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S1 Proofs

S1.1 Proof of proposition 1

Let {h1`}, {h2`} ⊂ ΩN be sequences satisfying h1` → h1, h2` → h2, and

let t` ↘ 0 as ` → ∞. Following the definition of directional Hadamard

derivative, we consider the following difference:

IWp
p(r + t`h1`, s+ t`h2`)− IWp

p(r, s)

t`
.

=

∫
Sd,k

W p
p (r + t`h1`, s+ t`h2`;XE)−W p

p (r, s;XE)

t`
dµ(E),

(S1.1)
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and consider its limit. For each E ∈ Sd,k, Theorem 4 in Sommerfeld and

Munk (2018) implies

W p
p (r + t`h1`, s+ t`h2`;XE)−W p

p (r, s;XE)

t`
→ max

(u,v)∈Φ∗
p(r,s;XE)

−(〈u, h1〉+〈v, h2〉),

as ` → ∞. Furthermore, the Lipschitz continuity of the Wasserstein dis-

tance (Theorem 4 of Sommerfeld and Munk (2018)) implies∣∣∣∣W p
p (r + t`h1`, s+ t`h2`;XE)−W p

p (r, s;XE)

t`

∣∣∣∣ ≤ pdiam(XE)p‖t`(h1`, h2`)‖
t`

≤ pkpdiam(X )p‖(h1`, h2`)‖.

The last inequality results from diam(XE) ≤ kdiam(X ), which follows from

‖E>x‖ ≤ |E>1 x|+ · · ·+ |E>k x| ≤ ‖E1‖‖x‖+ · · ·+ ‖Ek‖‖x‖ = k‖x‖

for E = (E1, ..., Ek) ∈ Sd,k and x ∈ Rd. Because X is finite and {h1`} and

{h2`} are convergent sequences, pkpdiam(X )p‖(h1`, h2`)‖ is bounded by a

constant not depending on E and `. Therefore, by taking `→∞ in (S1.1),

we can apply the dominated convergence theorem, and the claim then holds.

S1.2 Proof of Theorem 2

Our proof follows the same line as the proof of Theorem 1 of Sommerfeld

and Munk (2018). Under the assumption of the theorem, the central limit

theorem implies√
nm

n+m
{(r̂n, ŝm)− (r, s)} d→ (

√
δG,
√

1− δH),
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as n ∧m→∞.

About (i): An application of the delta method in Theorem 1 with the

directional Hadamard derivative of the map (r, s) 7→ IWp
p(r, s), which is

given in Proposition 1, yields

√
nm

n+m
IWp

p(r̂n, ŝm)
d→
∫
Sd,k

max
(u,v)∈Φ∗

p(r,s;XE)
−(〈u,

√
δG〉+〈v,

√
1− δH〉)dµ(E).

(S1.2)

Note that, under r = s, we have (u, v) ∈ Φ∗(r, s;XE) if and only if u ∈

Φ∗p(XE) and v = −u. Therefore, with G
d
= H,−G d

= G and −H d
= H, we

have

max
(u,v)∈Φ∗

p(r,s;XE)
−(〈u,

√
δG〉+ 〈v,

√
1− δH〉) d

= max
(u,v)∈Φ∗

p(XE)

√
δ〈G, u〉 −

√
1− δ〈H, u〉

d
= max

(u,v)∈Φ∗
p(XE)

√
δ + (1− δ)〈G, u〉

= max
(u,v)∈Φ∗

p(XE)
〈G, u〉, (S1.3)

for each E ∈ Sd,k. (S1.2), (S1.3), and an application of the continuous

mapping theorem with the map t 7→ t1/p provides the conclusion.

About (ii): By Proposition 1 and the chain rule for directional Hadamard

derivatives (Proposition 3.6 of Shapiro (1990)), the directional Hadamard

derivative of the map (r, s) 7→ IWp(r, s) = (IWp
p(r, s))

1/p at (r, s) is given
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by

(h1, h2) 7→ 1

p
IW1−p

p (r, s)

∫
Sd,k

max
(u,v)∈Φ∗

p(r,s;XE)
−(〈u, h1〉+ 〈v, h2〉dµ(E)).

