement of Lee, Zhang, and Shao (2020), and E{J(Z,Z ′
)4} < ∞

under the assumptions that E(∥X∥4 + ∥Y∥8F ) and E(∥X − µX∥4∥Y − µ∥4F ) < ∞, we

have E{ϕl(Zh)
4} < ∞. This further implies that E{

∑∞
h=1 ϕl(Zh)

4/h2} < ∞, where ϕl(·)

corresponds to νl ̸= 0.

Define the set

Al :=

{
w ∈ Ω :

∞∑
h=1

ϕl(Zh(w))
4

h2
< ∞ and

1

n

n∑
h=1

ϕl(Zh(w))
b → E{ϕl(Zh)

b} for b = 2, 4

}
.

Then P(∩(K)
l=1Al) = 1, where ∩(K)

l=1 is the intersection of indices where eigenvalues (νl)Kl=1 are

nonzero. After conditioning on {Zh(w)} with w ∈ ∩(K)
l=1Al and applying Corollary 7.4.1 of

Resnick (2005), we have 1
n

∑n
h=1(η

2
h− 1)ϕl(Zh)

2 →a.s. 0. Since
∑n

h=1 ϕl(Zh)
2/n → 1, we

have 1
n

∑n
h=1 η

2
hϕl(Zh)

2 →a.s. 1 and this further implies that 1
n

∑n
h=1

∑K
l=1 νl{ϕl(Zh)ηh}2 →a.s.∑K

l=1 νl.

From (S16), note that the first term is equivalent to
∑K

l=1 νl
{

1
n1/2

∑n
h=1 ηhϕl(Zh)

}2 and

cov∗

{
1

n1/2

n∑
h=1

ηhϕs(Zh),
1

n1/2

n∑
g=1

ηgϕt(Zg)

}
=

1

n

n∑
h=1

ϕs(Zh)ϕt(Zh)

→a.s. E{ϕs(Z)ϕt(Z)} = I{s = t}. (S17)

Similarly, define the set

Bl :=

{
w ∈ Ω :

1

n
max
1≤h≤n

ϕl(Zh(w))
2 → 0

}
.
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By Lemma 1 in the supplement of Lee et al. (2020), and the fact that E{ϕl(Z)2} < ∞ for

l = 1, 2, . . . , K, we have P(∩(K)
l=1Bl) = 1, which implies that P{∩(K)

l=1(Al ∩ Bl)} = 1. After

conditioning on {Zh(w)} with w ∈ ∩(K)
l=1(Al ∩ Bl), we obtain

max1≤h≤n var
∗{ηhϕl(Zh)}∑n

g=1 var
∗{ηgϕl(Zg)}

=
1
n
max1≤h≤n ϕl(Zh)

2

1
n

∑n
g=1 ϕl(Zg)2

→ 0. (S18)

Hence, we can apply Theorem D.19 in Greene (2007) and the Cramer-Wold device, and

have (
1

n1/2

n∑
h=1

ηhϕ(1)(Zh), . . . ,
1

n1/2

n∑
h=1

ηhϕ(K)(Zh)

)
→D N(0, I(K)),

for almost every realization of {Zh}, where ((1), . . . , (K)) are indices that correspond to

nonzero eigenvalues (νl)
K
l=1, I(K) is the (K) × (K) identity matrix. Therefore, we obtain

(S15).

Finally, since (S14) and (S15) are both satisfied, we apply Theorem 2 in Dehling,

Durieu, and Volny (2009) and obtain

1

(n− 3)

∑
h̸=g

J(Zh,Zg)ηhηg →D∗
∞∑
l=1

νl(G
2
l − 1) a.s.

Also, with (S9), we conclude that

T ∗
n →D∗

∞∑
l=1

νl(G
2
l − 1) a.s.,

which completes the proof of Theorem 5. □

B Additional Simulations

B.1 Assessing the form of f(X)

To further investigate the idea of using trace
{
M (k)(Y | f(X))

}
to assess the form of f(X),

we carry out a simulation study, where f(X) takes the form of a polynomial function with

a varying order,
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Linear model : Y = B ×(m+1) X + 0.1ϵ,

Quadratic model : Y = B ×(m+1) X
2 + 0.1ϵ,

Cubic model : Y = B ×(m+1) X
3 + 0.1ϵ,

Quartic model : Y = B ×(m+1) X
4 + 0.1ϵ,

where m = 2, B = JΘ; β1, β2, IK, the entries of Θ ∈ Rd1×d2×p are randomly generated from

Uniform(0, 1), β1 ∈ Rr1×d1 and β2 ∈ Rr2×d2 are randomly generated from Uniform(−1, 1)

and orthogonalized. The predictors X ∈ Rp are generated from a standard normal distri-

bution, and the error vec(ε) is generated from Uniform(−1, 1). We set r1 = r2 = 100,

(d1, d2) = (5, 5), p = 5, and the sample size n = 100.