An application of the delta method in Theorem 1 yields the conclusion.

Remark 1. In the proof of Theorem 2, we applied the delta method with

IWp
p when r = s, and IWp when r 6= s, respectively. There are mainly

two reasons for this usage. First, IWp(r, s) is not directionally Hadamard

differentiable when r = s. Second, applying the delta method to IWp
p and

using the map t 7→ t1/p would not result in the correct scaling when r 6= s.

To avoid these issues, we use the delta method differently for each of these

situations.

S1.3 Proof of Lemma 1

Our proof is similar to the proof of Theorem 2.3 in Klatt et al. (2020), which

shows continuous differentiability of the regularized optimal transport plan

without projection. Note that the regularized optimal transport problem

(2.4) with marginal r0 and s0 satisfies the Slater’s constraint qualification

(Proposition 26.18 in Bauschke et al. (2011)). Therefore, strong duality

holds and the dual problem admits an optimal solution. In addition, we

can characterize the regularized optimal transport plan πp,λ and its corre-

sponding optimal dual solution µp,λ ∈ R2N−1 by the necessary and sufficient
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Karush-Kuhn-Tucker conditions:

cp(XE) + λ∇φ(πp,λ)
> − A>? µp,λ = 0, A?πp,λ − (r0, s0?)

> = 0.

We now obtain the statement by applying the implicit function theorem

to this system of equations. Let us define a function F : RN2 × R2N−1 ×

R2N−1 × Rdk → RN2+2N−1 by

F (π, µ, (r, s?), E) =

 cp(XE) + λ∇φ(π)> − A>? µ

A?π − (r, s?)
>

 .

Because p ≥ 2, F is continuously differentiable in the neighborhood of

a specific point (πp,λ, µp,λ, (r0, s0?), E0) with F (πp,λ, µp,λ, (r0, s0?), E0) = 0.

The matrix of the partial derivatives of F with respect to π and µ is given

by

∇(π,µ)F (πp,λ, µp,λ, (r0, s0?), E0) =

λ∇2φ(πp,λ) −A>?

A? 0

 ∈ R(N2+2N−1)×(N2+2N−1).

This matrix is non-singular because λ > 0, the Hessian ∇φ(πp,λ) is positive

definite (Section 2.1 in Klatt et al. (2020)) and the matrix A>? has full rank.

As a result, the implicit function theorem guarantees the existence of a con-

tinuously differentiable function that parameterizes the regularized optimal

transport plan with projection in the neighborhood of (r0, s0?, E0). The

computation of the partial derivative form is directly followed by Theorem

2.3 and Example 2.6 in Klatt et al. (2020).
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S1.4 Proof of Proposition 2

Since the regularized optimal transport distance is defined as

Wp,λ(r, s?;XE) = 〈cp(XE), πp,λ(r, s?;XE)〉1/p,

it follows from Lemma 1 that the map (r, s?, E) 7→ Wp,λ(r, s?,XE) is contin-

uously differentiable on ∆N × (∆N)?×Rdk. Moreover, the matrix of partial

derivatives with respect to (r, s∗) is given by

∇(r,s?)Wp,λ(r, s?;XE) = γ>DA>? (A?DA
>
? )−1,

where γ is the gradient of function π 7→ 〈cp(XE), π〉1/p evaluated in the reg-

ularized transport plan πp,λ(r, s?;XE), which is formally defined by (3.16).

Consequently, Theorem 3 implies that the map (r, s?) 7→ PWp,λ(r, s?) is

directionally differentiable with derivative (3.15) in the sense of Gâteaux.

To see this map is also a directionally derivative in the Hadamard sense, it

is sufficient to show local Lipschitz continuity of this map (Proposition 3.5

of Shapiro (1990)). To this end, we fix a closed set S0 ⊂ ∆N × (∆N)?. For

any (r, s?), (r
′, s′?) ∈ S0, we have

|PWp,λ(r, s?)− PWp,λ(r
′, s′?)| ≤ max

E∈Sd,k

|Wp,λ(r, s?;XE)−Wp,λ(r
′, s′?;XE)|.

(S1.4)

Because the map (r, s?, E) 7→ Wp,λ(r, s?,XE) is continuously differentiable,

there exists a constant C > 0 that does not depend on (r, s?), (r
′, s′?) and
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E so that

|Wp,λ(r, s?;XE)−Wp,λ(r
′, s′?;XE)| ≤ C‖(r, s?)− (r′, s′?)‖. (S1.5)

A combination of equations (S1.4) and (S1.5) leads to local Lipschitz con-

tinuity of the map (r, s?) 7→ PWp,λ(r, s?). This completes the proof.

S1.5 Proof of Theorem 4

The proof is a simple application of the delta method (Theorem 1), with

the derivative of the regularized PRW distance (Proposition 2).

S1.6 Proof of Proposition 3

Under r = s, as shown in Proposition 1, the map (r, s) 7→ IWp
p(r, s) is di-

rectionally Hadamard differentiable. The proof is an application of Propo-

sition 2 in Dümbgen (1993) in combination with the continuous mapping

theorem. Under r 6= s, as discussed in the proof of Theorem 2, the map

(r, s) 7→ IWp(r, s) is directionally Hadamard differentiable. The proof is a

direct application of Proposition 2 in Dümbgen (1993)

S1.7 Proof of Proposition 4

As shown in Proposition 2, the map (r, s) 7→ PWp,λ(r, s) is directionally

Hadamard differentiable. Then, the proof is a direct application of Propo-
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sition 2 in Dümbgen (1993) with this map.

S2 Additional Simulation Results

S2.1 Speed of convergence

We illustrate our distributional limit results in Monte Carlo simulations.

Specifically, we investigate the speed of convergence of the empirical IPRW

distance (p = 1) and the empirical regularized PRW distance (p = 2)

to their limit distributions (Theorems 2 and 4). All simulations were per-

formed using R (Team et al. (2013)). The Wasserstein distances were calcu-

lated using the R package transport (Schuhmacher et al., 2020), and the reg-

ularized transport distances were calculated using the R package Barycenter

(Klatt, 2018).

Integral projection robust Wasserstein distance: We consider

the finite ground space X to be an equidistant two-dimensional L×L grid

on [0, 1]× [0, 1], with size N = L2. We first set the grid size to L = 7 (i.e.,

N = 49).

For case r = s, we consider a probability distribution r on X as a re-

alization of Dirichlet random variable Dir(1) with concentration parameter

1 = (1, ..., 1) ∈ RN , and set s = r. Given such distributions r, s ∈ ∆N , we
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sample observations X1, ..., Xn ∼ r and Y1, ..., Ym ∼ s i.i.d. with sample

size n = m ∈ {25, 50, 100, 1000, 5000} and compute
√
n/2IW1(r̂n, ŝn) with

one-dimensional projection and the uniform measure, which corresponds to

the sliced Wasserstein distance. This process is repeated 20,000 times. Sim-

ilarly, we consider the same setup for the case r 6= s, where we generate the

second distribution, s ∼ Dir(1), independently. We then compare the finite

distributions with the theoretical limit distributions given by Theorem 2.

We demonstrate the results using kernel density estimators and Q-Q

plots in Figure 1 and 2. The limit distributions are good approximations of

finite sample distributions for a large sample size (n = 1000) in both r = s

and r 6= s. We also observe that, under r = s, the limit law approximates

finite sample distribution quite well, even for a small sample size (n = 50).

In Figure 3, we also show the speed of convergence with respect to the

Kolmogorov–Smirnov distance (the maximum absolute difference between

the distribution function of finite sample law and that of the limit law) for

grid sizes L = 3, 5, 7. This shows that the Kolmogorov–Smirnov distances

decrease as the sample size increases, and the size of ground space N = L2

slows the speed of convergence marginally, especially for r 6= s.