Table S1: Estimation of the form of f(X). Reported is the percentage of times of that the function f(X) is

correctly selected and incorrectly selected out of 100 data replications.

Linear model Quadratic model Cubic model Quartic model

f̂ = f 1.00 0.74 0.60 1.00

f̂ ̸= f 0.00 0.26 0.40 0.00

For each model, we compute
{
trace

{
M̃ (k) (Y | fi(X))

}}4

i=1
, with k = 1, fi(X) =

CiX
i, i = 1, 2, 3, 4, where Ci ∈ Rp×p is a matrix so that var(fi(X)) = I . We select

the function form that produces the largest value of
{
trace

{
M̃ (k) (Y | fi(X))

}}
. Table

S1 reports the percentage of times that the function f is correctly selected and incorrectly

selected based on 100 data replications. We see that this approach manages to select the

correct form of f(X) in the majority of times.

B.2 Sensitivity analysis

The proposed sparse TMDD approach involves two tuning parameters, the number of nonzero

elements s for the sparse loadings, and the ridge regression penalty λ. We use the true s to

13



calculate D or propose to choose the number of nonzero elements s using the BIC criterion

of Sun and Li (2017) to compute TPR and FPR, while we fix the ridge penalty λ = 10−6. We

further carry out a sensitivity analysis regarding λ, and show that our method is relatively

stable for a range of values of λ.

Table S2: Sparse dimension reduction estimation. Reported are the average and standard deviation of

D(βk, β̂k), based on 1000 data replications for a range of values of λ.

λ

10−2 10−4 10−6 10−8

Linear

model

D(β1, β̂1)

n = 10 0.900 (0.214) 0.902 (0.214) 0.902 (0.214) 0.902 (0.214)

n = 50 0.329 (0.036) 0.332 (0.037) 0.332 (0.037) 0.332 (0.037)

n = 100 0.233 (0.023) 0.236 (0.024) 0.236 (0.024) 0.236 (0.024)

D(β2, β̂2)

n = 10 0.907 (0.213) 0.909 (0.213) 0.909 (0.213) 0.909 (0.213)

n = 50 0.331 (0.037) 0.334 (0.037) 0.334 (0.037) 0.334 (0.037)

n = 100 0.233 (0.023) 0.235 (0.024) 0.235 (0.024) 0.235 (0.024)

Nonlinear

model I

D(β1, β̂1)

n = 10 0.494 (0.198) 0.495 (0.198) 0.495 (0.198) 0.496 (0.198)

n = 50 0.207 (0.045) 0.209 (0.045) 0.209 (0.045) 0.209 (0.045)

n = 100 0.152 (0.027) 0.155 (0.028) 0.155 (0.028) 0.155 (0.028)

D(β2, β̂2)

n = 10 0.498 (0.205) 0.500 (0.205) 0.500 (0.205) 0.500 (0.205)

n = 50 0.208 (0.046) 0.210 (0.046) 0.210 (0.046) 0.210 (0.046)

n = 100 0.154 (0.027) 0.156 (0.028) 0.156 (0.028) 0.156 (0.028)

Specifically, we adopt the linear model and the nonlinear model I in Section 4.2 of the

paper, and we vary λ = {10−2, 10−4, 10−6, 10−8}. Table S2 and S3 report the dimension

reduction estimation and the selection results based on 1000 data replications, which shows

that our method is not overly sensitive to the choice of λ in a certain range. This is consistent

with the finding reported in Zou et al. (2006).
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Table S3: Sparse dimension reduction selection. Reported are the average of the true positive rate (TPR),

and false positive rate (FPR), based on 1000 data replications for a range of values of λ.

λ

10−2 10−4 10−6 10−8

TPR FPR TPR FPR TPR FPR TPR FPR

Linear

model

D(β1, β̂1)

n = 10 0.684 0.121 0.685 0.122 0.685 0.122 0.675 0.113

n = 50 0.911 0.088 0.913 0.087 0.913 0.087 0.912 0.086

n = 100 0.939 0.061 0.939 0.061 0.939 0.061 0.939 0.061

D(β2, β̂2)

n = 10 0.679 0.102 0.682 0.106 0.682 0.105 0.693 0.114

n = 50 0.914 0.083 0.916 0.083 0.916 0.083 0.917 0.083

n = 100 0.941 0.059 0.940 0.060 0.940 0.060 0.940 0.060

Nonlinear

model I

D(β1, β̂1)

n = 10 0.866 0.117 0.866 0.117 0.866 0.117 0.864 0.115

n = 50 0.946 0.054 0.945 0.055 0.945 0.055 0.945 0.055

n = 100 0.959 0.041 0.959 0.041 0.959 0.041 0.959 0.042

D(β2, β̂2)

n = 10 0.870 0.109 0.870 0.110 0.870 0.110 0.872 0.111

n = 50 0.948 0.052 0.948 0.052 0.948 0.052 0.948 0.052

n = 100 0.960 0.040 0.960 0.041 0.960 0.041 0.960 0.040
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