Regularized projection robust Wasserstein distance: We con-

sider the ground space X to be a form {1/M, 2/M, ...,M/M}×{−0.001, 0.001}×
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(a) r = s

Figure 1: Comparison of finite sample distributions and the limit distribution of

the empirical IPRW distance for the case r = s. The first row shows finite sample density

(dashed line) of the empirical IPRW distance for n = 50 on a regular grid of size L = 7 compared

to its limit density (solid line). The densities are estimated by kernel density estimators with

Gaussian kernel and Silverman’s rule is used to select bandwidth. The corresponding Q-Q plot

is presented on the right, where the solid line indicates perfect fit.The second row is the same

setting as above, but n = 1000.
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(a) r 6= s

Figure 2: Comparison of finite sample distributions and the limit distribution of

the empirical IPRW distance for the case r 6= s. Same scenario as in Figure 1, but here

the sampling distributions r and s are not equal.
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(a) r = s (b) r 6= s

Figure 3: (A) Kolmogorov-Smirnov distances of the IPRW distance for the case

r = s. The Kolmogorov-Smirnov distance between finite sample distributions of the em-

pirical IPRW distance and its theoretical limit distribution for different sample size n ∈

{25, 50, 100, 1000, 5000} and different grid sizes L. The axes are given on a logarithmic scale.

(B) Kolmogorov-Smirnov distances of the IPRW distance for the case r 6= s. Same

scenario as in (A), but here the sampling distributions r and s are not equal.
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{−0.001, 0.001} ⊂ R3 with grid size M and total size N = 4M . This ground

space X is set to have a low-dimensional structure: two distributions on X

differ mostly in the first coordinate, while the differences in the second and

third coordinates are regarded as noise. For M = 10 (i.e., N = 40), we gen-

erated probability distributions r and s on X as realizations of independent

Dirichlet random variables Dir(1). Given distributions r 6= s, we consider

the same sampling scenarios as in the case of the IPRW distance and com-

pute
√
n/2{PW2,λ(r̂n, ŝn) − PW2,λ(r, s)} with one-dimensional projection

and regularization parameter λ = 1. We repeat this process 20,000 times

and compare finite distributions to its theoretical limit distribution given

by Theorem 4.

Figure 4 shows the results demonstrated by kernel density estimators

and Q-Q plots. The limit distributions are good approximations of fi-

nite sample distributions for both small and large sample sizes. Figure

5 shows the speed of convergence with respect to the Kolmogorov-Smirnov

distance under grid sizes M = 3, 7, 10. We observe declining tendency of

the Kolmogorov-Smirnov distances as the sample size increases.
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Figure 4: Comparison of finite sample distributions and the limit distribution of

the empirical regularized PRW distance for the case r 6= s. The first row shows a finite

sample density (dashed line) of the empirical regularized PRW distance for n = 50 on a ground

space of grid size M = 10, which is compared to its limit density (solid line). The densities

are estimated in the same way as Figure 1. The corresponding Q-Q plot is presented on the

right, where the solid line indicates perfect fit. The second row is the same setting as above,

but n = 1000.
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Figure 5: Kolmogorov-Smirnov distances of the regularized PRW for r 6= s. The

Kolmogorov-Smirnov distance between finite sample distribution of the empirical regular-

ized PRW distance and its theoretical limit distribution for different sample size n ∈

{25, 50, 100, 1000, 5000} and different grid sizes M . The axes are given on a logarithmic scale.

S2.2 Simulation of bootstrap

We illustrate the acuuracy of approximation by the rescaled bootstrap

(Proposition 3 and 4).

Integral projection robust Wasserstein distance: For a grid with

L = 7, we generate r ∼ Dir(1), set s = r, and sample n = 1000 obser-

vations according to probability distributions r, s. In addition, for fixed

empirical distributions r̂n, ŝn, we generate B = 500 bootstrap replica-

tions of
√
`/2 IW1(r̂∗` , ŝ

∗
`) by drawing independently with replacement ` ∈

{n, n4/5, n2/3, n1/2} according to r̂n and ŝn. Similarly, we consider the same

setup in the case of r 6= s, where the second distribution, s, is generated
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independently from Dir(1). In the r 6= s case, the form of bootstrap repli-

cations is
√
`/2{IW1(r̂∗` , ŝ

∗
`) − IW1(r̂n, ŝn)}. The finite bootstrap sample

distributions are then compared with their finite sample and theoretical

limit distributions.

(a) r = s

Figure 6: (A) Bootstrap for the empirical IPRW distance under r = s. Illus-

tration of the rescaled plug-in bootstrap approximation (n = 1000) with replacement ` ∈

{n, n4/5, n2/3, n1/2} and grid size L = 7. Finite bootstrap densities (dotted lines) are com-

pared to their finite sample density (solid line) and limit density (dashed line). The densities

are estimated in the same way with Figure 1.

The results are shown in Figure 6 and 7. We observe that, under r = s,

finite bootstrap distributions with fewer replacements (` = n4/5, n2/3, n1/2)
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(a) r 6= s

Figure 7: (B) Bootstrap for the empirical IPRW distance under r 6= s. Same scenario

as in (A), but here the sampling distributions r and s are not equal.
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are better approximations of the finite sample distribution than the naive

bootstrap (` = n). This is consistent with the theoretical result in Section

4, which claims the naive bootstrap does not have consistency for the IPRW

distance but resampling fewer observations leads to consistency. However,

under r 6= s, the bootstrap approximations with fewer replacements are

not good, and the naive bootstrap approximation is better. This good

approximation by the naive bootstrap is possible due to the fact that the

map (r, s) 7→ IWp(r, s) is only directionally Hadamard differentiable in

general but (non-directionally) Hadamard differentiable at most points (r, s)

with r 6= s. For instance, for ground size N = 2 (i.e., X = {x1, x2}), the

IPRW distance can be explicitly written as IWp(r, s) = (
∫
Sd,k
‖E>(x1 −

x2)‖pdµ(E))1/p|r1 − s1|. Therefore, in this case, the map (r, s) 7→ IWp(r, s)

is Hadamard differentiable if r 6= s.

Regularized projection robust Wasserstein distance: For grid

size M = 10, we generate distributions r and s as realizations of inde-

pendent random variables from Dir(1) and sample n = 1000 observations

according to probability distributions r, s. Additionally, for fixed empir-

ical distributions r̂n, ŝn, we generate B = 500 bootstrap replications of√
`/2{PW2,λ(r̂

∗
` , ŝ
∗
`)−PW2,λ(r̂n, ŝn)} with λ = 1 by drawing independently

with replacement ` ∈ {n, n4/5, n2/3, n1/2}, according to r̂n and ŝn. The finite
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bootstrap sample distributions are then compared with their finite sample

and theoretical limit distributions.

The results are shown in Figure 8. The accuracy of the bootstrap

approximation is not affected by replacement number ` in this case.

Figure 8: Bootstrap for the regularized PRW distance under r 6= s. Illustration

of the rescaled plug-in bootstrap approximation (n = 1000) with the replacement ` ∈

{n, n4/5, n2/3, n1/2} and grid size M = 10. Finite bootstrap densities (dotted lines) are com-

pared with their finite sample density (solid line) and limit density (dashed line). The densities

are estimated in the same way with Figure 1.
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S3 Extension to Countable Spaces

In Section 3.2, we derived the limit distributions of empirical IPRW dis-

tances on finite spaces. In this section, we extend this result to countable

spaces. Let X = {x1, x2, ...} ⊂ Rd be a countable set and we assume

that X is bounded. Let `1(RN) = {a ∈ RN :
∑

i∈N |ai| < ∞} be the set

of absolutely summable sequences, and for a ∈ `1(RN), ‖a‖`1 =
∑

i∈N |ai|

be its norm. A probability measure on X is represented as an element in

∆∞ = {r ∈ `1(RN) :
∑∞

i=1 ri = 1, ri > 0}. For r, s ∈ ∆∞, the set of

couplings is defined by

Π(r, s) =

π ∈ `1(RN×N) : A(π) =

r
s

 , π ≥ 0

 ,

where A : `1(RN×N) → `1(RN) × `1(RN) is the marginalization operator,

which is defined by

π 7→

(
∑∞

j=1 πij)
∞
i=1

(
∑∞

i=1 πij)
∞
j=1

 .

The p-Wasserstein distance between two distributions r, s ∈ ∆∞ on X is

given byWp(r, s;X ) =
{

minπ∈Π(r,s)〈cp(X ), π〉
}1/p

. Here, cp(X ) ∈ `1(RN×N)

denotes pair-wise transport costs such that (cp(X ))i,j = ‖xi−xj‖p, and the

inner product 〈cp(X ), π〉 =
∑

i,j∈N ‖xi − xj‖pπij denotes the total costs

associated to the transport plan π ∈ Π(r, s). The Wasserstein distance
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between the projections of the distributions r, s in direction E ∈ Sd,k is

represented by Wp(r, s;XE), where XE = {E>x1, E
>x2, ...} ⊂ Rk. Based

on this, the p-IPRW distance between r, s ∈ ∆∞ on X is represented as

IWp(r, s) =
(∫

Sd,k
W p
p (r, s;XE)dµ(E)

)1/p

where µ is a given measure on

Sd,k.

Let r, s ∈ ∆∞ be probability measures on a bounded countable space

X . Let r̂n, ŝm denote the empirical distributions generated by i.i.d. sam-

ples X1, ..., Xn ∼ r and Y1, ..., Ym ∼ s, respectively. We derive the limit

distributions of
√
nm/(n+m){IWp(r̂n, ŝm)− IWp(r, s)} as n,m→∞. For

description of our result, following Tameling et al. (2019), we define the

following sets

S∗(X ) = {λ ∈ `∞(RN) : λi − λj ≤ ‖xi − xj‖p)

and

S∗(r, s;X ) = {(λ, µ) ∈ `∞(RN)× `∞(RN)

: 〈r, λ〉+ 〈s, µ〉 = W p
p (r, s;X ), λi + µj ≤ ‖xi − xj‖p},

where `∞(RN) = {a ∈ RN : supi∈N |ai| <∞}. Furthermore, for r ∈ ∆∞, we

define the following covariance structure

Σ(r) =


ri(1− ri) if i = j

−rirj if i 6= j.
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Theorem S.1. Let X be a bounded countable set, r, s ∈ ∆∞ and r̂n, ŝm be

the empirical distributions generated by i.i.d. samples X1, ..., Xn ∼ r and

Y1, ..., Ym ∼ s, respectively. Furthermore, let G and H be independent zero-

mean Gaussian processes with covariance structures Σ(r),Σ(s), respectively.

Assume
∑∞

i=1

√
ri <∞ and

∑∞
i=1

√
si <∞. Then, we have the followings:

1. If r = s, and n ∧m→∞ and m/(n+m)→ δ ∈ (0, 1), we have(
nm

n+m

) 1
2p

IWp(r̂n, ŝm)
d→

(∫
Sd,k

sup
λ∈S∗(XE)

〈G, λ〉dµ(E)

)1/p

.

2. If r 6= s, and n ∧m→∞ and m/(n+m)→ δ ∈ (0, 1), we have√
nm

n+m
{IWp(r̂n, ŝm)− IWp(r, s)}

d→1

p
IW1−p

p (r, s)

∫
Sd,k

sup
(λ,µ)∈S∗(r,s;XE)

√
δ〈G, λ〉+

√
1− δ〈H,µ〉dµ(E).

To prove the claim of Theorem S.1, we use the delta method (Theorem 1

in Römisch (2004)). Therefore, we need to show directional Hadamard dif-

ferentiability of IWp
p(·, ·) and weak convergence of

√
nm/(n+m){(r̂n, ŝm)−

(r, s)}. Directional Hadamard differentiability of IWp
p is addressed in the

following proposition.

Proposition S.1. Assume that support X is a bounded countable set. Then

the map IWp
p from (∆∞×∆∞, ‖ · ‖`1) to R, (r, s) 7→ IWp

p(r, s) is directional

Hadamard differentiable at all (r, s) tangentially to ∆∞×∆∞. The contin-
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gent cone on which the derivative is defined is given by

D(r, s) = D(r)×D(s)

with

D(r) =

{
d ∈ `1(RN) \ {0} :

∞∑
i=1

di = 0, di ∈ [−ri, 1− ri]

}
.

Furthermore, the directional derivative is given as follows

(d1, d2) 7→
∫
Sd,k

sup
(λ,µ)∈S∗(r,s;XE)

−(〈λ, d1〉+ 〈µ, d2〉)dµ(E).

Proof of Proposition S.1. Consider a sequence {(h1`, h2`)} ⊂ `1(RN)×`1(RN)

with a limit (h1, h2) ∈ D(r, s) of the form h1` = t−1
` (rn−r), h2` = t−1

` (sn−s)

where rn, sn ∈ ∆∞ and t` ↘ 0. Following the definition of directional

Hadamard derivative, we consider the following difference:

IWp
p(r + t`h1`, s+ t`h2`)− IWp

p(r, s)

t`
.

=

∫
Sd,k

W p
p (r + t`h1`, s+ t`h2`;XE)−W p

p (r, s;XE)

t`
dµ(E),

(S3.6)

and consider its limit. For each E ∈ Sd,k, Theorem A.3 in Tameling et al.

(2019) implies

W p
p (r + t`h1`, s+ t`h2`;XE)−W p

p (r, s;XE)

t`
→ sup

(λ,µ)∈S∗(r,s;XE)

−(〈λ, h1〉+〈µ, h2〉),

as ` → ∞. The Lipschitz continuity of the Wasserstein distance on finite

space (Theorem 4 of Sommerfeld and Munk (2018)) also holds even if the
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support X is a bounded countable set. Therefore, we have∣∣∣∣W p
p (r + t`h1`, s+ t`h2`;XE)−W p

p (r, s;XE)

t`

∣∣∣∣ ≤ pdiam(XE)p‖t`(h1`, h2`)‖
t`

≤ pkpdiam(X )p‖(h1`, h2`)‖.

Because X is bounded and {h1`} and {h2`} are convergent sequences, the

term pkpdiam(X )p‖(h1`, h2`)‖ is bounded by a constant not depending on E

and `. Therefore, by taking `→∞ in (S3.6), we can apply the dominated

convergence theorem, and the claim then holds.

Proof of theorem S.1. Under the assumption that
∑∞

i=1

√
ri <∞ and

∑∞
i=1

√
si <

∞, Lemma 2.6 in Tameling et al. (2019) implies that
√
nm/(n+m){(r̂n, ŝm)−

(r, s)} d→ (
√
δG,
√

1− δH) with respect to the ‖ ·‖`1-norm, as n/(n+m)→

δ ∈ (0, 1). Applying the delta method (Theorem 1 in Römisch (2004)) with

−G d
= G and −H d

= H, we have√
nm

n+m
{IWp

p(r̂n, ŝm)− IWp
p(r, s)}

d→
∫
Sd,k

sup
(λ,µ)∈S∗(r,s;XE)

√
δ〈G, λ〉+

√
1− δ〈H,µ〉dµ(E).

Under r = s, we obtain the desired result by applying the continuous map-

ping theorem for f(x) = x1/p. Under r 6= s, we have the desired result by

applying the delta method in combination with the chain rule for directional

Hadamard differentiability (Proposition 3.6 in Shapiro (1990)).
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